Prompting Visual-Language Models for Dynamic Facial Expression Recognition

This paper presents a novel visual-language model called DFER-CLIP, which is based on the CLIP model and designed for in-the-wild Dynamic Facial Expression Recognition (DFER). Specifically, the proposed DFER-CLIP consists of a visual part and a textual part. For the visual part, based on the CLIP image encoder, a temporal model consisting of several Transformer encoders is introduced for extracting temporal facial expression features, and the final feature embedding is obtained as a learnable “class” token. For the textual part, we use as inputs textual descriptions of the facial behaviour that is related to the classes (facial expressions) that we are interested in recognising — those descriptions are generated using large language models, like ChatGPT. This, in contrast to works that use only the class names and more accurately captures the relationship between them. Alongside the textual description, we introduce a learnable token which helps the model learn relevant context information for each expression during training. Extensive experiments demonstrate the effectiveness of the proposed method and show that our DFER-CLIP also achieves state-of-the-art results compared with the current supervised DFER methods on the DFEW, FERV39k, and MAFW benchmarks.

MaskCon: Masked Contrastive Learning for Coarse-Labelled Dataset

Deep learning has achieved great success in recent years with the aid of advanced neural network structures and large-scale human-annotated datasets. However, it is often costly and difficult to accurately and efficiently annotate large-scale datasets, especially for some specialized domains where fine-grained labels are required. In this setting, coarse labels are much easier to acquire as they do not require expert knowledge. In this work, we propose a contrastive learning method, called masked contrastive learning (MaskCon) to address the under-explored problem setting, where we learn with a coarse-labelled dataset in order to address a finer labelling problem. More specifically, within the contrastive learning framework, for each sample our method generates soft-labels with the aid of coarse labels against other samples and another augmented view of the sample in question. By contrast to self-supervised contrastive learning where only the sample’s augmentations are considered hard positives, and in supervised contrastive learning where only samples with the same coarse labels are considered hard positives, we propose soft labels based on sample distances, that are masked by the coarse labels. This allows us to utilize both inter-sample relations and coarse labels. We demonstrate that our method can obtain as special cases many existing state-of-the-art works and that it provides tighter bounds on the generalization error. Experimentally, our method achieves significant improvement over the current state-of-the-art in various datasets, including CIFAR10, CIFAR100, ImageNet-1K, Standford Online Products and Stanford Cars196 datasets.

Self-Supervised Representation Learning with Cross-Context Learning between Global and Hypercolumn Features

Whilst contrastive learning yields powerful representations by matching different augmented views of the same instance, it lacks the ability to capture the similarities between different instances. One popular way to address this limitation is by learning global features (after the global pooling) to capture inter-instance relationships based on knowledge distillation, where the global features of the teacher are used to guide the learning of the global features of the student. Inspired by cross-modality learning, we extend this existing framework that only learns from global features by encouraging the global features and intermediate layer features to learn from each other. This leads to our novel self-supervised framework: cross-context learning between global and hypercolumn features (CGH), that enforces the consistency of instance relations between lowand high-level semantics. Specifically, we stack the intermediate feature maps to construct a “hypercolumn” representation so that we can measure instance relations using two contexts (hypercolumn and global feature) separately, and then use the relations of one context to guide the learning of the other. This cross-context learning allows the model to learn from the differences between the two contexts. The experimental results on linear classification and downstream tasks show that our method outperforms the state-of-the-art methods.

StyleMask: Disentangling the Style Space of StyleGAN2 for Neural Face Reenactment

In this paper we address the problem of neural face reenactment, where, given a pair of a source and a target facial image, we need to transfer the target’s pose (defined as the head pose and its facial expressions) to the source image, by preserving at the same time the source’s identity characteristics (e.g., facial shape, hair style, etc), even in the challenging case where the source and the target faces belong to different identities. In doing so, we address some of the limitations of the state-of-the-art works, namely, a) that they depend on paired training data (i.e., source and target faces have the same identity), b) that they rely on labeled data during inference, and c) that they do not preserve identity in large head pose changes. More specifically, we propose a framework that, using unpaired randomly generated facial images, learns to disentangle the identity characteristics of the face from its pose by incorporating the recently introduced style space S of StyleGAN2, a latent representation space that exhibits remarkable disentanglement properties. By capitalizing on this, we learn to successfully mix a pair of source and target style codes using supervision from a 3D model. The resulting latent code, that is subsequently used for reenactment, consists of latent units corresponding to the facial pose of the target only and of units corresponding to the identity of the source only, leading to notable improvement in the reenactment performance compared to recent state-of-the-art methods. In comparison to state of the art, we quantitatively and qualitatively show that the proposed method produces higher quality results even on extreme pose variations. Finally, we report results on real images by first embedding them on the latent space of the pretrained generator.

HyperReenact: One-Shot Reenactment via Jointly Learning to Refine and Retarget Faces

In this paper, we present our method for neural face reenactment, called HyperReenact, that aims to generate realistic talking head images of a source identity, driven by a target facial pose. Existing state-of-the-art face reenactment methods train controllable generative models that learn to synthesize realistic facial images, yet producing reenacted faces that are prone to significant visual artifacts, especially under the challenging condition of extreme head pose changes, or requiring expensive few-shot fine-tuning to better preserve the source identity characteristics. We propose to address these limitations by leveraging the photorealistic generation ability and the disentangled properties of a pretrained StyleGAN2 generator, by first inverting the real images into its latent space and then using a hypernetwork to perform:(i) refinement of the source identity characteristics and (ii) facial pose re-targeting, eliminating this way the dependence on external editing methods that typically produce artifacts. Our method operates under the one-shot setting (ie, using a single source frame) and allows for cross-subject reenactment, without requiring any subject-specific fine-tuning. We compare our method both quantitatively and qualitatively against several state-of-the-art techniques on the standard benchmarks of VoxCeleb1 and VoxCeleb2, demonstrating the superiority of our approach in producing artifact-free images, exhibiting remarkable robustness even under extreme head pose changes.

JGNN: Graph Neural Networks on Native Java

We introduce JGNN, an open source Java library to define, train, and run Graph Neural Networks (GNNs) under limited resources. The library is cross-platform and implements memory-efficient machine learning components without external dependencies. Model definition is simplified by parsing Python-like expressions, including interoperable dense and sparse matrix operations and inline parameter definitions. GNN models can be deployed on smart devices and trained on local data.

Temporal Normalization in Attentive Key-frame Extraction for Deep Neural Video Summarization

Attention-based neural architectures have consistently demonstrated superior performance over Long Short-Term Memory (LSTM) Deep Neural Networks (DNNs) in tasks such as key-frame extraction for video summarization. However, existing approaches mostly rely on rather shallow Transformer DNNs. This paper revisits the issue of model depth and proposes DATS: a deep attentive architecture for supervised video summarization that meaningfully exploits skip connections. Additionally, a novel per-layer temporal normalization algorithm is proposed that yields improved test accuracy. Finally, the model’s noisy output is rectified in an innovative post-processing step. Experiments conducted on two common, publicly available benchmark datasets showcase performance superior to competing state-of-the-art video summarization methods, both supervised and unsupervised.

 

Text-to-Motion Retrieval: Towards Joint Understanding of Human Motion Data and Natural Language

Due to recent advances in pose-estimation methods, human motion can be extracted from a common video in the form of 3D skeleton sequences. Despite wonderful application opportunities, effective and efficient content-based access to large volumes of such spatio-temporal skeleton data still remains a challenging problem. In this paper, we propose a novel content-based text-to-motion retrieval task, which aims at retrieving relevant motions based on a specified natural-language textual description. To define baselines for this uncharted task, we employ the BERT and CLIP language representations to encode the text modality and successful spatio-temporal models to encode the motion modality. We additionally introduce our transformer-based approach, called Motion Transformer (MoT), which employs divided space-time attention to effectively aggregate the different skeleton joints in space and time. Inspired by the recent progress in text-to-image/video matching, we experiment with two widely-adopted metric-learning loss functions. Finally, we set up a common evaluation protocol by defining qualitative metrics for assessing the quality of the retrieved motions, targeting the two recently-introduced KIT Motion-Language and HumanML3D datasets. The code for reproducing our results is available here: https://github.com/mesnico/text-to-motion-retrieval.

Escaping local minima in deep reinforcement learning for video summarization

State-of-the-art deep neural unsupervised video summarization methods mostly fall under the adversarial reconstruction framework. This employs a Generative Adversarial Network (GAN) structure and Long Short-Term Memory (LSTM) auto-encoders during its training stage. The typical result is a selector LSTM that sequentially receives video frame representations and outputs corresponding scalar importance factors, which are then used to select key-frames. This basic approach has been augmented with an additional Deep Reinforcement Learning (DRL) agent, trained using the Discriminator’s output as a reward, which learns to optimize the selector’s outputs. However, local minima are a well-known problem in DRL. Thus, this paper presents a novel regularizer for escaping local loss minima, in order to improve unsupervised key-frame extraction. It is an additive loss term employed during a second training phase, that rewards the difference of the neural agent’s parameters from those of a previously found good solution. Thus, it encourages the training process to explore more aggressively the parameter space in order to discover a better local loss minimum. Evaluation performed on two public datasets shows considerable increases over the baseline and against the state-of-the-art.

Cross-Forgery Analysis of Vision Transformers and CNNs for Deepfake Image Detection

Deepfake Generation Techniques are evolving at a rapid pace, making it possible to create realistic manipulated images and videos and endangering the serenity of modern society. The continual emergence of new and varied techniques brings with it a further problem to be faced, namely the ability of deepfake detection models to update themselves promptly in order to be able to identify manipulations carried out using even the most recent methods. This is an extremely complex problem to solve, as training a model requires large amounts of data, which are difficult to obtain if the deepfake generation method is too recent. Moreover, continuously retraining a network would be unfeasible. In this paper, we ask ourselves if, among the various deep learning techniques, there is one that is able to generalise the concept of deepfake to such an extent that it does not remain tied to one or more specific deepfake generation methods used in the training set. We compared a Vision Transformer with an EfficientNetV2 on a cross-forgery context based on the ForgeryNet dataset. From our experiments, It emerges that EfficientNetV2 has a greater tendency to specialize often obtaining better results on training methods while Vision Transformers exhibit a superior generalization ability that makes them more competent even on images generated with new methodologies.

An Optimized Pipeline for Image-Based Localization in Museums from Egocentric Images

With the increasing interest in augmented and virtual reality, visual localization is acquiring a key role in many downstream applications requiring a real-time estimate of the user location only from visual streams. In this paper, we propose an optimized hierarchical localization pipeline by specifically tackling cultural heritage sites with specific applications in museums. Specifically, we propose to enhance the Structure from Motion (SfM) pipeline for constructing the sparse 3D point cloud by a-priori filtering blurred and near-duplicated images. We also study an improved inference pipeline that merges similarity-based localization with geometric pose estimation to effectively mitigate the effect of strong outliers. We show that the proposed optimized pipeline obtains the lowest localization error on the challenging Bellomo dataset [11]. Our proposed approach keeps both build and inference times bounded, in turn enabling the deployment of this pipeline in real-world scenarios.

Data-driven personalisation of Television Content: A Survey

This survey considers the vision of TV broadcasting where content is personalised and personalisation is data-driven, looks at the AI and data technologies making this possible and surveys the current uptake and usage of those technologies. We examine the current state-of-the-art in standards and best practices for data-driven technologies and identify remaining limitations and gaps for research and innovation. Our hope is that this survey provides an overview of the current state of AI and data-driven technologies for use within broadcasters and media organisations. It also provides a pathway to the needed research and innovation activities to fulfil the vision of data-driven personalisation of TV content.

Dynamically Instance-Guided Adaptation: A Backward-free Approach for Test-Time Domain Adaptive Semantic Segmentation

In this paper, we study the application of Test-time domain adaptation in semantic segmentation (TTDA-Seg) where both efficiency and effectiveness are crucial. Existing methods either have low efficiency (e.g., backward optimization) or ignore semantic adaptation (e.g., distribution alignment). Besides, they would suffer from the accumulated errors caused by unstable optimization and abnormal distributions. To solve these problems, we propose a novel backward-free approach for TTDA-Seg, called Dynamically Instance-Guided Adaptation (DIGA). Our principle is utilizing each instance to dynamically guide its own adaptation in a non-parametric way, which avoids the error accumulation issue and expensive optimizing cost. Specifically, DIGA is composed of a distribution adaptation module (DAM) and a semantic adaptation module (SAM), enabling us to jointly adapt the model in two indispensable aspects. DAM mixes the instance and  source BN statistics to encourage the model to capture robust representation. SAM combines the historical prototypes with instance-level prototypes to adjust semantic predictions, which can be associated with the parametric classifier to mutually benefit the final results. Extensive experiments evaluated on five target domains demonstrate the effectiveness and efficiency of the proposed method. Our DIGA establishes new state-of-theart performance in TTDA-Seg. Source code is available at: https://github.com/Waybaba/DIGA.

Masked Jigsaw Puzzle: A Versatile Position Embedding for Vision Transformers

Position Embeddings (PEs), an arguably indispensable component in Vision Transformers (ViTs), have been shown to improve the performance of ViTs on many vision tasks. However, PEs have a potentially high risk of privacy leakage since the spatial information of the input patches is exposed. This caveat naturally raises a series of interesting questions about the impact of PEs on accuracy, privacy, prediction consistency, etc. To tackle these issues, we propose a Masked Jigsaw Puzzle (MJP) position embedding method. In particular, MJP first shuffles the selected patches via our block-wise random jigsaw puzzle shuffle algorithm, and their corresponding PEs are occluded. Meanwhile, for the nonoccluded patches, the PEs remain the original ones but their spatial relation is strengthened via our dense absolute localization regressor. The experimental results reveal that 1) PEs explicitly encode the 2D spatial relationship and lead to severe privacy leakage problems under gradient inversion attack; 2) Training ViTs with the naively shuffled patches can alleviate the problem, but it harms the accuracy; 3) Under a certain shuffle ratio, the proposed MJP not only boosts the performance and robustness on large-scale datasets (i.e.,
ImageNet-1K and ImageNet-C, -A/O) but also improves the privacy preservation ability under typical gradient attacks by a large margin. The source code and trained models are available at https://github.com/yhlleo/MJP.

Dynamic Conceptional Contrastive Learning for Generalized Category Discovery

Generalized category discovery (GCD) is a recently proposed open-world problem, which aims to automatically cluster partially labeled data. The main challenge is that the unlabeled data contain instances that are not only from known categories of the labeled data but also from novel categories. This leads traditional novel category discovery (NCD) methods to be incapacitated for GCD, due to their assumption of unlabeled data are only from novel categories. One effective way for GCD is applying self-supervised learning to learn discriminate representation for unlabeled data. However, this manner largely ignores underlying relationships between instances of the same concepts
(e.g., class, super-class, and sub-class), which results in inferior representation learning. In this paper, we propose a Dynamic Conceptional Contrastive Learning (DCCL) framework, which can effectively improve clustering accuracy by alternately estimating underlying visual
conceptions and learning conceptional representation. In addition, we design a dynamic conception generation and update mechanism, which is able to ensure consistent conception learning and thus further facilitate the optimization of DCCL. Extensive experiments show that DCCL achieves new state-of-the-art performances on six generic and fine-grained visual recognition datasets, especially on fine-grained ones. For example, our method significantly surpasses the best competitor by 16.2% on the new classes for the CUB-200 dataset. Code is available at https://github.com/TPCD/DCCL.

Graph Transformer GANs for Graph-Constrained House Generation

We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations
in an end-to-end fashion for the challenging graph-constrained house generation task. The proposed graph- Transformer-based generator includes a novel graph Transformer encoder that combines graph convolutions and self-attentions in a Transformer to model both local and global interactions across connected and non-connected graph nodes. Specifically, the proposed connected node attention (CNA) and non-connected node attention (NNA) aim to capture the global relations across connected nodes and non-connected nodes in the input graph, respectively. The proposed graph modeling block (GMB) aims to exploit local vertex interactions based on a house layout topology. Moreover, we propose a new node classification-based discriminator to preserve the high-level semantic and discriminative node features for different house components. Finally, we propose a novel graph-based cycle-consistency loss that aims at maintaining the relative spatial relationships between ground truth and predicted graphs. Experiments on two challenging graph-constrained house generation tasks (i.e., house layout and roof generation) with two public datasets demonstrate the effectiveness of GTGAN in terms of objective quantitative scores and subjective visual realism. New state-of-the-art results are established by large margins on both tasks.

Latent Traversals in Generative Models as Potential Flows

Despite the significant recent progress in deep generative models, the underlying structure of their latent spaces is still poorly understood, thereby making the task of performing semantically meaningful latent traversals an open research challenge. Most prior work has aimed to solve this challenge by modeling latent structures linearly, and finding corresponding linear directions which result in ‘disentangled’ generations. In this work, we instead propose to model latent structures with a learned dynamic potential landscape, thereby performing latent traversals as the flow of samples down the landscape’s gradient. Inspired by physics, optimal transport, and neuroscience, these potential landscapes are learned as physically realistic partial differential equations, thereby allowing them to flexibly vary over both space and time. To achieve disentanglement, multiple potentials are learned simultaneously, and are constrained by a classifier to be distinct and semantically self-consistent. Experimentally, we demonstrate that our method achieves both more qualitatively and quantitatively disentangled trajectories than state-of-the-art baselines. Further, we demonstrate that our method can be integrated as a regularization term during training, thereby acting as an inductive bias towards the learning of structured representations, ultimately improving model likelihood on similarly structured data. Code is available at https://github.com/ KingJamesSong/PDETraversal.

ISF-GAN: An Implicit Style Function for High Resolution Image-to-Image Translation

Recently, there has been an increasing interest in image editing methods that employ pre-trained unconditional image generators (e.g., StyleGAN). However, applying these methods to translate images to multiple visual domains remains challenging. Existing works do not often preserve the domain-invariant part of the image (e.g., the identity in human face translations), or they do not usually handle multiple domains or allow for multi-modal translations. This work proposes an implicit style function (ISF) to straightforwardly achieve multi-modal and multi-domain image-to-image translation from pre-trained unconditional generators. The ISF manipulates the semantics of a latent code to ensure that the image generated from the manipulated code lies in the desired visual domain. Our human faces and animal image manipulations show significantly improved results over the baselines. Our model enables cost-effective multi-modal unsupervised image-to-image translations at high resolution using pre-trained unconditional GANs. The code and data are available at: https://github.com/yhlleo/stylegan-mmuit.

 

100-Driver: A Large-scale, Diverse Dataset for Distracted Driver Classification

Distracted driver classification (DDC) plays an important role in ensuring driving safety. Although many datasets are introduced to support the study of DDC, most of them are small in data size and are short of diversity in environmental variations. This largely limits the development of DDC since many practical problems such as the cross-modality setting cannot be fully studied. In this paper, we introduce 100-Driver, a large-scale, diverse posture-based distracted diver dataset, with more than 470K images taken by 4 cameras observing 100 drivers over 79 hours from 5 vehicles. 100-Driver involves different types of variations that closely meet real-world applications, including changes in the vehicle, person, camera view, lighting, and modality. We provide a detailed analysis of 100-Driver and present 4 settings for investigating practical problems of DDC, including the traditional setting without domain shift and 3 challenging settings ( i.e. , cross-modality, cross-view, and cross-vehicle) with domain shifts. We conduct comprehensive experiments on these 4 settings with state-the-of-art techniques and show several insights to the future study of DDC. Our 100-Driver will be publicly available offering new opportunities to advance the development of DDC. The 100-driver dataset, source code, and evaluation protocols are available at https://100-driver.github.io.

MC-GTA: A Synthetic Benchmark for Multi-Camera Vehicle Tracking

Multi-camera vehicle tracking (MCVT) aims to trace multiple vehicles among videos gathered from overlapping and non-overlapping city cameras. It is beneficial for city-scale traffic analysis and management as well as for security. However, developing MCVT systems is tricky, and their real-world applicability is dampened by the lack of data for training and testing computer vision deep learning-based solutions. Indeed, creating new annotated datasets is cumbersome as it requires great human effort and often has to face privacy concerns. To alleviate this problem, we introduce MC-GTA – Multi Camera Grand Tracking Auto, a synthetic collection of images gathered from the virtual world provided by the highly-realistic Grand Theft Auto 5 (GTA) video game. Our dataset has been recorded from several cameras recording urban scenes at various crossroads. The annotations, consisting of bounding boxes localizing the vehicles with associated unique IDs consistent across the video sources, have been automatically generated by interacting with the game engine. To assess this simulated scenario, we conduct a performance evaluation using an MCVT SOTA approach, showing that it can be a valuable benchmark that mitigates the need for real-world data. The MC-GTA dataset and the code for creating new ad-hoc custom scenarios are available at https://github.com/GaetanoV10/GT5-Vehicle-BB.

ALADIN: Distilling Fine-grained Alignment Scores for Efficient Image-Text Matching and Retrieval

Image-text matching is gaining a leading role among tasks involving the joint understanding of vision and language. In literature, this task is often used as a pre-training objective to forge architectures able to jointly deal with images and texts. Nonetheless, it has a direct downstream application: cross-modal retrieval, which consists in finding images related to a given query text or vice-versa. Solving this task is of critical importance in cross-modal search engines. Many recent methods proposed effective solutions to the image-text matching problem, mostly using recent large vision-language (VL) Transformer networks. However, these models are often computationally expensive, especially at inference time. This prevents their adoption in large-scale cross-modal retrieval scenarios, where results should be provided to the user almost instantaneously. In this paper, we propose to fill in the gap between effectiveness and efficiency by proposing an ALign And DIstill Network (ALADIN). ALADIN first produces high-effective scores by aligning at fine-grained level images and texts. Then, it learns a shared embedding space – where an efficient kNN search can be performed – by distilling the relevance scores obtained from the fine-grained alignments. We obtained remarkable results on MS-COCO, showing that our method can compete with state-of-the-art VL Transformers while being almost 90 times faster. The code for reproducing our results is available at https://github.com/mesnico/ALADIN.

Orthogonal SVD Covariance Conditioning and Latent Disentanglement

Inserting an SVD meta-layer into neural networks is prone to make the covariance ill-conditioned, which could harm the model in the training stability and generalization abilities. In this article, we systematically study how to improve the covariance conditioning by enforcing orthogonality to the Pre-SVD layer. Existing orthogonal treatments on the weights are first investigated. However, these techniques can improve the conditioning but would hurt the performance. To avoid such a side effect, we propose the Nearest Orthogonal Gradient (NOG) and Optimal Learning Rate (OLR). The effectiveness of our methods is validated in two applications: decorrelated Batch Normalization (BN) and Global Covariance Pooling (GCP). Extensive experiments on visual recognition demonstrate that our methods can simultaneously improve covariance conditioning and generalization. The combinations with orthogonal weight can further boost the performance. Moreover, we show that our orthogonality techniques can benefit generative models for better latent disentanglement through a series of experiments on various benchmarks. Code is available at: https://github.com/KingJamesSong/OrthoImproveCond.

Logit Margin Matters: Improving Transferable Targeted Adversarial Attack by Logit Calibration

Previous works have extensively studied the transferability of adversarial samples in untargeted black-box scenarios. However, it still remains challenging to craft targeted adversarial examples with higher transferability than non-targeted ones. Recent studies reveal that the traditional Cross-Entropy (CE) loss function is insufficient to learn transferable targeted adversarial examples due to the issue of vanishing gradient. In this work, we provide a comprehensive investigation of the CE loss function and find that the logit margin between the targeted and untargeted classes will quickly obtain saturation in CE, which largely limits the transferability. Therefore, in this paper, we devote to the goal of continually increasing the logit margin along the optimization to deal with the saturation issue and propose two simple and effective logit calibration methods, which are achieved by downscaling the logits with a temperature factor and an adaptive margin, respectively. Both of them can effectively encourage optimization to produce a larger logit margin and lead to higher transferability. Besides, we show that minimizing the cosine distance between the adversarial examples and the classifier weights of the target class can further improve the transferability, which is benefited from downscaling logits via L2-normalization. Experiments conducted on the ImageNet dataset validate the effectiveness of the proposed methods, which outperform the state-of-the-art methods in black-box targeted attacks.

Multi-Channel Attention Selection GANs for Guided Image-to-Image Translation

We propose a novel model named Multi-Channel Attention Selection Generative Adversarial Network (SelectionGAN) for guided image-to-image translation, where we translate an input image into another while respecting an external semantic guidance. The proposed SelectionGAN explicitly utilizes the semantic guidance information and consists of two stages. In the first stage, the input image and the conditional semantic guidance are fed into a cycled semantic-guided generation network to produce initial coarse results. In the second stage, we refine the initial results by using the proposed multi-scale spatial pooling & channel selection module and the multi-channel attention selection module. Moreover, uncertainty maps automatically learned from attention maps are used to guide the pixel loss for better network optimization. Exhaustive experiments on four challenging guided image-to-image translation tasks (face, hand, body, and street view) demonstrate that our SelectionGAN is able to generate significantly better results than the state-of-the-art methods. Meanwhile, the proposed framework and modules are unified solutions and can be applied to solve other generation tasks such as semantic image synthesis. The code is available at https://github.com/Ha0Tang/SelectionGAN.

Bus Violence: An Open Benchmark for Video Violence Detection on Public Transport

Automatic detection of violent actions in public places through video analysis is difficult because the employed Artificial Intelligence-based techniques often suffer from generalization problems. Indeed, these algorithms hinge on large quantities of annotated data and usually experience a drastic drop in performance when used in scenarios never seen during the supervised learning phase. In this paper, we introduce and publicly release the Bus Violence benchmark, the first large-scale collection of video clips for violence detection in public transport, where some actors simulated violent actions inside a moving bus in changing conditions such as background or light. Moreover, we conduct a performance analysis of several state-of-the-art video violence detectors pre-trained with general violence detection databases on this newly established use case. The achieved moderate performances reveal the difficulties in generalizing from these popular methods, indicating the need to have this new collection of labeled data beneficial to specialize them in this new scenario.