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41 Our method achieves knowledge distillation by minimizing the discrepancy between the
feature representations of the teacher and the student, while simultaneously learning a
representation (ea,ep,en) that brings “positive” samples closer to an anchor point and
pushes “negative” samples further away in the metric space. To facilitate the transfer of
structural knowledge and obtain optimal representations, our method uses a triplet-based
knowledge distillation loss (TBKD) that combines both the distillation and the triplet loss.150

42 Overview of the proposed FRA framework. ⊙ denotes cosine similarity. For each
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and M2 indicating the local facial regions, via the correlation between the pixel features
and “facial mask embeddings” computed from a set of learnable positional embeddings.
Then we aggregate the feature map to obtain the local facial embeddings {zm1 } and {zm2 }.
The semantic consistency loss is applied to global embeddings and facial embeddings to
maximize the similarity across augmented views. To learn such heatmaps, i.e., facial mask
embeddings, we treat the facial mask embeddings as facial region clusters and propose
a semantic relation loss to align the cluster assignments of each pixel feature over the
facial region clusters between the online and momentum network. . . . . . . . . . . . . 154
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48 Illustration of ExCB’s balancing operator B for two clusters c1 (red) and c2 (blue). B(z;s)
adjusts sample-cluster cosine similarities z according the relative cluster sizes, as measured
in s. For smaller clusters the similarities are increased (zB>z), whereas for larger clusters
the similarities are decreased (zB <z). The impact, as seen in the figure, is that the
boundary between clusters shifts, undersized (oversized) clusters are assigned more (fewer)
samples, and clusters become more balanced. . . . . . . . . . . . . . . . . . . . . . . . 173

49 Comparison between regular and proposed ensembling architectures for FSOD systems. 176
50 An example of image retrieval from an image database (Tiny ImageNet) [11]. Given the

query image (left), the images on the right are retrieved. . . . . . . . . . . . . . . . . . 179
51 A deep CBIR framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Final report on Multimedia Summarisation, Analysis and Production 25 of 322



55 Overview of the proposed framework. It consists of three networks: a coarse-grained
student Sc, a fine-grained student Sf , and a selector network SN. Processing is split into
two phases, Indexing and Retrieval. During indexing (blue box), given a video database,
three representations needed by our networks are extracted and stored in a video index,
i.e., for each video, we extract a 3D tensor, a 1D vector, and a scalar that captures video
self-similarity. During retrieval (red box), given a query video, we extract its features,
which, along with the indexed ones, are processed by the SN. It first sends all the
1D vectors of query-target pairs to Sc for an initial similarity calculation. Then, based
on the calculated similarity and the self-similarity of the videos, the selector network
judges which query-target pairs have to be re-ranked with the Sf , using the 3D video
tensors. Straight lines indicate continuous flow, i.e., all videos/video pairs are processed,
whereas dashed lines indicate conditional flow, i.e., only a number of selected videos/video
pairs are processed. Our students are trained with Knowledge Distillation based on a
fine-grained teacher network, and the selector network is trained based on the similarity
difference between the two students. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

56 The covariance conditioning of the SVD meta-layer during the training process in the
tasks of decorrelated BN (left) and GCP (Right). The decorrelated BN is based on
ResNet-50 and CIFAR100, while ImageNet and ResNet-18 are used for the GCP. . . . 199
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67 Partial audio matching focuses on identifying reused or recurring segments, sometimes just
a few seconds long, within datasets or streams without any prior knowledge of the segments’
existence, duration, or frequency of reuse. The image illustrates a dataset containing
six audio items, where partial matching successfully detected three different recurring
segments, despite having no prior knowledge of the quantity or length of the recurring content.217
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1. Executive Summary
Deliverable D5.4 “Final report on Multimedia Summarization, Analysis and Production” is the final deliv-
erable of Work-Package 5 (WP5) “Content-centered AI" of the AI4Media project. WP5 developes novel
scientific approaches for content-centered AI, targeting issues in media content production/processing
and mostly relying on Deep Neural Networks (DNNs). Its scope broadly covers AI for textual, visual,
and audio media, multimedia production, enhancement, and summarization. D5.4 contains results of
WP5 activities concerning all tasks of WP5, namely, T5.1 “Media analysis and summarisation", T5.2
“Media content production", T5.3 “Learning with scarce data", T5.4 “Language analysis in Media", T5.5
“Computationally demanding Learning", T5.6 “Music Annotation and Audio Provenance Analysis" and
T5.7 “Research on Large Language Models for the media industry".

The deliverable sums up the research carried out in WP5 since the submission of previous deliverables
(D5.2 and D5.3) and up to M48. This work has led to several papers published or submitted for
publication to well-known, relevant scientific journals and conferences. D5.4 presents the developed
methods in their scientific context, the obtained evaluation results, as well as any relevant publications,
public software, and datasets. The presented work is clearly aligned with AI4Media use-cases identified
in WP8, since WP5 aims at research with a direct application focus. The deliverable concludes with
a short discussion of the results of WP5.

T5.1 focuses on AI-based analysis and summarisation of media data, such as images or video. The
work presented in this deliverable mainly consists of (a) novel methods (both visual-based and multimodal)
for video summarization and thumbnail selection, (b) media analysis through action recognition, video
shot detection, representation learning for face labeling and knowledge distillation, and, (c) three new
datasets for media analysis.

T5.2 covers a wide range of topics relevant to multimedia content production, including image
and video content enhancement techniques, generation of playable video, automated cinematography,
generation of synthetic musical mixes, and more. Specifically, in T5.2 work was performed in developing
a software for automated target detection for UAV cinematography and tools for enhancing realism in
music scores.

T5.3 addresses the limitations of deep learning related to training data scarcity, extending AI
applicability to a wider set of media, context, and use cases. Work performed in the final period mainly
consists of (a) bioinspired approaches to tackle data scarcity issues, (b) software for automated neural
annotation of visual content, (c) multiple novel works on self-supervised representation learning, (d)
multimedia content retrieval and (e) few-shot detection.

T5.4 focuses on Language analysis in media and develops methods to improve Natural Language
Processing performance and/or to adapt language models to specialized domains. Specifically, the work
presented in this deliverable concerns a multilingual dataset with aligned sentiments, and a thorough
experimentation of the use of contrastive vectorial representations of text in authorship analysis.

T5.5 investigates techniques to facilitate computationally demanding learning. Methods developed
for T5.5 were (a) algorithms that enable DNNs to discover semantic attributes through their training,
and (b) two new datasets and a baseline for Super-Resolution methods evaluation.

T5.6 focuses on advanced audio analysis for automatic music annotation and audio provenance analysis
mainly relying on DNNs. Work presented in this deliverable mainly consists of: (a) improved algorithms
for music classification with enhanced prediction realism, (b) methods for fine-tuning DNNs for music
tagging and retrieval, and (c) introduction of two new approaches for the audio provenance analysis task.

T5.7 focuses on new research exploring different aspects of LLM use in the media industry. An
internal open call was organized where AI4Media beneficiaries were able to submit proposals for LLM-
focused mini projects. An internal evaluation committee evaluated the submitted proposals and selected
three of them for funding. The three selected mini projects investigated different aspects of LLMs for
the media industry: (a) use of LLMs for co-creative human-computer interfaces for game design, (b)
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evaluation of common sense, factuality and biases of LLMs used in Question Answering applications, and
(c) application of LLMs for automated editorial content segmentation, based on a trans-modal approach
that merges visual, aural, and textual information into a unified textual domain for LLMs to process.

In summary, the work presented in this deliverable has resulted in:
• 52 conference articles (CVPR, ECCV, ACL, ....) and 27 journal articles (TPAMI, IJCV, ... ),
• 33 articles and datasets available in AI4Media’s Zenodo collection, and
• 28 open-source software and tools publicly available (e.g., in GitHub).
The remainder of this deliverable is structured as follows. In Section 2, we introduce each task of

WP5 and we provide concise descriptions of the presented contributions of each partner, while detailed
descriptions of contributions are given for each task in Section 3 (Task 5.1), Section 4 (Task 5.2), Section
5 (Task 5.3), Section 6 (Task 5.4), Section 7 (Task 5.5), Section 8 (T5.6), Section 9 (T5.7). All the
methods presented in this deliverable can be applied to media-related areas and applications. Following
the description of each method, we additionally present their relevance to WP8 Use Cases. Finally,
Section 10 concludes the deliverable by discussing the work covered in this period of WP5.
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2. Introduction
AI4Media work-package 5 (WP5) is one of the main research work-packages of the project, with a clear
focus on developing novel approaches for content-centered AI. It has the following objectives:

1. Addressing AI issues in content production and processing in textual, visual, and audio media,
multimedia production, enhancement, and summarization.

2. Addressing limitations of Deep Learning related to training data scarcity, extending the potential
applicability of AI to a wider set of media.

3. Applying Deep Neural Networks (DNNs) to improve tools for analyzing content provenance and
reuse.

4. Investigating AI methods with the potential to revolutionize multimedia content production by
automating several processes.

5. Achieving improvements in the field of summarization, specifically addressing high-resolution visual
data and audio as special cases.

6. Investigating the use of Large Language Models (LLMs) for media industry applications.

This document reports on the activities carried out in all Tasks of WP5, after the submission of previous
deliverables and up to M48 of the project. Specifically, the works reported per-Task cover the periods:

• T5.1: from M13 to M48
• T5.2: from M19 to M48
• T5.3: from M13 to M48
• T5.4: from M25 to M48
• T5.5: from M37 to M48
• T5.6: from M13 to M48
• T5.7: from M39 to M48

2.1. Efficient media analysis and summarization (Task 5.1)
Task 5.1 (T5.1) “Efficient media analysis and summarization” is a set of hard computational problems,
marked by high application relevance in several media domains. Modern AI can provide scientific tools
for handling similar problems, with existing methods being able to handle image, video, text, and other
data modalities. T5.1 focuses on AI-based media analysis with a special focus on summarization of
media data, such as images or video.

For T5.1, CERTH proposed an algorithm for selecting aesthetically pleasing and representative
video thumbnails based on diversity using reinforcement learning agents. Moreover, CERTH introduced
a Web-based AI tool that automatically generates video summaries that encapsulate the story flow
of a full-length video. Finally, CERTH extended and applied their state-of-the-art supervised video
summarization algorithm to be able to incorporate information about both visual and textual data.

AUTH introduced a novel loss term regularizer for escaping local minima in DRL agent training
for video summarization, and a method that utilizes adversarial training to repurpose pre-trained
high-performing video summarizers. For general media analysis, AUTH presented a gesture recognition
method that utilized both 2D skeleton sequences and visual cues from the raw video for enhanced
accuracy. Moreover, as decentralized and distributed media analysis is an emerging trend, AUTH applied
a novel consensus protocol on multimedia datasets, to investigate the fusion of Practical Byzantine Fault
Tolerant algorithm within the concept of decentralized DNN inference tasks.
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RAI proposed a human face labeling neural method, that uses face embeddings extracted by the
RAI Face Management Framework as its input.

JR proposed a novel unified method for video shot detection, sampling structure detection, and
dynamic key-frame extraction in a unified way, that runs four times faster than real-time. Also, JR
introduced two new datasets: People@Places, an extension of the Places365 dataset, and ToDY, an
extension of the Skyfinder dataset, while also providing baselines for both and the toolchains that were
used for their creation.

UCA proposed a novel video-interpretation task to detect character objectification in films, by
creating a new dataset, ObyGaze12, annotated by experts for objectification concepts.

Progress achieved in these areas is detailed in Section 3 of this document.

2.2. Media content production (Task 5.2)
Task 5.2 (T5.2) “Media content production” of AI4Media investigated multiple aspects of automatic
media content production, focusing on the creation, adaptation, and enhancement of media content. The
task examines both the pure synthesis of media content exploiting computational methods such as Deep
Generative Models as well as methodologies that help in the acquisition and streaming of such content
to end-user devices. Research activities in T5.2 cover a range of topics relevant to content production,
including but not limited to: cinematography planning, with emphasis on UAV media production;
procedural content generation and sound synthesis of musical instruments based on synthetic music sounds.

Specifically, AUTH developed two software tools based on the Robot Operating System (ROS)
for automatic content production. The first tool is an end-to-end solution designed to generate novel
views from known, but unvisited, viewpoints of a UAV camera, addressing the image extrapolation
problem. The second tool integrates monocular visual target detection and tracking with a basic ground
intersection model to enable efficient and automated UAV cinematography shot planning.

IRCAM proposed a generative approach that attempts to transform MIDI music scores into human-
like performances without supervision on the performance features and reliance on score markings.
Moreover, they extended their work on their Differentiable Digital Signal Processing Piano to handle
polyphonic MIDI input and reproduce particular properties of the non-digital piano sound.

Progress achieved in these areas is detailed in Section 4 of this document.

2.3. Learning with scarce data (Task 5.3)
Despite their high accuracy, DNNs typically require a lot of high-quality data to be properly trained,
making their deployment difficult in cases where large domain-specific datasets are not readily available.
Of course, fully supervised learning is the hardest scenario, since all training examples have to be
correctly annotated. Task 5.3 (T5.3) “Learning with scarce data” of AI4Media aimed to advance the
state-of-the-art in methods attempting to facilitate DNN learning from multimedia content in the face
of data scarcity. Unsupervised domain adaptation, semi-supervised learning, few-shot learning, data
augmentation and unsupervised representation learning approaches fall in this category. They share a
common theme of reducing the need for massive, domain-specific, fully and manually annotated training
datasets. Methods of this type can increase the applicability of DNNs in real-world scenarios, with T5.3
also partially relating to WP3; notably to transfer learning and learning to count.

JR proposed approaching the few-shot object detection problem through a Semi-Supervised Learning
scenario. UPB also attempted to tackle the young few-shot detection problem, by approaching it from
a DNN ensemble learning perspective.

CNR explored a bioinspired learning approach to tackle data scarcity. They developed a semi-
supervised learning approach that combines Hebbian learning with SGD on object recognition tasks with
Deep Convolutional Neural Networks (DCNNs). Then, they developed a scalable solution for Hebbian
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synaptic updates and performed exhaustive experimentation on large-scale datasets and architectures that
have been out of reach for Hebbian algorithms so far. Moreover, CNR proposed a video search system,
VISIONE, that relies on AI to automatically analyze and annotate visual content, hence, providing users
with various functionalities to easily search for targeted videos. Furthermore, they extended their work
on Unsupervised Domain Adaptation (UDA). They developed novel UDA AI tools for estimating the
number of pests in images of sticky chromotropic traps, an object localizer for microscope images of
biological structures, and a violence detector for videos. In the context of content-centered AI, CNR
co-organized CLEF 2022 (the 13th Conference and Labs of the Evaluation Forum), which took place
in Bologna, Italy, in September 2022 (link).

UNIFI proposed several approaches to tackle learning scenarios with limited access to annotations.
Specifically, they studied effective color space augmentation in self-supervised learning, semi-supervised
learning for fine-grained classification and finally, they introduced a pipeline for data augmentation based
on synthetic object generation.

QMUL also produced several research results in T5.3. They proposed a novel learning scheme,
MaskCon, that is aimed at reducing annotation effort, by learning fine-grained representations with a
coarsely-labelled dataset. Together with CERTH, they adopted a DNN video similarity architecture and
trained it in a self-supervised way, to eliminate the need for video annotations while performing at state-of-
the-art level in retrieval and detection benchmarks. QMUL and CERTH also proposed a knowledge distil-
lation approach for efficient and accurate retrieval from videos, by using as a teacher again a pre-trained
high-performing DNN architecture for video similarity. Next, QMUL attempted to tackle the human
face understanding problem by proposing a facial region awareness (FRA) learning framework that tries
to learn consistent global and local facial representations by self-supervised training. Moreover, QMUL
proposed a novel self-supervised framework that enforces the consistency of instance relations between low
and high-level semantics in contrastive learning settings. In these kinds of contrastive learning problems,
QMUL tackled the class-collision deficiency by introducing meaningful inter-sample relations. Furthermore,
QMUL introduced a novel problem setting that is learning from annotated data with unknown label noise,
and then, they provided a novel selection mechanism that identifies clean samples with correct labels and a
relabelling mechanism for the rest. Since clustering has been a staple in machine learning research, QMUL
developed a diversity-enforcing clustering loss component that can be used to train models to produce
multiple clusterings of controlled diversity with each other, and which explore different partitionings of a
given dataset. Finally, they also proposed a framework that uses a novel online cluster balancing method
that achieves cluster discrimination in visual representation learning, without requiring large batch size.

Furthermore, AUTH introduced an efficient data utilization strategy for enhanced DNN inference
reliability. Additionally, AUTH worked on media analysis issues for image retrieval. To this end, it first
produced a survey for Deep Image Retrieval. Then AUTH proposed a method for DNN compression
via knowledge distillation based on triplet-based losses.

Progress of T5.3 activities is detailed in Section 5 of this document.

2.4. Language analysis in Media (Task 5.4)
Pre-trained word embeddings (WE) have been the standard way of initializing Natural Language
Processing (NLP) neural models. Task 5.4 (T5.4) “Language analysis in Media” focuses on automatic
language analysis in the media sector and develops methods to improve Natural Language Processing
performance and adapt language models to specialized domains that can be directly useful in media
organizations and consumers.

Some of the main challenges in this field are: (1) the ever-growing number of new topics and public
personalities that emerge in the news and that need to be algorithmically detected; (2) the fine-grained
opinions expressed in those documents that need to be accounted for when performing document retrieval.
For T5.4, CEA introduced MAD-TSC, the first large multilingual aligned dataset, for target-dependent
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sentiment classification. MAD-TSC aligns sentiments expressed toward given entities in a given context,
across different languages.

CNR focused instead on a different aspect of Natural Language Processing, namely, the vectorial
representations of texts that are given as input (a) to supervised learning algorithms for training a text
classifier, and (b) to the text classifiers themselves once they have been trained. CNR presented the first
systematic comparison between “standard” vectorial representations of texts and “contrastive” vectorial
representations of texts, where the latter are such that a vector represents not one but TWO texts;
in other words, a contrastive representation of two texts focuses on representing the DIFFERENCES
between these two texts and is geared towards training a classifier that predicts if two texts belong to the
same class or not. Since these contrastive representations were first discussed in the field of authorship
analysis, CNR’s systematic exploration targets this field; however, since contrastive representations are
agnostic with respect to the meaning of the classes they deal with, CNR’s investigation is also “implicitly”
relevant to other types of text classification, such as text classification by topic.

The methods explored for T5.4 are detailed in Section 6.

2.5. Computationally Demanding Learning (Task 5.5)
In Task 5.5 (T5.5), “Computationally Demanding Learning”, ways of efficiently handling DNN scaling to
larger architecture size and, particularly, larger image resolutions were originally explored. T5.5 scope has
been expanded in D5.3 to include efficient training methods and mathematical computations for DNNs.

UNITN proposed a method that enforces matrix factorization (e.g., SVD) layers in DNNs to produce
disentangled variable representations, hence, providing DNNs the ability to discover precise semantic
attributes. Moreover, UNITN studied a novel positional embedding methodology for Transformers,
namely the Masked Jigsaw Puzzle (MJP) positional embedding. MJP enhances Transformer accuracy
on image classification benchmarks, while simultaneously improving robustness and privacy preservation
under typical gradient attacks.

BSC together with RAI analyzed the performance of diverse Super-Resolution (SR) methods and
created two new datasets and a framework for evaluating the performance of different SR methods.

Progress of T5.5 research activities is detailed in Section 7 of this document.

2.6. Music Annotation and Audio Provenance Analysis (Task 5.6)
AI-enabled music analysis is a topic of high industrial relevance that requires special attention. Task 5.6
(T5.6) “Music Annotation and Audio Provenance Analysis” dealt with automated music annotation and
music similarity analysis, as well as with audio partial matching/reuse detection and audio phylogeny anal-
ysis, mainly using novel DNN-based methods. Music similarity analysis refers to the task of quantifying
similarity between different music tracks and is particularly significant for the music replacement problem,
i.e., when we search for a song as similar as possible to the query track. On the other hand, automated
music annotation refers to methods that permit automatic production/extraction of annotation metadata
for music tracks (e.g., for training DNNs in a supervised manner). Audio phylogeny implies the automatic
detection of processing history relationships between audio items, while partial audio matching involves
the detection and temporal localization of arbitrary partial matches between different audio items.

For T5.6, FHG-IDMT examined the reliability of confidence values of DNN outputs in automatic
music classification tasks and implemented an algorithm based on Deep Learning techniques to improve
estimation reliability and realism. Moreover, FHG-IDMT developed a method of fine-tuning pre-trained
DNNs to novel music-relevant domains, to achieve increased accuracy in both the music tagging and
the music information retrieval tasks. Finally, FHG-IDMT introduced two novel tasks, essential for an
effective audio provenance analysis framework: Provenance Clustering and Provenance Graph Building.
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By attending to these new tasks, its approach to the audio provenance analysis outperformed the
state-of-the-art while maintaining computational efficiency.

Progress of T5.6 activities is detailed in Section 8 of this document.

2.7. Research on Large Language Models for the media industry (Task 5.7)
Recently, there has been an explosion of Large Language Model (LLM) research. Following this trend,
the new Task 5.7 (T5.7) “Research on Large Language Models for the media industry” is focused on
new research exploring different aspects of LLM use in the media industry. An internal open call was
organized where AI4Media beneficiaries were able to submit proposals for LLM-focused mini-projects. An
internal evaluation committee evaluated the submitted proposals and selected three of them for funding.
Each mini-project received funding of up to 50,000 Euros (coming from the unspent mobility budget).

Specifically, RAI approached the challenging problem of editorial media segmentation. Editorial
segmentation of media content is a complex process including cultural and social aspects, operational
purposes and other task-specific criteria. Such aspects are difficult to isolate and rigorously define.
Editorial segmentation focuses on finding relevant parts (e.g., short clips or larger segments) in multi-
media data that can have an independently exploitable nature on publication platforms and that can
be identified following multiple segmentation criteria. RAI created a framework that, differently from
previous approaches, introduces multimodality at the core of the proposed solution for this task, and
grounds its development on a general theoretical/algorithmical formulation.

CNR attempted to address the task of understanding long-range temporal dependencies in untrimmed
multicultural video using LLMs. Through a novel benchmark that incorporates true/false questions
concerning multiple time-spanning events within a video, they have provided a robust framework for
evaluating the current capabilities and limitations of state-of-the-art LMMs on the processing of chal-
lenging raw egocentric video data. This benchmark, coupled with automated sentence generation and
reliable human labeling, offers a comprehensive evaluation tool that can reveal the deficiencies in existing
models’ abilities to handle complex video understanding tasks.

Finally, UM developed LLMAKER, an innovative tool for co-creative video game content design
empowered by LLMs. LLMAKER helps the designer and system interaction and is entirely based on
natural language, with the LLM translating user queries into properly formatted requests to a back-end
system via function calling. UM also proposed a pipeline using stable diffusion models to generate the
graphical assets that represent the content being idealized by the user.

The outcomes of the projects are described in Section 9 and ,finally, Section 10 draws conclusions
from the presented works.
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3. Media analysis and summarization methods

3.1. Overview
Task 5.1 (T5.1) “Efficient media analysis and summarization” focuses on a set of hard computational
problems, marked by high application relevance in several domains. Modern AI can provide scientific
tools for handling similar problems, with existing methods being able to handle image, video, text, and
other data modalities. T5.1 focuses on AI-based media analysis with a special focus on summarization
of media data, such as images or video.

Given the broad scope of Task 5.1, the outcomes presented in the following subsections are categorized
as follows: first, works that focus on various aspects of automatic video summarization are presented;
these are followed by research on general media content analysis.

3.2. Selecting a diverse set of aesthetically-pleasing and representative video
thumbnails using reinforcement learning

Contributing partner: CERTH

3.2.1. Introduction

Over the last years there is a tremendous growth of videos over the Web. To facilitate users’ navigation
in data collections, most video sharing platforms and social networks represent each video, in their
data browsing interfaces, using one or a few thumbnails. However, manually selecting good thumbnails
is a tedious and time-consuming process, as it requires a careful inspection of the entire content by
a human editor. To accelerate this process, several methods have been proposed over the last years.
Early approaches were based on rules about the optimal video thumbnail and extracted low-level (e.g.,
luminance) and mid-level features (e.g., appearance of faces) to assess frames’ alignment with these rules
[20, 21, 22]. More recent methods focused on specific characteristics of the video frames, such as their
representativeness and aesthetic quality, and were based either on traditional feature extraction and
clustering algorithms [23, 24, 25], or on the use of deep network architectures [26, 27, 28]. Finally, a few
multimodal approaches take into account the users’ intentions, expressed as textual queries [29, 30, 31].

Contrary to existing approaches that use similar thumbnail selection criteria [26, 28, 23], we propose
a new method (called RL-DiVTS) that considers also the frames’ diversity during the selection and eval-
uation of video thumbnails. Moreover, instead of assessing frames’ representativeness using Autoencoders
[26], Generative Adversarial Networks (GANs) [28], or data clustering algorithms [23], our method uses a
tailored reward function. Finally, the proposed method is the first to learn the video thumbnail selection
task based on reinforcement learning and a set of reward functions.

3.2.2. Methodology

An overview of the RL-DiVTS network architecture is shown in Figure 1. Given a video of T frames, at
training time the Thumbnail Selector assesses the aesthetic quality and importance of each frame with
the help of two estimators. The Aesthetic Estimator is a Fully Convolutional Network (FCN) proposed
in [32], trained on the AVA dataset [33]. The assessment is done on a per frame basis and results in
a sequence of scores that quantify the aesthetic quality of each video frame (a={at}Tt=1withat∈ [0,1]).
The evaluation of the frames’ importance is performed by modeling their temporal dependence. The
Importance Estimator extracts one feature vector per frame using the pool5 layer of a model of GoogleNet
[34] trained on ImageNet [35], and passes the extracted feature vectors (X={xt}Tt=1) to a bi-directional
LSTM (Long Short-Term Memory) network that models the frames’ temporal dependence and assigns a
score to each frame that represents its importance (i={it}Tt=1withit∈ [0,1]). The computed scores about
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Figure 1. The RL-DiVTS network architecture. Orange/gray boxes indicate pretrained/trainable components and white
boxes correspond to reward functions. Dashed lines represent iterative processes during a training epoch.

the frames’ aesthetic quality and importance are then fused via their Hadamard product (denoted as ◦ in
Figure 1), resulting to a new sequence of scores (s={st}Tt=1) that is used by the Frame Picking mechanism.

To promote the selection of diverse frames, we introduce a Categorical Distribution Sampler (CDS)
that selects frames sequentially by sampling from an appropriate distribution. At the first step, this
distribution is based on f1={ft}Tt=1 (computed as f1=N(s), whereN() denotes min-max normalization)
and the sampling process results in the first picked frame (p1) and a log probability of picking this
sample from the distribution (lp1). At each subsequent step m (with m∈ [2,M]), this distribution is
based on fm=N(fm−1◦(1−upm−1

)), where upm−1
denotes the row of the frames’ (cosine) similarity

matrix that corresponds to the picked frame at step m−1 (see Figure 2) and the Hadamard product
within N() effects a re-weighting, i.e., demotes the selection of frames that are visually-similar to the
already picked ones. After the end of the M steps, the Frame Picking mechanism defines a set of picked
frames [p1,...,pM ] and a set of log probabilities [lp1,...,lpM ]; the latter are used to compute the expected
reward in the context of episodic reinforcement learning.

The output of the frame selection process for the eth episode (see pe={pe,k}Mk=1 in Figure 1) is assessed
by the Thumbnail Evaluator, in terms of aesthetic quality, representativeness and diversity, using the re-
ward functions in Eq. 1, 2 and 3, respectively. The overall reward for the current episode is then formed by
the weighted sum in Eq. 4 (denoted as ⊕ in Figure 1), where D projects Rrepe in the same scale with the
other rewards. Finally, the average reward across all theN episodes is the feedback of the Thumbnail Evalu-
ator for the current training sample. To train RL-DiVTS, we use the episodic REINFORCE algorithm [36].

Raese =
1

M

M∑
k=1

ape,k (1) Rrepe =exp(−
1

T

T∑
t=1

min
t′∈pe

∥xt−xt′∥2) (2)

Rdive =
1

M

M∑
i,j=1

∥xi−xj∥2 (3)
Re=α·Raese+β·D·Rrepe+γ ·Rdive (4)

3.2.3. Experimental Results

We assessed the performance of RL-DiVTS using the publicly-available datasets and evaluation protocol
of [26]. The OVP dataset is composed of 50 videos (up to 3.5 min. long) with diverse content (e.g.,
documentaries, lecture videos). The YouTube dataset contains 50 videos (up to 9.5 min. long) of different
types (e.g., news, TV-shows). Each video has been annotated by 5 users in the form of key-frames. For each
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Figure 2. Processing steps of the proposed Frame Picking mechanism. Dashed lines indicate iterative processes during an
episode.

video we considered the 3 most selected key-frames among all annotators as its ground-truth thumbnails,
and we estimated their similarity with the automatically-selected ones using the Structural Similarity Index
(SSIM); we called it a match if SSIM score> 0.7. For evaluation, we applied the “top-3 matching” approach
of [26], that measures the overlap between the top-3 machine- and human-selected thumbnails per video.

We compared RL-DiVTS against a baseline that selects video thumbnails randomly, and a set of SoA
video thumbnail selection and summarization methods from the literature. The results of this comparison
are shown in Table 2. These results show that RL-DiVTS performs consistently well on both datasets,
being by far the top-performing one on OVP and the second best-performing one (slightly bellow the
best one) on YouTube. Moreover, it is more suitable for thumbnail selection, compared to the examined
summarization methods. Finally, compared to our previous ARL-VTS method [28], RL-DiVTS brings
a noticeable performance improvement on both datasets. Moreover, it exhibits significant gains w.r.t.
training time and memory footprint. The results in Table 3 demonstrate that replacing the GAN-based
Representativeness Evaluator of ARL-VTS by a reward function, reduced the needed training time by
more than 16 and 23 times for the OVP and YouTube videos, respectively. Moreover, this replacement
removed the most computationally-demanding module of ARL-VTS, as indicated by the significantly
reduced number of learnable parameters of RL-DiVTS.

OVP YouTube
Baseline (Random) 8.63 ± 2.50 4.41 ± 1.77
AC-SUM-GAN [37] 7.87 ± 3.41 7.33 ± 0.70
CA-SUM [38] 7.60 ± 2.85 8.00 ± 3.56
Hecate-VTS [23] 11.72 16.47
ReconstSum [26] 12.18 18.25
ARL-VTS [28] 12.50 ± 3.37 7.83 ± 1.49
RL-DiVTS (proposed) 25.33 ± 3.97 17.50 ± 2.57

Table 2. Performance comparison of RL-DiVTS with a baseline (random-picking) approach, and a set of SoA video
thumbnail selection and summarization methods.

Training time (sec/epoch) # Param.
(in Millions)OVP YouTube

ARL-VTS [28] 38.41 62.43 28.36
RL-DiVTS 2.33 2.70 12.60

Table 3. Comparison of RL-DiVTS and ARL-VTS, in terms of training time and amount of learnable parameters.
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3.2.4. Relevance to AI4Media use cases and media industry applications

The developed method can (i) support the production of highly-summarized versions of a given video
and facilitate content curation (Use Case 3: AI in Vision - High Quality Video Production & Content
Automation), and (ii) advance both the re-organization of media collections and the content moderation,
by providing condensed representations (thumbnails) of the videos for use in browsing interfaces (Use
Case 7: AI for (Re-)organisation and Content Moderation).

3.2.5. Relevant Publications

• E. Apostolidis, G. Balaouras, V. Mezaris, I. Patras, "Selecting a Diverse Set of Aesthetically-pleasing
and Representative Video Thumbnails using Reinforcement Learning", IEEE Int. Conf. on Image
Processing (ICIP 2023), Kuala Lumpur, Malaysia, Oct. 2023. https://zenodo.org/records/10006049

3.2.6. Relevant software/datasets/other outcomes

• The code for implementing RL-DiVTS, is available at https://github.com/e-apostolidis/
RL-DiVTS

3.3. Facilitating the production of well-tailored video summaries for sharing
on social media

Contributing partner: CERTH

3.3.1. Introduction

Social media users crave short videos that attract the viewers’ attention and can be ingested quickly.
Therefore, for sharing on social media platforms, video creators often need a trimmed-down version of
their original full-length video. However, different platforms impose different restrictions on the duration
and aspect ratio of the video that they accept, e.g., on Facebook’s feed videos up to 2 min. appear in
a 16:9 ratio, whereas Instagram and Facebook stories usually allow for 20 sec. and are shown in a 9:16
ratio. This makes the generation of tailored versions of video content for sharing on multiple platforms,
a tedious task. To tackle this problem, we introduce a web-based tool that harnesses the power of AI
to automatically generate video summaries that encapsulate the flow of the story and the essential parts
of the full-length video, and are already adapted to the needs of different social media platforms in terms
of video length and aspect ratio.

3.3.2. Methodology

The proposed solution (available at https://idt.iti.gr/summarizer) is an extension of the web-based
service for video summarization, presented in [39]. It is composed of a front-end user interface (UI)
that allows interaction with the user, and a back-end component that analyses the video and produces
the video summary. The front-end and back-end communication is carried out via REST calls that
initiate the analysis, periodically request its status, and, after completion, retrieve the video summary
for presentation to the user. Our solution extends our previous technology [39] by i) using an advanced
AI-based method for video summarization, ii) integrating an AI-based approach for spatially cropping
the video given a target aspect ratio, and iii) supporting customized values for the target duration and
aspect ratio of the generated video summary.
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Table 4. Performance (F-Score (%)) of SUM-GAN-AEE and AC-SUM-GAN on SumMe and TVSum; the last row
reports AC-SUM-GAN’s performance for augmented training data.

Method SumMe TVSum

SUM-GAN-AAE [42] (used in [39]) 48.9 58.3
AC-SUM-GAN [37] 50.8 60.6

AC-SUM-GANaug (used now) 52.0 61.0

3.3.2.1. Front-end UI The UI of the proposed solution (see the top part of Figure 3) allows the user
to submit a video (that is either available online or locally stored in the user’s device) for summarization,
and choose the duration and aspect ratio of the produced summary. This choice can be made either by
selecting among presets for various social media channels, or in a fully-custom manner. After initiating the
analysis, the user can monitor its progress (see the middle part of Figure 3) and submit additional requests
while the previous ones are being analyzed. When the analysis is completed, the original video and the
produced summary are shown to the user through an interactive page containing two video players that
support all standard functionalities (see the bottom part of Figure 3); through the same page, the user
is able to download the produced video summary. Further details about the supported online sources,
the permitted file types, and the management of the submitted and produced data can be found in [39].

3.3.2.2. Back-end component The submitted video is initially fragmented to shots using a pre-
trained model of the method from [40]. Following, video summarization is performed using a
pre-trained model of AC-SUM-GAN [37], a top-performing unsupervised video summarization method
[41]. This method embeds an Actor-Critic model into a Generative Adversarial Network and formulates
the selection of important video fragments as a sequence generation task. At training time, the Actor-
Critic model utilizes the Discriminator’s feedback as a reward, to progressively explore a space of states
and actions, and learn a value function (Critic) and a policy (Actor) for key-fragment selection. As shown
in Table 4, AC-SUM-GAN performs much better than SUM-GAN-AAE [42] (used in [39]), on the SumMe
[43] and TVSum [44] benchmark datasets for video summarization. Both methods learn the task using
a summary-to-video reconstruction mechanism and the received feedback from an adversarially-trained
Discriminator. We argue that the advanced performance of AC-SUM-GAN relates to the use of this
feedback as a reward for training an Actor-Critic model and learning a good policy for key-fragment
selection, rather than using it as part of a loss function to train a bi-directional LSTM for frame importance
estimation. The proposed solution uses a model of AC-SUM-GAN that has been trained using augmented
data. Following the typical approach in the literature [41], we extended the pool of training samples
of the SumMe and TVSum datasets, by including videos of the OVP and YouTube [45] datasets. This
data augmentation process resulted in improvements on both benchmarking datasets (see the last row
of Table 4) and to a very competitive performance against several state-of-the-art unsupervised methods
from the literature that have been assessed under the same evaluation settings (see Table 5).

To minimize the possibility of losing semantically-important visual content or resulting in visually
unpleasant results during video aspect ratio transformation (that would be highly possible when
using naive approaches, such as fixed cropping of a central area of the video frames, or padding of black
borders to reach the target aspect ratio), the proposed solution integrates an extension of the smart video
cropping (SVC) method of [54]. The latter starts by computing the saliency map for each chosen frame
for inclusion in the video summary. Then, to select the main part of the viewers’ focus, the integrated
method applies a filtering-through-clustering procedure on the pixel values of each predicted saliency
map. Finally, it infers a single point as the center of the viewer’s attention and computes a crop window
for each frame based on the displacement of this point. The applied extension on [54], relates to the
use of a state-of-the-art saliency prediction method [55], which resulted in improved performance on
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(a) The landing page of the UI.

(b) The progress-reporting bars.

(c) The video players of the page showing the analysis results.
Figure 3. Instances of the updated and extended UI.

the RetargetVid dataset [56]. As shown in Table 6, the averaged Intersection-over-Union (IoU) scores
for all video frames have been increased by more than 2 percentage points.

3.3.3. Relevance to AI4Media use cases and media industry applications

The developed method can support the production of different summarized versions of a given video
based on the needs of the targeted audiences and according to the specifications of different distribution
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Table 5. Performance comparison (F-Score (%)) with state-of-the-art unsupervised approaches after using augmented
training data. The reported scores for the listed methods are from the corresponding papers.

Method SumMe TVSum

ACGAN [46] 47.0 58.9
RSGNunsup [47] 43.6 59.1
3DST-UNet [48] 49.5 58.4
DSR-RL-GRU [49] 48.5 59.2
ST-LSTM [50] 52.0 58.1
CAAN [51] 50.9 59.8
SUM-GDAunsup [52] 50.2 60.5
SUM-FCNunsup [53] 51.1 59.2

AC-SUM-GANaug 52.0 61.0

Table 6. Video aspect ratio transformation performance (IoU (%)) on the RetargetVid dataset.

Method Worst Best Mean

1:3 target
aspect ratio

SVC (used in [54]) 51.7 53.8 52.9
SVCext (used now) 53.8 57.6 55.6

3:1 target
aspect ratio

SVC (used in [54]) 74.4 77.0 75.3
SVCext (used now) 76.3 78.0 77.6

channels (Use Case 3: AI in Vision - High Quality Video Production & Content Automation).

3.3.4. Relevant Publications

• E. Apostolidis, K. Apostolidis, V. Mezaris, "Facilitating the Production of Well-tailored Video
Summaries for Sharing on Social Media", Proc. 30th Int. Conf. on MultiMedia Modeling
(MMM 2024), Amsterdam, NL, Springer LNCS vol. 14557, pp. 271-278, Jan.-Feb. 2024.
https://zenodo.org/records/13143903

3.3.5. Relevant software/datasets/other outcomes

• The proposed solution is available at https://idt.iti.gr/summarizer.

3.4. Using language-guided attention for text-driven video summarization
Contributing partner: CERTH

3.4.1. Introduction

A generic video summary is a condensed version of the full-length video that conveys the whole story
and features the most important scenes. Nevertheless, the importance of different parts of a video is
often subjective, and users should have the option of customizing the summary according to their needs,
by using textual descriptions to specify what is important to them. Most of the existing models for fully
automatic generic summarization [41] have not exploited the use of textual descriptions about the content
of the video summary, which can serve as an effective prior for saliency. In AI4Media, we proposed a
text-driven method for video summarization, by extending a previous state-of-the-art supervised method
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Figure 4. The utilized language-guided attention mechanism.

of CERTH for visual-based video summarization. We adapted and extended the network architecture of
PGL-SUM [57] in order to integrate attention mechanisms that incorporate information about both the
visual and the textual data. Experimental evaluations and comparisons using data provided by the VRT
partner of AI4Media, indicated the competitive performance of our method against other approaches,
and the potential of using language-guided attention mechanisms as proposed.

3.4.2. Methodology

The proposed method is an extension of CERTH’s PGL-SUM method for visual-based video summarization[57].
PGL-SUM uses global and local multi-head attention mechanisms to discover different modelings of the
frames’ dependence at different levels of granularity, and estimate the frames’ importance. Moreover,
the utilized attention mechanisms integrate a component that encodes the temporal position of video
frames, which is of major importance when producing a video summary. Experiments on two bench-
marking datasets (SumMe and TVSum) demonstrated the effectiveness of PGL-SUM compared to other
attention-based methods, and its competitiveness against other state-of-the-art supervised summarization
approaches.

To take into account a textual description about the content of the video summary, we extended
the network architecture of PGL-SUM, inspired by the CLIP-It! method for language-guided video
summarization [58]. In particular, we replaced some of the multi-head attention mechanisms of PGL-
SUM by attention mechanisms that fuse information across the visual and textual modalities and infer
dependencies across both of them. As depicted in Figure 4, the integrated language-guided attention
mechanism, uses the deep representations of the textual description (obtained by the text encoder of
a pretrained model of CLIP [59]) as Key and Value, and the deep representations of the visual content
of the video frames (obtained by the visual encoder of the same model of CLIP) as Query. Following
the processing pipeline of the attention mechanisms of PGL-SUM, the context vectors Z in the output
of each language-guided attention are computed as: Z= softmax(Q̂K̂T )V̂ , where Q̂, K̂ and V̂ are
the obtained embeddings after passing Q, K and V through a triplet of linear layers, respectively.

So, after the applied replacements, the network architecture of the extended version of PGL-SUM
became as the one shown in Figure 5. Given a video of T frames and a textual description of S sentences
about the content of the video summary, the extended PGL-SUM model initially produces two sets of
deep feature representations (X={xt}Tt=1 and Y ={ys}Ss=1) of size D (xt={xt,i}Di=1 and ys={ys,i}Di=1)
for the visual and textual content respectively, using a pretrained CLIP model. These representations
form the input to the trainable part of the architecture and follow two different processing paths. One
of these paths includes a global multi-head attention mechanism that takes into account only the visual
representations and aims to discover different modelings of the frames’ dependencies according to the
entire frame sequence. The other processing path includes a segmentation step that splits the originally
extracted set of deep feature vectors for the video frames (X) into M (with M equal to 2) consecutive
and non-overlapping segments. Each one of these segments (Zi, with i∈ [1,M ]) contains the deep feature
vectors of the video frames that lie within the segment (Zi). Each set of these feature vectors, along
the deep representations of the input text (Y ) are then forwarded to a different local language-guided
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Figure 5. The network architecture of the extended version of PGL-SUM. The extracted representations from the input
text are given as input to the added local language-guided multihead attention mechanisms.

multi-head attention mechanism that focuses on the corresponding part of the video. Each of these
attention mechanisms produces a new representation of the feature vectors of the frames that lie within
the associated segment of the video (ZL

i , with i∈ [1,M ]). Having available the generated representations
from the global (ZG) and the multiple local multi-head attention mechanisms (ZL

i , with i∈ [1,M]), a
feature addition process (represented by the ⊕ symbol at the left in Figure 5) is applied and produces a
new representation for each video frame, that carries information about each frame’s importance according
to its global and local dependence and its association with the input text (Z′={z′

t}Tt=1). The resulting
set of representations is then added to the original deep representations of the video frames (X={xt}Tt=1)
via a residual skip connection that aims to facilitate back-propagation (this addition is represented by
the ⊕ symbol at the right in Figure 5). The output of this operation (W ={wt}Tt=1) is forwarded to a
dropout layer that is followed by a normalization layer. The resulting representation is given as input to
the Regressor Network, which produces a set of frame-level scores that indicate the frames’ importance.

At training time, we compute the Mean Squared Error between the produced scores about the frames’
importance and the ground-truth annotations (also representing frame-level importance). The computed
training loss is then back-propagated to compute the gradients and update all the different trainable parts
of the architecture. At inference time, the provided importance scores are used to compute fragment-level
importance and select the key-fragments of the video and form the video summary given a time budget
about its length by solving the Knapsack problem, similarly to most works in the literature [41].

3.4.3. Experimental Results

We assessed the performance of our method using data provided by the VRT partner of AI4Media
and the key-fragment-based evaluation protocol proposed in [60], that quantifies the overlap between a
machine-generated and a user-defined summary using the F-Score (as percentage). The VRT dataset is
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Table 7. Performance comparison (F-Score (%)) on the VRT data.

Method F-Score (%)

Random Summarizer 20.5
CLIP-It! variant 25.5
PGL-SUM 26.5
PGL-SUM-ext 26.9

PGL-SUM-ext fine-tuned 29.8

composed of 45 “video-script-summary” triplets. The videos are of varying visual content (e.g. interviews,
documentaries, news, talk shows, sports), the summaries are summarized versions of the full-length
videos with a length that spans from 10% to 45% of the full-length video duration, while the scripts are
short descriptions of the visual content of the video summary (could be used as a voice narration while
someone is watching the video summary). For training and evaluation, the dataset was divided into
5 non-overlapping splits following the 5-fold cross validation approach; in each split 80% of the videos
were used for training and 20% for testing.

The results of our evaluations are presented in Table 7. The performance of a random summarizer
on a given video was measured as proposed in [61]. In particular, we initially assigned randomly-created
importance scores to the video frames based on a uniform distribution of probabilities. Then, we
computed fragment-level scores based on the temporal fragmentation of the video, and formed the
summary using the Knapsack algorithm and a predefined time budget about the length of the summary.
Random summarization was performed 100 times and we report the average score over these runs. The
reported scores in Table 7 show that the performance of the visual-based PGL-SUM method, after being
trained on the VRT data, is slightly better than the performance of a variant of the CLIP-It! method (that
uses a Regressor Network instead of a Transformer-based scorer) on the same data. Moreover, we observe
small gains in performance after replacing each one of the local attention mechanisms of PGL-SUM with
the language-guided attention mechanism in Figure 4. Finally, a fine-tuning of a few hyper-parameters of
the extended version of PGL-SUM leads to noticeable improvements in the summarization performance.

To fine-tune the developed network architecture, we initially examined different options about the use
of the textual data in the attention mechanisms of PGL-SUM. Our experiments indicated that the incorpo-
ration of this information only in the local attention mechanisms is the best option, as it led to higher per-
formance. Then, we investigated different options about the number of local attention mechanisms (in the
range [1,4]), keeping the number of heads in both global and local mechanisms equal to four. The results of
this study showed that the use of two local attention mechanisms is the optimal choice. Based on this find-
ing, we then considered various options about the number of heads in the different attention mechanisms
of the network. The results reported in Table 8 indicate that the use of four heads for both global and local
attention mechanisms is the best choice as it leads to the highest summarization performance. So, the con-
figuration of the best-performing model of the network architecture is formed as follows: one global 4-head
attention mechanism, two local 4-head language-guided attention mechanisms, and no positional encoding.

3.4.4. Relevance to AI4Media use cases and media industry applications

The developed method can (i) assist the summarization of the developed news stories according to
user-specified descriptions about the content of the summary (Use Case 2: AI for News - The Smart
News Assistant), and (ii) support the production of summarized versions of a given video according to
a user-specified script about the summary, and facilitate content curation (Use Case 3: AI in Vision
- High Quality Video Production & Content Automation).
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Table 8. The performance (F-Score (%)) of different configurations of the developed network architecture on the VRT data,
that relate to different options about the number of heads for the global and local attention mechanisms of the network.

Global
Local

1 2 4 8

1 26.0 29.5 25.6 26.9
2 25.4 29.2 28.5 26.2
4 25.1 29.2 29.8 27.4
8 23.3 28.3 27.9 27.1

3.4.5. Relevant Publications

We plan to perform a more extended experimentation with additional datasets for video summarization
(e.g. SumMe [43], TVSum [44], BLiSS [62], MultiSum [63], Instruct-V2Xum [64], LfVS-T [65]), and
publish the outcomes of our study.

3.5. Faster than real-time detection of shot boundaries, sampling structure
and dynamic keyframes in video

Contributing partner: JR

3.5.1. Introduction

In order to perform high-level computer vision tasks (like object detection and tracking) on video content,
first some fundamental preprocessing tasks have to be performed in advance. Specifically, the content
has to be split into individual shots (shot boundary detection), which are usually separated by hardcuts
or short dissolves.

It is also crucial to detect the sampling structure of the video. The sampling structure can be pro-
gressive, interlaced (each frame contains two fields of half width which are from consecutive timepoints),
or 3:2 pulldown (the standard method for converting progressive film content with 24 frames per second
to interlaced video content with 60 fields per second). For example, for an interlaced video it is not
advisable to use the whole frame, as it will exhibit combing artifacts if motion is present in the scene
(as the two fields are from different timepoints). For interlaced video, the information about the field
order (which can be upper field first or lower field first) is also desired.

Finally, for extracting an image dataset for training neural networks from an video an algorithm for
the extraction of dynamic keyframes is needed. Dynamic keyframes are non-uniformally spaced frames
which adapt to the variation in the video. In video segments with high variation (e.g. fast motion scene)
more keyframes will be extracted, whereas in a static video segment the spacing between the keyframe
will be much larger.

Despite the practical importance of these fundamental video analysis tasks, not a lot of research is
devoted to this area (although there are a few patents). For example, for sampling structure detection
only a few works (like [66] and [67]) have been proposed in the literature. Addressing this, we propose a
novel method which does shot detection, sampling structure detection and dynamic keyframe extraction
in an unified way. Due to the unified approach and sparse and selective calculation of the content-based
measures, it is able to run four times faster than real-time.
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3.5.2. Methodology

All components of our proposed algorithm rely on the following measures:
• AMM(I,J) is the average magnitude of the motion vectors of the motion field calculated between

the images I and J. For calculating the motion field, we employ the Dense Inverse Search optical
flow algorithm from [68]. It runs very fast employing only the CPU and is quite robust against
brightness variations. It works well also for large motion in the scene (e.g. sports videos), which
is especially important for the shot detection component.

• SWR(I,J) is the image dissimilarity between the reference image I and the warped (motion-
compensated) J. The warped image is generated by calculating the motion field between both
images and warping the image J with the motion field. When the motion compensation works
properly, then the warped image should be identical to the reference image. We employ the
normalised cross correlation (NCC) similarity measure in order to be invariant against brightness
variations due to flicker or camera flashlights.

• ACT(I,J) is the geometric average of AMM(I,J) and SWR(I,J) and measures the activity
between the images I and J. If the images are very similar and there is not a lot a motion between
them, ACT(I,J) will be nearly zero, whereas in the opposite case its value will be high.

The activity between consecutive video frames ACT(It,It+1) is calculated always. All other measures
ACT(It,Is) are calculated sparsely and selectively, only if they are beneficial to verify a certain hypothesis
(e.g. the hypothesis that the current shot is interlaced). We employ a framework where measures are
calculated on-demand and cached, in order to ensure that the shot detector and the dynamic keyframes
detector do not calculate the same measure twice.

The shot detector comprises two phases. The first phase (fast check) does for each frame a check
whether it is possible that at this frame a hardcut or short dissolve (consisting of up to 4 frames) occurs.
As the first phase is done for every frame, it must be very fast. The second phase (deep check) is only
invoked if the first phase decides that at this frame it is possible that a short dissolve occurs. It tests for
each K∈1,...,4 whether the hypothesis of a K-frame dissolve at this frame is valid or not (note that K=1
denotes a hardcut). The second phase is not invoked very often and therefore can be computationally
much more expensive without impacting the overall runtime negatively. A hypothesis for a K−frame
dissolve is verified if the activity ACT(It,It−j) between the last frame It before the dissolve and its
predecessors It−j is significantly smaller than the activity ACT(It,It+K) between the last frame before
the dissolve and the first frame after it. This makes sense, as the activity ACT(It,It+K) will be high
if the frames It and It+K are from different shots.

The sampling structure detector utilizes a combination of inter-frame and intra-frame activity
measures. Each frame It is split into its upper field Iut and lower field Ilt, then we calculate the three basic
measures v0=ACT(Iut ,Ilt), v1=ACT(Iut ,Ilt+1) and v2=ACT(I

l
t,I

u
t+1). Each sampling structure type

has now a very characteristic pattern in the relation of the measures v0, v1 and v2. Progressive content
is characterized by a near-zero value of v0, whereas the values v1 and v2 are non-zero and approximately
equal. Interlaced content is characterized by nonzero values of v0, v1 and v2. Furthermore, the values
v1 and v2 are not approximately equal, because one corresponds to fields which are significantly further
apart in time. For 3:2 pulldown, the pattern is more complex, as it depends also on the position of the
frame within a pulldown unit consisting of 5 frames. By analyzing several frames of the shot statistically,
we can determine now whether its sampling structure is progressive, interlaced or 3:2 pulldown.

The principle of the dynamic keyframe detector is straightforward. Within a shot, we are
accumulating the activity values ACT(It,It+q) between consecutive frames. If the accumulated sum is
higher than a certain threshold, then we trigger a keyframe for the current frame and set the accumulated
sum back to zero.
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3.5.3. Initial qualitative evaluation

An initial evaluation of the algorithm has been done with respect to quality (detection capability,
robustness, false positives) and runtime. Regarding runtime, the detector is able to process 2K (2048 x
1536) content roughly four times faster than real-time (~11 milliseconds per frame). For 4K video content,
the algorithm is roughly three times faster than real-time (~14 milliseconds per frame). The detector
implementation uses multiple CPU threads (4 CPU threads), but it does not employ GPU acceleration
currently. Regarding quality, the evaluation shows that the developed shot boundary detector algorithm
is extremely robust even for challenging content with large camera or object motion, flashlights, flicker,
low contrast and the like. A major reason for the robustness of the algorithm is likely the usage of motion
compensation backed by a high-quality optical flow algorithm and of a brightness-invariant similarity
measure (normalized cross correlation).

A qualitative evaluation of the sampling structure detector on diverse progressive, interlaced and
pulldown content shows that the algorithm is able to detect reliably the sampling structure as well as the
field order (for interlaced content). Due to the usage of the same robust features like the shot detector, it
is also very robust against fast camera or object motion, brighness variations, noise, low contrast and the
like. It is able to detect the correct sampling structure also for video content for which it is difficult to
discern whether the content is progressive or interlaced due to low amount of motion present in the scene.
One example for this type of content are videos from weather panorama cameras, which usually have
only minimal horizontal camera panning and often are also of low contrast due to cloudy weather or fog.

Finally, a qualitative evaluation of the dynamic keyframe detector shows that it adapts very well
to the dynamic present in the video. So for video content where this is a high amount of motion present
(like sports videos), it extracts keyframes in shorter intervals, whereas for content with low motion it
extracts the keyframes in larger intervals. Typically, a keyframe is extracted every 8 – 30 frames.

3.5.4. Relevance to AI4Media use cases and media industry applications

This algorithm can be used in all AI4Media use cases where the video has to be split up first into
individual shots before the actual processing. The method is also useful to reduce the representation
of the video to its keyframes, which is a much more compact representation, for example, for subsequent
training of a neural network.

3.5.5. Relevant Publications

• H. Fassold, "Faster than real-time detection of shot boundaries, sampling structure and dynamic
keyframes in video", International Conference on Imaging, Signal Processing and Communication
2024 (ICISPC 2024)
Zenodo record: https://zenodo.org/records/12169764

3.5.6. Relevant software/datasets/other outcomes

A demo video which demonstrates the algorithm has been generated. A download link to the demo
video is given in the Google Cloud at
https://drive.google.com/file/d/17eFQeMtCusaQZjEb9wf3JX0qyAtrI8Rs/view?usp=sharing

3.6. Escaping local minima in deep reinforcement learning for video sum-
marization

Contributing partners: AUTH
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3.6.1. Introduction

Video summarization is a very important media processing task. State-of-the-art deep neural unsuper-
vised video summarization methods mostly fall under the adversarial reconstruction framework. This
employs a Generative Adversarial Network (GAN) structure and Long Short-Term Memory (LSTM)
autoencoders during its training stage [69]. It is composed of two main components: the Summarizer and
the Discriminator. The Summarizer contains the Selector, the Encoder and the Decoder. It serves the
role of the Generator, constructing training data points for the Discriminator (which is a binary classifier),
under a GAN setting. These interacting components are LSTM networks and are trained concurrently,
using back-propagation and any variant of gradient descent. The Selector generates importance scores
that indicate each video frame’s appropriateness for inclusion in the summary. Accordingly, given the
chosen key-frames, the Autoencoder (Encoder-Decoder) tries to reconstruct the entire, original input
video sequence, whilst the Discriminator is trained to distinguish between summary-based reconstructions
and original videos. After training, the only component necessary to produce the summary of a new
video is the Selector. This fundamental approach concentrates on the ability of the summary to recreate
the initial video, but [69] also integrated a Determinantal Point Process (DPP) regularizer [70] during
training, in order to obtain more visually diverse key-frames.

Various algorithms have built upon the original method from [69], such as [71], [42] and [72]. The
approach most relevant to this paper is [72], which embedded a DRL Actor-Critic agent into the training
process. The Actor receives as its initial input state the State Generator’s output, i.e., the vector of scalar
importance scores for all original video fragments (non-overlapping segments of multiple consecutive
video frames), and gradually modifies it; these modifications stem from the actions performed by the
agent. The Discriminator’s output is exploited as a reward guiding this DRL task. After training has
been completed, the Actor and the Selector are the only neural modules required for key-frame extraction
in new, test videos. They form a pipeline, with the Actor transforming the output of the Selector into
an optimized set of importance scores.

Although this DRL-enhanced variant of the adversarial reconstruction framework has led to state-
of-the-art results in unsupervised key-frame extraction, it is well-known that DRL may suffer from
entrapment in suboptimal local loss minima [73]. Thus, this paper proposes a new regularizer for
escaping local minima, under the guise of a novel loss term introduced into the training process of the
Actor-Critic model in any DRL-based baseline method for key-frame extraction. Adding this regularizer
during training augments the quality of the DRL agent by compelling it to escape the local minimum
it normally tends to converge during training, thus allowing its optimization to reach a better solution.
This regularizer may easily be added to the pool of loss functions used for training the overall framework,
with its gradient signal specifically influencing the Actor-Critic module. Notably, it is entirely different
from common ways of modifying the DRL learning objective for achieving increased exploration during
training (e.g., by policy entropy maximization in Soft Actor-Critic [74]).

A quantitative assessment using common protocols on two publicly available datasets, TVSum and
SumMe, reveals favorable findings and non-negligible increases over the baseline.

3.6.2. Methodology

The proposed method (Lelm) is a potential addition to any DRL-based deep neural key-frame extraction
method that relies on Actor-Critic agents. It is a training-stage regularizer that can be added to the
original pool of loss functions influencing the optimization of the Actor-Critic models. It operates by
segmenting training into two phases. The first phase is exactly identical to the complete baseline method’s
training stage, proceeding for K epochs without Lelm. During the second phase, the final trained baseline
Actor-Critic model/agent from the K-th epoch of the first phase is exploited as a reference “frozen" model.
This second training phase proceeds for another K epochs, but this time with the proposed loss term
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Lelm punishing at each iteration the similarity between the reference frozen Actor-Critic model and the
current one. This similarity is computed within Lelm in terms of the model parameters. This additional
optimization objective forces the agent’s training process to search for a different local loss minimum
than the one found during the traditional first phase (the first K epochs, without the Lelm regularizer).

This integrated compulsion towards diversity in the parametric structure of the agent, i.e., the
difference between the final solution and the previously found reference model, leads at the end of the
second training phase to an Actor with better summarization performance. This comes at zero overhead
in terms of inference runtime during the test stage. The obvious drawback of an approximately double
required time interval compared to baseline (since the baseline architecture is trained for K epochs, i.e.,
the first phase, while the proposed method needs training for 2K epochs, i.e., the first and the second
phase) is irrelevant to the actual deployment of a pretrained summarization model.

The proposed method can be applied generally, as an add-on to any DRL-based deep neural key-frame
extraction framework, but was actually implemented and evaluated on top of a DRL-enhanced version
of the adversarial reconstruction framework [69], namely AC-SUM-GAN [72].

3.6.2.1. ELM Loss The proposed regularizer Lelm can be applied by doubling the number of epochs
the baseline DRL-based summarization model is trained. During the initial K epochs, training proceeds
as usual. At the end of the K-th epoch, the parameters of the final trained baseline Actor and Critic
models are stored as two reference vectors. Subsequently, training resumes with an identical copy of
the neural architecture and proceeds for a second phase of K epochs. The only difference from the first
phase is that the proposed ELM Loss term is subtracted from the computed Actor Loss and Critic Loss.
Thus, during the second phase:

Lactor,elm=Lactor−λLelmA (5)

and
Lcritic,elm=Lcritic−λLelmC, (6)

where Lactor,elm/Lcritic,elm is the loss function updating the Actor/Critic, respectively, during the novel
second training phase, while LelmA/LelmC is the version of the proposed regularizer for updating the
Actor/Critic, respectively. λ>0 is a coefficient adjusting how much the proposed loss term is taken into
account by the optimization process, against the task-specific Lactor and Lcritic loss terms.
Lelm is computed as the distance between the parameter vector of the current training iteration’s

agent during the on-going second phase from the respective stored/frozen parameter vector of the
reference baseline agent (obtained previously, at the end of the first training phase). This is done
separately for the Actor and for the Critic, resulting in the differentiation between LelmA and LelmC.
Such a distance can be calculated individually for each of the agent’s neural layers; these partial distances
can then be summed to form the loss value. Below, the difference between LelmA and LelmC is ignored
for purposes of clearer presentation, since they only deviate to one another with respect to where the
stored reference parameter vector came from (the reference Actor/Critic, correspondingly). Thus, the
following general definition of Lelm holds:

Lelm=

n∑
i=1

(
1−SC(wC

i ,w
R
i )
)
, (7)

where SC is the cosine similarity between vectors, wC
i /wR

i is the parameter vector of the i-th layer of
the current/reference agent, respectively, and n is the number of layers in the agent. This formulation
does not penalize an agent that is identical to the reference one, but essentially rewards (by reducing the
loss value in Eqs. (5) and (6)) one that is different from the reference one in terms of cosine distance. As
previously noted, Eq. (7) is obviously implemented differently for the Actor and for the Critic, since
these two agents correspond to different stored reference parameter vectors.
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3.6.3. Experimental Results

The proposed method was implemented on top of AC-SUM-GAN and evaluated using two publicly avail-
able datasets: TVSum [75] and SumMe [43]. The protocol used for evaluation is the key-fragment-based
approach with the F-score metric [76], as executed in [72]. The dataset was divided into 5 random splits,
while 80% of the videos were used for training and 20% for testing.

The proposed training-stage method, implemented on top of the baseline AC-SUM-GAN, is compared
in terms of summarization performance (measured in F-Score) against several unsupervised key-frame
extraction approaches in Table 9. To achieve a fair comparison, the performance of the baseline AC-SUM-
GAN is reported not only for 100 epochs (as in [72]), but also for 200 epochs, since the proposed method
requires double the typical number of training epochs. As it can be seen, adding Lelm to the pool of
loss functions leads to non-negligible test-stage gains in F-Score with regard to the directly comparable
AC-SUM-GAN-200-epochs competitor, which is the second best performer.

Method TVSum SumMe
Online Motion-AE [77] 51.5% 37.7%
SUM-FCNunsup [78] 52.7% 41.5%
DR-DSN [79] 57.6% 41.4%
EDSN [80] 57.3% 42.6%
Unpaired VSN [81] 55.6% 47.5%
PCDL [82] 58.4% 42.7%
ACGAN [83] 58.5% 46.0%
SUM-GAN-sl [71] 58.4% 47.8%
SUM-GAN-AAE [42] 58.3% 48.9%
CSNet [84] 58.8% 51.3%
AC-SUM-GAN [72] 60.6% 50.8%
AC-SUM-GAN (200 epochs) 61.4% 54.4%
Proposed ([72] - λLelm ) 62.0% 55.8%

Table 9. Comparison of various deep unsupervised video summarization methods on the TVSum and SumMe datasets,
using the F-score metric (percentage, higher is better). Best results are in bold.

3.6.4. Relevance to AI4Media use cases and media industry applications

This method could be useful in UC3 (AI in Vision - High quality Video Production and Content
Automation) since it provides means for creating video summaries without human intervention, which
greatly speeds up the data gathering phase while reducing the cost of the process. Moreover, this work
tackles a problem that is a well known hurdle in Deep Learning applications in general (and especially
DRL) that is local minima entrapment.

3.6.5. Relevant Publications

• P. Alexoudi, I. Mademlis and I.Pitas, "Escaping local minima in Deep Reinforcement Learning
for video summarization", ACM International Conference on Multimedia Retrieval (ICMR), 2023.
Zenodo record: https://zenodo.org/records/10572182

Final report on Multimedia Summarisation, Analysis and Production 50 of 322

https://zenodo.org/records/10572182


3.7. Visual Feature Reprogramming for Neural Video Summarization
Contributing partner: AUTH

3.7.1. Introduction

In recent years, DNNs have played an important role in video summarization. A significant challenge
in supervised video summarization stems from the scarcity of annotated training video data due to
the arduous and costly video annotation, as is well documented in [85] and [75]. This challenge can be
typically tackled by employing transfer learning techniques, which involve fine-tuning a Deep Neural
Network (DNN), that is pre-trained on a separate large annotated “source” dataset (e.g., ImageNet [86]),
using a small amount of annotated video data samples from a novel dataset of interest [87].

In this section, we present Re-Summarization (Re-SUM), a novel video summarization method,
that utilizes adversarial reprogramming (AR) [88][89] to repurpose common two-stage video summarizers.
Contrary to previous works in the field, Re-SUM applies adversarial reprogramming on the intermediate
video frame features extracted by the feature extraction DNN. Instead of learning a noise vector, called
program, that augments the input RGB video frames, Re-SUM learns a program that is used to refine
the already extracted video frame features. The program-augmented video-features are then utilized
by a subsequent Transformer regressor to accurately predict video frame importance scores. Most
importantly, Re-SUM enables the Transformer to produce accurate predictions, by learning a simple
vector of parameters, that are equal in number to the width of the output layer of the feature extraction
DNN (≈ 1K), instead of learning millions of parameters, as is typically required in regular DNN training
or Transfer Learning approaches. Summed up, the advantages of our methodology, are:

Memory Efficiency Re-SUM is able to produce video summaries without re-training any of the
employed DNNs, even in the case where the Transformer regressor is randomly initialized and completely
untrained. Hence, even a complex summarizer, trained on unknown data, can be exploited to perform
on a new video dataset without storing extra instances of the full model, as is required in fine-tuning.

Computational Efficiency Applying AR to the raw video inputs requires backward passes through
the entire video summarization two-stage pipeline. Re-SUM makes these calculations redundant since
it is applied after the video frame feature extraction phase.

Knowledge Preservation Re-SUM introduces a completely modular perturbation that is applied
in the inference stage of the video summarization pipeline, after the training phase. Consequently, by
simply removing the program application function from the inference, the DNN performance on the
original domain it was trained on is always readily accessible.

3.7.2. Methodology

Suppose that we have a neural pipeline S(·)=T(||_fCNN(·;θ(I)C );θ
(A)
T ) with its feature extractor fCNN

and the frame score regressor T trained asynchronously and separately. θ(I)C are the parameters for the
CNN feature extractor, trained on a database for image classification, minus the final classification layer.
θ
(A)
T denotes the parameters of the Transformer, trained on an unknown, source video summarization

dataset A with c video samples. (XAi,YAi) denotes the i-th sample in dataset A, with XAi a video
sample of N RGB video frames [xAi0

xAi1
...xAiN−1

] with xAij
∈Rk×k×3 and YAi

its corresponding
ground truth frame importance vector.

In this scenario, the objective of Re-SUM is to reprogram S(·) to perform well on a target video
summarization dataset B with r video samples (XBi

,YBi
). Each XBi

is a sequence of N RGB video
frames [xBi0xBi1 ...xBiN−1

], with xBij ∈Rk×k×3 and YBi their corresponding ground truth frame im-
portance vector. The primary challenge in applying the adversarial program to the input video is that,
initially, every video frame needs to get passed through the pre-trained fCNN(·;θ(I)C ) for the video frame
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Figure 6. a) Video Summarization pipeline. Training affects exclusively the Regression Head’s parameters. b.1)
Adversarial Reprogramming pipeline. A trainable adversarial program is applied on each RGB video frame. b.2) RGB
video frame reprogramming by weighted addition. c.1) Re-SUM pipeline. A trainable adversarial program is applied on
each feature vector output of the pre-trained Feature Extractor. c.2) Visual feature reprogramming by weighted addition.

feature vectors to be acquired. It is obvious, that in the case of typical AR, a back-propagation through
the whole video summarization pipeline is needed for the optimization of the adversarial parameters
W. Consequently, if the choice of the feature extraction DNN was a task-agnostic high-performing large
Neural architecture, optimization complexity would suffer an upscaling of extreme magnitude, due to
the required gradient computations.

Re-SUM mitigates this issue by learning to reprogram only the task-specific part of the pipeline
T for target dataset B, without taking into account neither the feature extractor fCNN inputs nor its
parameters θ(I)C . This is achieved by learning a new adversarial program:

W∈Rd, (8)

that is applied to the output of fCNN as shown in Figure 6. The learnable parameters W are static and
of one dimension. Since, fCNN outputs for both source and target datasets have identical dimensions,
padding isn’t needed. As a result Apad will not be used and A′

add can be introduced:

A′
add(XBi

;W)= ||j((1−α)W+αfCNN(xBij
;θ

(I)
C )), j=0,...,N−1, (9)

with fCNN(xBij ;θ
(I)
C ))=hBij the intermediate feature vector for the video frame xBij . Finally, based on

eq. 9 the optimization problem of Re-SUM is represented as:

W(B)=argmin
W

1

r

r−1∑
i=0

(T(A′
add(XBi

;W);θ
(A)
T )−YBi

)2, j=0,...,N−1, (10)

and an estimation of the importance score vector for a full video XBi from the target dataset B after
W(B) has converged, is:

ŶBi
=T(||jA′

add(XBij
;WB);θ

(A)
T ). (11)

Following [90] it is also possible for Re-SUM to reprogram an untrained Transformer head T(·;θT ), with
θT the learnable parameters of T that are untrained and randomly initialized [91]. The loss function
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Table 10. Performance comparisons in the canonical setting, in terms of F1-Score (%). All approaches utilize GoogleNet
for unimodal video feature extraction and integrate attention mechanisms in their methods. Top 5 performances are ranked.

Method
TVSum rank SumMe rank

CLIP-It!gnet [92] 64.2 1 51.6 2
PGL-SUM [93] 61.0 55.6 1
M-AVS [94] 61.0 44.4
DSNeta−b [95] 62.1 5 50.2 5
DSNeta−f [95] 61.9 51.2 3
VASNet [96] 61.4 49.7
DASP [97] 63.6 2 45.5
STmed 63.5 3 49.4
Re-SUMmed 63.1 4 50.5 4

presented either in the trained 10 or in the untrained scenario, can be denoted as L′
MSE(W). Then, the

chain rule yields:
dL′

MSE

dW
=
∂L′

MSE

∂T
· ∂T

∂Aadd
·∂Aadd
∂W

(12)

We can observe in eq. 12, that, by using Re-SUM, fCNN does not participate in the gradient computation
for the Re-SUM loss function minimization. As a result, redundant gradient computations are completely
omitted since the optimization process is dependant only on the important task-specific parameters θT
of the video frame score regressor T .

3.7.3. Experimental Results

All aspects of the evaluation process follow established common protocols, utilizing 2 public benchmark
datasets: TVSum [75] and SumMe [85]. To apply the proposed Re-SUM method on the Transformer
architectures, we had to aggregate GoogleNet’s last projection layer output h∈R1024 for each video frame,
with a learnable adversarial perturbation of the same dimensionality. Consequently, in the training phase
we only optimized a global learnable program W∈R1024 that consisted of approximately 1K parameters.
These experiments resulted in video summarizers Re-SUMtiny, Re-SUMsmall, Re-SUMmed, Re-SUMlarge,
that are randomly initialized Transformer regressors, augmented with our optimized adversarial module.

In addition, the best performing models obtained by the typical supervised learning process (STmed)
and by Re-SUM (Re-SUMmed) were compared against unimodal, state-of-the-art, video summarization
methods that utilize the same feature extraction CNN as the one utilized in the proposed method. The
results reported in Table 10 show that even the performance of the reprogrammed untrained Transformer
regressor (Re-SUMmed) is highly competitive to state-of-the-art methods (top 4). This observation is
particularly intriguing given the fact that Re-SUMmed utilizes only the trainable parameters W of the
program, which are many orders of magnitude fewer compared to competitors.

Moreover, in order to demonstrate the effectiveness of Re-SUM, we compare it against the typical
fine-tuning transfer learning (TL) approach. In this setting, we assume a DNN video summarizer STmed,
pre-trained to an unknown “source” dataset of high quality and quantity, that we want to re-use on a
small, novel “target” dataset. Then, for the transfer learning case, we followed two different approaches:
a) we fine-tuned the entire architecture on the “target” dataset, and b) we fine-tuned only the final
linear layers of the architecture. For the Re-SUM case, we simply applied AR on the STmed that was
pre-trained on the “source” dataset to repurpose it for the “target” one.
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Table 11. Transfer learning method comparison utilizing Fine-tuning and adversarial reprogramming for the SumMe and
TVSum datasets, with GoogLeNet features. Reported performance is in terms of F1-Score (%). The TL format is “source”
→ “target” dataset. The trainable parameter number is reported in millions (M). Best average (AVG.) performance is in
bold.

STmed-NoFT STmed-
lastFT

STmed-FullFT Re-SUMmed

(0.13) (6.2) (0.001)

TVSum→ SumMe 43.13 47.27 48.49 50.80
(re-test) TVSum 60.76 61.47 63.50
SumMe→ TVSum 58.90 60.40 60.92 62.82
(re-test) SumMe 42.97 41.72 49.94

This procedure was repeated with the roles of the datasets reversed, i.e., SumMe initially played the
role of the “source” dataset and TVSum the role of the “target” dataset, and, subsequently, we re-did
the experiments with the reverse “source” - “target” scheme. The results of this study are presented in
Table 11 where Re-SUM’s superiority is apparent.

3.7.4. Relevance to AI4Media use cases and media industry applications

This method is useful in UC3 (AI in Vision - High quality Video Production and Content Automation)
since it provides means for creating video summaries by re-purposing high-performing video summarizers
pre-trained on an unknown source dataset, by training a modular lightweight feature perturbation
(number of parameters ≈1K).

3.7.5. Relevant Publications

• E. Charalampakis, C. Papaioannidis, and I. Pitas, "Visual Feature Reprogramming for Neural
Video Summarization", Under review

3.8. Lightweight Human Gesture Recognition Using Multimodal Features
Contributing partners: AUTH

3.8.1. Introduction

Human gesture recognition is a very important tool in human-computer or human-robot interaction. In
many cases, such algorithms may need to be executed on systems with limited computational capabilities,
due to size or weight constraints. Therefore, such approaches aim to recognize gestures by exclusively
processing the available skeleton sequences, discarding all visual appearance information contained within
the input RGB content. However, this approach is not optimal, since the extracted skeletons are only a
rough representation of the human body, as they consist only of a specific, predefined set of body joints
(e.g., shoulders, wrists, knees, etc.). Certain gestures that involve finer motions, such as finger movements
or very small displacements (slight body joint rotations/translations) cannot be distinguished effectively
between each other. While methods that include palm/finger joints in the 2D/3D skeletons [98] could offer
a sufficient solution, their predictions can only be trusted when the person performing the gestures is really
close to the camera and his/her fingers are clearly visible. In real-world scenarios, this is rarely the case.

This paper proposes a gesture recognition method, called Multimodal Gesture Recognition (MMGR),
that analyzes both 2D skeleton sequences and visual information obtained from the input RGB videos to
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Figure 7. The overall architecture of the proposed method.

output accurate gesture predictions. This is achieved by introducing a novel architecture that augments
existing skeleton-based ones with an appearance-based feature extractor, which analyzes only specific
regions of the input video frames. This additional module is specifically designed to provide rich
information to the overall DNN, obtained by the visual cues, while adding minimum computational
overhead. It relies on a neural implementation of the Frame Moments Descriptor (FMoD) and its local
variant LMoD [99, 100, 101], which can effectively encode local visual information by efficiently capturing
the most informative input appearance statistics. Thus, the proposed appearance-based feature extractor
is a plug-and-play module without any learnable parameters that can be used to enhance the performance
of existing lightweight skeleton-based methods.

Experimental evaluation on two gesture recognition datasets shows that the proposed method in-
creases the gesture recognition accuracy compared to the baseline. Moreover, integrating the proposed
FMod-powered appearance-based feature extractor within the overall gesture recognition architecture
is more effective than using a learnable CNN feature extractor in its place.

3.8.2. Methodology

3.8.2.1. Gesture recognition using multi-modal features Let S={S1,...SL}∈RL×W×H×3 be
an input RGB image sequence, where L is the length of the sequence and W,H are the image width
and height respectively, depicting a person that performs a series of gestures. The ultimate goal of the
proposed method presented in Figure 7 is to effectively analyze this sequence to extract rich features
which allow the accurate recognition of all the performed gestures.

In this direction, two types of features are extracted. First, a CNN is utilized to extract the person’s 2D
skeleton from each RGB image in the input sequence, calculating a 2D skeleton sequence P={P1,...PL}∈
RL×N×2 that comprises the corresponding 2D pixel coordinates of a pre-defined set of N body joints (e.g.,
shoulders, wrists, knees, etc.). However, since gestures may be performed using only specific body parts
(e.g., arms or hands), the extracted 2D skeleton sequence is further processed to obtain P̃={P̃1,...P̃L}∈
RL×M×2,M<N , which contains only the 2D pixel coordinates of the relevantM body joints. This ensures
attention is focused solely on the body joints of interest, thus reducing the burden on the overall DNN by
avoiding the processing of redundant features that may introduce noise (e.g., due to imperfect 2D skeleton
predictions). Therefore, if fCNN denotes the 2D skeleton extraction CNN, the calculation of P̃ proceeds as:

Pi=fCNN(Si) (13)
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and
P̃i=joint_proc(Pi). (14)

Note that since in the scope of this work all gestures are performed by the person’s upper body, P̃
considers only the wrists, elbows, shoulders, and head joints, resulting in M=7 body joints.

Besides providing important spatiotemporal information, the first type of features P̃ also serve an
additional purpose. That is, they are utilized to define the regions-of-interest (ROIs) on the input RGB
images. Therefore, after P̃i is obtained, the 2D pixel coordinates of the body joints extracted from
each input image are utilized to define a rectangular ROI of fixed size on the corresponding image that
encloses all of them. In the context of this work, the “head" body joint is excluded from this process,
essentially resulting in a hand patch extraction process.

The extracted hand patch sequence H is subsequently fed to the appearance-based feature extractor
to calculate the second type of features H̃ that encode rich visual information. To this end, the proposed
appearance-based feature extractor utilizes at its core a neural implementation [101] of the local variant
[100] of FMoD [99], which is denoted as fFMoD. FMoD operates by iteratively dissecting an input frame
into segments and calculating statistical properties for each compartment.

With both types of features (P̃ and H̃) available, the proposed method proceeds to the final gesture
recognition step. To this end, the two types of features are fused before given to the final gesture recognition
DNN, denoted as fG. Finally, the fused features F are given as input to the gesture recognition DNN fG,
which consists of a simple LSTM and two fully-connected layers, in order to predict the final gesture label ĝ:

ĝ=fG(fusion(P̃,H̃)). (15)

3.8.3. Experimental Results

The proposed method is evaluated using two gesture recognition datasets. The first dataset is the
AUTH-GESTURE dataset [1], which consists of 4930 videos (80/20 split for training and testing) of six
gestures (Cross arms, Extend one arm to the side, Palms together, Raise one arm upwards, Thumps up,
V shape). The second dataset is the UAV-Gesture dataset [2], which is composed of 119 UAV-captured
videos, containing 13 gestures performed by 10 subjects in total.

Table 12. Comparison on both evaluation protocols (P-I and P-II) using the AUTH-GESTURE dataset [1].

Model
Accuracy

P-I P-II

DDNet [102] 74.18 % 52.41 %

RGR [103] 75.83% 62.51%

MMGRP̃ 77.08% 64.94%

MMGRCNN 77.17% 67.06%

MMGR 77.74% 70.37%

The proposed method has been evaluated following two protocols. The first one (P-I) assumes that
the entire input RGB image sequence S depicts a single and complete gesture, while the second protocol
(P-II) assumes that at least the last 80% of the RGB images in the sequence correspond to the gesture
of interest, simulating a more realistic scenario.

The comparison results for the AUTH-GESTURE dataset are presented in Table 12. It can be seen that
the proposed MMGR method outperforms all competing methods in both evaluation protocols. Impor-
tantly, the proposed method increases the gesture recognition accuracy by at least 7% when compared to
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Table 13. Comparison on both evaluation protocols (P-I and P-II) using the UAV-GESTURE dataset [2].

Model
Accuracy

P-I P-II

DDNet [102] 91.51 % 69.03 %

RGR [103] 92.62 % 66.35%

MMGRP̃ 92.25% 62.94%

MMGRCNN 90.77% 69.87%

MMGR 93.73% 74.06%

RGR andDDNet in the more realistic evaluation protocol (P-II), thus offering a more reliable solution for
real-world applications. Moreover, when evaluated on the UAV-GESTURE dataset, it again demonstrates
increased gesture recognition performance in both evaluation protocols, as it can be seen in Table 13.

Overall, the comparison results presented in Tables 12 and 13 indicate that the multimodal features
extracted by the proposed method allow a very simple gesture recognizer to produce accurate predictions.
Finally, since MMGR outperforms both MMGRCNN and MMGRP̃ variants, it is shown that the
proposed appearance-based feature extractor is able to encode rich visual information that is necessary
for accurate gesture recognition.

3.8.4. Relevance to AI4Media use cases and media industry applications

This method matches perfectly with UC3 (AI in Vision - High quality Video Production and Content
Automation) since it yielded a fast and automatic video analysis, specifically for lightweight gesture
recognition. By the utilization of two similar, alas distinct modalities (human skeletons and RGB images)
fast and automatic high-accuracy gesture recognition can be achieved.

3.8.5. Relevant Publications

• A. Christidis, C. Papaioannidis, I. Mademlis, and I. Pitas, "Lightweight Human Gesture Recognition
Using Multimodal Features", 2024 Signal Processing for Consumer Behavior Analysis Workshop
(EUSIPCO 2024), Zenodo record: https://zenodo.org/records/13384444

3.9. Proof of Quality Inference (PoQI): An AI Consensus Protocol for De-
centralized DNN Inference Frameworks

Contributing partners: AUTH

3.9.1. Introduction

Decentralized or distributed DNN training and inference are emerging trends in the global media world,
where many media asset management systems are interconnected. However, in such environments, indi-
vidual DNN nodes can be attacked can compromised. In the realm of machine learning systems, achieving
consensus among networked DNN nodes is a fundamental yet challenging task. This work presents Proof
of Quality Inference (PoQI), a novel consensus protocol designed to integrate deep learning inference under
the basic format of the Practical Byzantine Fault Tolerant (P-BFT) algorithm. PoQI is applied to Deep
Neural Networks (DNNs) to infer the quality and authenticity of produced estimations by evaluating the
trustworthiness of the DNN node’s decisions. In this manner, PoQI enables DNN inference nodes to reach

Final report on Multimedia Summarisation, Analysis and Production 57 of 322

https://zenodo.org/records/13384444


a consensus on a common DNN inference history in a fully decentralized fashion, rather than relying on a
centralized inference decision-making process. Through P-BFT adoption, our method ensures byzantine
fault tolerance, permitting DNN nodes to reach an agreement on inference validity swiftly and efficiently.

Many distributed or decentralized deep neural network (DNN) methodologies operate under the
assumption of reliable communication links among participating nodes, facilitated either through inter-
connected networks or by presuming the unwavering honesty of nodes irrespective of circumstances. In
numerous cases, conventional aggregation techniques such as averaging [104] or simple majority voting
[105] are employed to integrate individual DNN node outputs into a cohesive system-wide outcome.
However, employing conventional aggregation methods like simple majority voting in decentralized
systems with unreliable nodes presents significant challenges [106]. The presumption of consistent node
honesty may be unfounded, opening avenues for malicious actors to infiltrate and manipulate transmitted
data, compromising the system’s integrity. Consequently, the resulting aggregation may be distorted
by these faulty nodes, leading to inaccuracies. Moreover, since simple majority voting lacks built-in
fault tolerance properties suitable for such environments [107], the aggregated results may not faithfully
represent the network’s true consensus. Ultimately, relying on majority voting in decentralized systems
with unreliable nodes undermines system robustness and jeopardizes decision-making integrity.

Motivated by this, in this work, we introduce a novel consensus protocol called Proof of Quality
Inference (PoQI) to investigate the fusion of the P-BFT algorithm within the concept of decentralized
DNN inference tasks. By requiring DNN nodes to reach a consensus solely on the final layer probability
distributions, we significantly reduce the amount of information that needs to be exchanged between
them. Consequently, DNN nodes operating in our system can achieve consensus and locally maintain
a universally accepted DNN inference history without relying on any centralized DNN aggregation, thus
making the system resilient to Byzantine failures. Our experiments on classification tasks demonstrate that
PoQI is capable of achieving accurate results comparable to traditional centralized aggregation schemes.

3.9.2. Methodology

3.9.2.1. PoQI: Proof of Quality Inference Let G={A,E} be a graph consisting ofN collaborating
AI agents described in a set A={α1,α2,...,αN}, that are employed to perform a DNN inference task, e.g.,
data classification of the form ŷ=f(x;θ) where x is a data sample and θ are the DNN parameters. E is as
a set of fixed communication links allowing them to communicate with each other. It is assumed that all
nodes have obtained access to the same test sample x, while their goal is to produce a single prediction ŷ out
of ŷij ∀ iϵ[0,N ] and jϵC, where C is a set of valid classes for the specific data classification task of the form
C={c1,...,cc}. Furthermore, it is assumed that each DNN node produces a softmax classification inference
result so that ŷi=fi(xi;θi) and

∑C
i=1ŷi=1. For the nodes to coordinate on a single inference prediction,

we propose a novel consensus protocol to be formed as a single inference rule and provide coordination in
the individualized nodes decisions under a fully decentralized structure, thus eliminating the need of any
kind of centralized coordination. The Proof of Quality Inference (PoQI) protocol can be thought of as
a new hybrid consensus mechanism, where the core process is achieved by adapting the traditional BFT
SMR approach, where N≤2f+1 DNN nodes are needed to tolerate f faulty nodes who may fail during
execution or who may behave maliciously by transmitting tampered data to the neighboring nodes. The
normally operating DNN nodes are considered to be the honest ones. The PoQI protocol is designed to
tackle Byzantine failures within the context of decentralized inference. In our systematic design, a classical
Byzantine failure scenario is assumed, where malicious DNN nodes may attempt to disrupt the entire DNN
Inference process by influencing honest DNN nodes with their incorrect inference predictions. Specifically,
each DNN node processes the same data sample x, and must collaborate with the other N−1 DNN nodes
to achieve a consensus regarding both the sample label and the sequential order of DNN classifications.

The system operates within synchronous assumptions, ensuring that the delivery schedule of DNN
predictions through messages, is reliably maintained. Efforts are made to minimize communication delays
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within this framework. Each DNN node is responsible for broadcasting predictions, to all neighboring
DNN node, thereby ensuring that every DNN node receives inference predictions in the same order.
Consequently, each DNN node maintains a comprehensive record of its own DNN inference prediction
history. Thus, PoQI is tasked with ensuring the following properties:

• Validity: If an individual honest DNN node i broadcasts a prediction ŷi, then every honest DNN
node eventually receives ŷi.

• Agreement: If an individual honest DNN node i decides an inference ŷi, then every other honest
DNN node must also produce the same inference decision ŷi.

• Integrity: A prediction ŷ for sample x appears at most once in the delivery sequence of any
honest DNN node.

• Total Order: The ordered sequence of predictions ŷi and ŷi+1 for samples xi, xi+1 must be the
same for all honest DNN nodes.

As previously stated, PoQI operates as a state machine replication protocol, consisting of three
primary sub-operations: view change, normal operation, and conflict decision agreement. The view change
operation orchestrates the primary election process, where a primary DNN node initiates the consensus
process, by disseminating its DNN inference prediction regarding the given input sample x to all other DNN
nodes. During normal operation, the core execution of the PoQI protocol takes place, wherein the proposed
decision of the primary undergoes evaluation for universal acceptance or rejection. If universally accepted,
the primary DNN node is responsible for conveying the network’s final decision. Conversely, if the proposed
primary decision faces universal rejection, a view-change process ensues. Additionally, in instances where
the view change process fails to elect a universally accepted primary node, a conflict decision agreement
mechanism is activated. This mechanism is employed to address scenarios arising from inherent
characteristics of the DNN models themselves rather than from malicious behavior. In such conflict
decision scenarios, the assurance of total ordering during the specific decision period is not guaranteed.

DNN nodes operate through a sequence of actions known as views vϵV where V={v1,...,vk}. Given
that, PoQI protocol operates in consensus rounds, each defined as one execution of the normal consensus
process, regardless if it is successful or not. Views describe the consensus rounds that are required, in
order for the DNN network to reach a consensus about the label of a given sample x. It is defined as
an index of the form vϵV, containing a sequence of testing pairs whose DNN inference predictions have
been scheduled in the time interval t. At each view, one DNN node is operating as primary node while
the rest N−1 nodes are operating as validators. In the remainder of this work and for simplicity reasons,
each view refers to a single inference prediction of the form (x,y). Our goal is that every honest DNN
node in N maintains an identical DNN inference history set defined as Ŷ={ŷij,∀i∈V andj∈C}.

3.9.3. Experimental Results

In our experimental design, we assume a decentralized network comprising several DNN nodes that
communicate with each other. Each DNN node contains a pre-trained Convolutional Neural Network
(CNN) model, tailored to its unique task or domain. In the experiments, we aim to explore the collective
intelligence and collaborative potential of the PoQI consensus protocol. We compare the results with
conventional centralized DNN aggregation methods like majority voting and weighted averaging. Lastly,
to assess the BFT property of our protocol, we conduct experiments to determine both the maximum
number of misbehaving nodes our system can effectively handle and the behavior of majority voting
and weighted average in such settings.

Table 14 presents results from benchmark datasets, aiming to approximate outcomes achieved by
centralized methods, under the assumption that all DNN nodes act honestly. In our second set of
experiments in Table 15, we introduce a subset of faulty DNN nodes attempting to disrupt the consensus
process by transmitting randomized DNN inference results. In the case of Cifar-10 with 0 faulty agents we
can observe that majority voting is stable, producing the same results on every DNN node, thus the system
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Table 14. Accuracy (%) comparison between the PoQI Consensus Protocol and conventional
centralized aggregation methods across different datasets, assuming all nodes act honestly,
highlighting results obtained from one node.

Model Dataset

F-MNIST Cifar-10 SVHN

ResNet 20 90.63 92.18 90.90
ResNet 32 90.99 92.65 91.38
VGG 11 87.85 91.53 88.28
VGG 16 90.35 93.68 93.18
MobileNet v2 91.02 92.57 90.83
ShuffleNet v2 - 89.96 89.69
RepVGG - 94.51 93.56

Weighted Average 92.51 95.12 94.09
Majority Voting 92.01 95.05 93.75
PoQI 92.33 95.27 94.12

as a whole is in agreement and works as it is supposed to work. However, in the rest of the experiments,
we can observe that even with a 1 faulty DNN node that is arbitrarily sending randomized DNN inference
results, the weighted average is completely failing while the majority voting is not stable anymore. This
means that there is at least one data sample, on which DNN nodes are no longer in agreement and they
produce randomized results. This instability on majority voting proves that is not fault-tolerant at all,
and even with one faulty agent, it can not be used anymore to establish a commonly accepted agreement
on the system. On the other hand, our protocol is able to coordinate the decision-making process of
the DNN nodes, even in the presence of faulty nodes, since the decision for each sample is performed
by the primary DNN node and every honest DNN node must and will comply with his decision. We
assume that the faulty nodes are acting completely arbitrarily so their results are not reported.

3.9.4. Relevance to AI4Media use cases and media industry applications

This work contributes to UC7 "AI for Content Organization and Content Moderation" and UC1 "AI
against Disinformation" by proposing a decentralized inference strategy that can be integrated with
advanced deep learning techniques for content analysis. Drawing inspiration from societal practices, a
decentralized decision-making approach is suggested where individual neural agents are enabled to make
autonomous decisions, sharing and aggregating information with other agents within a network. By
incorporating advanced AI capabilities and this decentralized inference strategy, media companies can
manage visual content efficiently and cost-effectively, ensuring its relevance and safety while preventing
media data and decision process tampering. In essence, this strategy empowers individual AI agents
and additionally enhances security, and promotes collaboration among multiple neural agents.

3.9.5. Relevant Publications

• D. Papaioannou, V. Mygdalis, and I. Pitas, "Proof of Quality Inference (PoQI): An AI Consensus
Protocol for Decentralized DNN Inference Frameworks", 2024 IEEE International Workshop on
Distributed Intelligent Systems (DistInSys 2024)
Zenodo record: https://zenodo.org/records/13384377
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Table 15. Per DNN node accuracy (%) comparison between the PoQI Consensus Protocol and
conventional aggregation methods, assuming a subset of faulty nodes acting arbitrarily

Dataset Faulty Nodes Method Accuracy (%)

N1 N2 N3 N4 N5 N6 N7

Weighted Average 95.12 95.12 95.12 95.12 95.12 95.12 95.12
Cifar-10 0 Majority Voting 95.05 95.05 95.05 95.05 95.05 95.05 95.05

PoQI 95.27 95.27 95.27 95.27 95.27 95.27 95.27

Weighted Average 16.40 15.87 15.92 16.24 15.35 16.11 -
Cifar-10 1 Majority Voting 94.63 94.86 94.76 95.02 94.72 94.56 -

PoQI 94.99 94.99 94.99 94.99 94.99 94.99 -

Weighted Average 15.27 15.41 15.37 15.33 - 15.13 15.52
SVHN 1 Majority Voting 93.21 93.36 93.17 93.12 - 93.04 93.77

PoQI 93.42 93.42 93.42 93.42 - 93.42 93.42

Weighted Average - 11.14 11.40 - 11.16 11.36 -
SVHN 3 Majority Voting - 92.56 93.12 - 92.94 91.82 -

PoQI - 93.18 93.18 - 93.18 93.18 -

3.10. Human face labelling
Contributing partner: RAI

3.10.1. Introduction

Content labeling is the process of annotating or tagging raw data to add context and meaning. In this
context, face labelling includes tasks such as distinguishing between different people in images and video
streams, or estimating other features of which gender [108], here intended as apparent biological sex
- i.e., the biological sex that would be mostly associated to a person by a set of observers - is a very
important one. In fact, the guarantee of gender equality in the media is one of the main pillars of public
service media. The analysis and reporting of how representatives of both sexes participate in radio and
television programmes is becoming increasingly important. For this purpose, national and international
Government policies have been put in place [109, 110]. The choice of the most appropriate method
is crucial, as it has a direct impact on the overall performance and efficacy. To this end, deep neural
network models have been shown to be highly effective [111, 112, 113, 114, 115, 116, 117, 118].

3.10.2. Methodology

We built a recurrent multi-layer perceptron (RMLP) architecture, using the face embeddings extracted
by the RAI Face Management Framework (FMF) as input to the network [119]. The output is a label
indicating the predicted gender class.

Table 16 illustrates the architecture of the network, which has a total of 877,602 trainable parameters.
The backbone of the architecture is a fully connected layer (FC), followed by a rectifier layer (ReLU),
and coupled with a cascade combination of batch normalisation (BN), dropout (DR), FC and ReLU
layers. In [120], the authors demonstrated that using normalisation followed by drop-down helps to
improve the training efficiency of a neural network. Then, there are seven blocks, which again consist of
a sequence of BN→ DR→ FC→ ReLU layers, repeated twice and once in even blocks and odd blocks,
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Table 16. Neural network architecture for the face gender estimation task.

Block Description #Params
Input FMF embedding→ Normalize -
Backbone FC → ReLU→ BN→ DR→ FC → ReLU 526,336
Neck (1) BN→ DR→ FC → ReLU 132,352
Neck (2) BN→ DR→ FC → ReLU (x2) 132,608
Neck (3) BN→ DR→ FC → ReLU 33,408
Neck (4) BN→ DR→ FC → ReLU (x2) 33,536
Neck (5) BN→ DR→ FC → ReLU 8,512
Neck (6) BN→ DR→ FC → ReLU (x2) 8,576
Neck (7) BN→ DR→ FC → ReLU 2,208
Head FC→ SM 66

Total Parameters: 877,602

respectively. The architecture ends with an FC layer coupled with softmax activation function (SM).
Our implementation differs from [115] in the input normalisation and the different hyperparameters,
specifically batch size, learning rate, weight decay and learning rate scheduling.

Figure 8 shows the correlation between the output of each of the RMLP layers and the gender classes,
mapped to a 2D feature space using the t-SNE algorithm for dimension reduction [121]. Each point
on the graphs represents a face detected within some keyframes taken from RAI’s television channels
and manually labelled as woman (blue markers) or man (orange markers). The top left graph plots
the input FMF normalised embeddings. Neighbouring points represent with good approximation faces
belonging to the same individual. The other graphs show (top to bottom, left to right) the output of the
starting layers (i.e., network backbone, block 0, actual size of the embeddings 512), and the outputs of
the middle layers (i.e., network neck, blocks 1 to 7, actual size of the embeddings 256, 256, 128, 128, 64,
64, 32, respectively). It is interesting to note that the network does a satisfactory job of distinguishing
between the two classes from the intermediate blocks.

3.10.3. Experimental results

In accordance with [115], we adopted a 2-step approach to build the neural network model. First, we
trained the model using the IMDB-WIKI dataset [122], one of the largest datasets of face images from
IMDB and Wikipedia with age and gender labels. Then, we fine tuned the model using the Adience dataset
[123], and a 5-fold strategy for refinement and validation. Both datasets were preprocessed to filter out un-
informative samples, i.e., images containing zero or more than one face, and images whose ground truth was
absent. Differently from [115], we did not make any assumption on the face quality, and retained all the im-
ages found by the FMF system. We believe this better reflects the application context in which we operate,
which is characterised by great variability of the processed content, such as image quality (for example, low
resolution, sampling artefacts and noise in older archive material) and size (e.g., long shots, very long shots).

In order to strengthen the experimentation in a real life application scenario, we collected more than
7,000 frames captured from RAI’s programmes of various television genres, including in-depth journalism,
talk shows and entertainment. Only frames depicting one face were considered and manually annotated
as either woman (2,530 in total) or man (4,815 in total). Table 17 shows the results in terms of weighted
precision, recall and F-score of the RMLP architecture compared to three state of the art libraries for
gender estimation. We calculated the weighted form in order to take into account the imbalance between
the two classes in the test set. This can result in an F-score that is not between precision and recall.
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Figure 8. Correlation between the output of the RMLP layers and the face gender categories.

Table 17. Comparison of different gender estimation tools applied to television streams.

Library Precision Recall F-score
InsightFace [124] 0.962 0.962 0.962
FaceLib [125] 0.924 0.924 0.923
DeepFace [126] 0.942 0.939 0.938
RMLP 0.979 0.979 0.979

The RMLP architecture goes beyond the state of the art, demonstrating its ability to be one of the
key elements for building advanced analytical tools and data insights.

3.10.4. Relevance to AI4Media use cases and media industry applications

This method is applicable to UC3 (AI in Vision - High quality Video Production and Content Automation)
since it yielded a fast and automatic way for video annotation. Recognising the growing importance
of information on the participation of women and men in television programming, it is clear that media
workflows could greatly benefit from the developed tool.

3.10.5. Relevant Publications

• M. Montagnuolo, F. Negro, A. Messina, A. Bruccoleri and R. Iacoviello, "Who’s in My Archive? An
End-to-End Framework for Automatic Annotation of TV Personalities", 2023 IEEE International
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Conference on Big Data (BigData)
Zenodo record: https://zenodo.org/records/10572182

3.11. People@Places and ToDY: Two Datasets for Scene Classification in
Media Production and Archiving

Contributing partner: JR

3.11.1. Introduction

While research has moved from image classification to object detection, segmentation and other more
advanced topics, performing classifications of images or entire shots of videos is still a practically relevant
task in describing visual content in order to make it findable. This task occurs when describing newly
arriving content for production purposes (e.g., news) or annotating large amounts of otherwise sparsely
documented content in media archives. Locations are among the three most frequently used search facets
in video archive search [127]. For many purposes in visual content creation, place categories (i.e., street,
shopping mall) are needed rather than named locations. Automatically labeling images or video shots
with such location categories is a typical classification problem, and the Places365 dataset [128] is a very
well known resource for this task. However, in a practical setting, there are other key properties of the
scene, that are relevant to judge whether a shot is usable or not.

First, it is important to know whether the scene is “empty”, or there are people or vehicles visible.
We call this property “bustle”, i.e., whether there are traces of people being active in that scene or not.
While it has always been an important query criteria to explicitly look for a quiet or busy view of the
scene, the recent COVID-19 pandemic has made that a much requested feature, as depending on the
level of restrictions valid at that time, news reports require either empty or populated street scenes.

Second, the shot type (sometimes called shot size) is a key cinematographic property, which determines
the importance of a subject, and the context in which a particular shot can be used. The shot type
is typically defined by the height ratio of the depicted persons in relation to the view.

Third, for outdoor shots the time of day and the season are important properties. A news editor
searching outdoor shots of a building (e.g., house of parliament) wants to find shots that match the season
of the story, as well as day or nighttime. For more scenic views, a sunrise or sunset shot is often requested.

Although these are not uncommon properties of content, there are hardly any datasets covering
these properties – in particular, datasets with sizes useful for applying deep learning. We propose an
automatic workflow to add relevant annotations to these datasets, performing manual annotations where
required. Our contribution is now as follows:

• We propose the People@Places dataset, based on Places365, adding bustle (6 classes) and shot
type (9 classes) annotations.

• We propose the ToDY (time of day/year) dataset, based on Skyfinder [129], adding time of day
(5 classes) and season (4 classes) annotations.

• We provide a baseline for the classification tasks on these datasets, using an efficient state of the
art approach.

• We provide the toolchains that were used to create the two datasets, which can be used to replicate
this approach for other datasets.

Related work. We review related work on location, shot type and time of day/season classification,
and for the detectors used for automatic dataset annotation. To the best of our knowledge, there is no
existing work on bustle classification. The closest tasks seem to be people counting or crowd estimation,
but those differ as we consider both persons and vehicles, while we are not interested in the exact numbers.

For location type classification, many traditional classification architectures, such as the VGG or
ResNet families have been applied. Global covariance pooling is proposed in [130] to capture richer
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features and improve generalization. One variant of this approach, iterative matrix square root normalized
covariance pooling network (iSQRT-COV-Net) used to be the best performing method on Places365,
while RS-VGG16 [131] is a recent method proposing a compact model derived from VGG16. In the last
few months, vision transformer models such as ViT have taken the lead [132]. A recent extension using
large transformer models (86-632M parameters), and self-supervision using masked autoencoders (MAE)
is to the best of our knowledge currently the best performing model for classification on Places365.

Like other computer vision tasks, shot type (sometimes referred to as shot size) classification is
primarily addressed with deep learning approaches, either approached using CNNs directly for clas-
sification [133], using general semantic segmentation [134] or focusing on separating the subject from
the background and feeding the regions into a two-stream network [135]. One issue with shot type
classification is that the datasets used in many works are not accessible, as they rely on materials from
motion picture films that cannot be distributed due to copyright restrictions.

The classification of time of day and season is a topic that seems to be somewhat neglected. An early
work, [136] proposes a system for season classification, but relies on color histograms and the amount of
exposed skin of the depicted persons rather than on training samples. The TRECVID semantic indexing
task [137] included daytime/nighttime as concepts, and the task was addressed both with traditional ma-
chine learning as well as early deep learning methods. However, except for the limitation to only two classes,
the resolution and quality of this dataset is quite limited. The Youtube-8M dataset [138] covers some of the
relevant classes (sunset, sunrise, night, autumn and winter), while the rest of the times of day and seasons
are missing. Some vocabularies from the broadcast domain cover time of day (e.g., EBU LocationTime 1)
or season (e.g., TV-Anytime Weather [139]), but no annotated images are provided in this context.

For annotating the dataset for bustle and shot type with vehicles, persons and size of the (partial)
persons in the image, we employ object detection, face detection and human pose detection. We employ
YoloV4-CSP [140], which combines the CSP-Net proposed in YoloV4 [141] with an efficient model scaling
strategy [140], a combination which provides us a highly accurate detector with a low inference time.
RetinaFace [142] was chosen as one of the top performing methods on the challenging WIDER Face [143]
hard split. For human pose detection, we employ the ROMP algorithm [144]. We chose this method
because it is one of the top performing methods on a very realistic (and consequently difficult) dataset
named 3D Poses in the Wild [145]. Furthermore, in contrast to other methods (like [146] which performs
also quite well on this dataset), it is a computationally efficient single-stage method which does the pose
detection for all persons occurring in the image simultaneously.

3.11.2. People@Places: Dataset for bustle and shot type classification

We amend the Places365-Standard dataset (high resolution images) with per image annotations for
bustle and shot type. For bustle, we define six classes from entirely unpopulated to populated, resulting
from discussions with domain experts from media production and archiving. The classification treats few
large persons or vehicles separately, in order to address cases where those are in the focus of the image.
Otherwise the classes use a combination of the number and size of objects, expressed by the image area
covered together by these objects (see Table 18).

For shot types, there are a number of taxonomies that differ in the level of detail. All of them use the
size of the main person depicted in the shot as reference. We use the IPTC NewsCodes scene types2, and
the lists proposed by Arijon [147], Galvane [148] and Rao et al. [135] as sources, but decided to go for a
finer classification (see Table 18). As the annotations of the Places365 test split are not provided (as part
of a benchmark), we work with the training and validation splits in this paper, to which we have full access.

The dataset creation process is semi-automatic, where automatic annotation is performed for the
entire dataset, and manual verification is performed for the validation split. The process for creating the

1https://www.ebu.ch/metadata/ontologies/ebucore/ebucore_LocationTimeType.html
2https://cv.iptc.org/newscodes/scene/
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Figure 9. Pretrained on fine-grained places categories, the backbone of the network is used to train classification heads for
supercategories, bustle and shot type. Bustle/shot type annotations are created automatically (manually corrected for the
validation set).

Class Definition
Bustle
unpopulated no persons or vehicles
few people < 3 persons, no vehicles, area < 10%
few vehicles < 3 vehicles, no persons, area < 20%
few large < 3 people/vehicles, any area
medium < 11 people/vehicles, area < 30%
populated more people/vehicles or covering larger area
Shot type
extreme close-up detail of face
close-up head
medium close-up cut under chest
tight medium shot cut under waist
medium shot cut under crotch
medium full shot cut under knee
full shot person fully visible
long shot person 1/3 of frame height
extreme long shot person <1/3 of frame height

Table 18. Definition of bustle and shot type classes.

annotations is shown in Figure 10. The bustle classes depend on the presence of persons and vehicles, thus
object detections for these classes are used. While person detections give a coarse indication about the size
of the depicted persons, it is not clear which part of the person is visible. Human pose estimation and face
detection are used to complement this information. In detail, the process consists of the following steps.

Object detection. We run YOLOv4 CSP [140] (trained on MS COCO) over all the images,
considering all detections with a score ≤0.1 as no occurrence. From the remaining detections, those
with a score ≥0.5 are kept as reliable. Detections between these thresholds are considered uncertain,
and the images are excluded. From the detections, persons and vehicles (i.e., the classes bicycle, car,
motorcycle, airplane, bus, train, truck, boat) are kept. Based on the criteria defined in Table 18, the
bustle annotation is created. In addition, the tallest person is selected and output as annotation.
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Figure 10. Dataset creation process for bustle and shot type annotations.

Face detection. Face detection is performed using RetinaFace [142], with a model trained on
WIDER Face [143], on all images that contain person detections. Multiple faces may overlap the tallest
person, and it is not always straight forward to identify the correct one. We keep the face region with
the largest size of the intersecting area, weighted by the detection confidence, i.e. scf=(F∩P)cf , where
F is the face region, P is the person region and cf is the confidence reported by the face detector.

Human pose detection. We use the ROMP [144] human pose detector (trained on 3DPW [145]),
applied to a cropped out image of the tallest detected person (resp. the visible part of it). We obtain
a 2D skeleton (SMPL [149] with 54 points), of which we use 10 points (pelvis, left/right foot, head,
left/right hip, thorax, left/right knee, spine).

Person size estimation. In order to filter unreliable detections, we filter pose and face detections for
which max(wD,hD)≥τmin(wP ,hP ), where w and h denote width and height, D denotes the pose/face
detection bounding box and P denotes the person detection bounding box. τ is set to 0.1 for faces, and
0.6 for poses. If a reliable pose is found, we use it for person size estimation. We use the legs only if they
appear to be stretched, i.e. head and at least one foot are on different sides of a horizontal line through the
pelvis point, and the hip to feet distance is larger than the thorax to pelvis distance. If the legs are used,
we check if feet and hip are on different sides of the knee (at least for one leg), otherwise we ignore the
feet. If head to feet is visible, this determines the person size, otherwise we estimate the size of the part of
the body not considered reliable to get the overall size measurement. We use ratios of body proportions
from [150], a compact visualisation can be found on Wikipedia3. This is also done if only the face detection
is usable. If neither pose nor face are available, we use the person detection to determine long and extreme
long shots from the person height, if the person bounding box does not extend to the lower image border.

Augmentation for extreme close-up. As we found that extreme close-ups are rare in the dataset,
we augment it by sampling cropped images from all close-up shots. If the larger side of a face bounding
box is at least smin pixels, we determine a randomly sized bounding box with w∈ [smin,0.75wD] and
h∈ [smin,0.75hD], with smin=175.

Verification (validation split only). For verification, we import the set of images into the CVAT
annotation tool4. Each image’s bustle and shot type annotation is initialized from the automatic
annotation. A single annotator reviewed and corrected around 1,300 images. The accuracy of the

3https://en.wikipedia.org/wiki/Drawing
4https://github.com/openvinotoolkit/cvat

Final report on Multimedia Summarisation, Analysis and Production 67 of 322

https://en.wikipedia.org/wiki/Drawing
https://github.com/openvinotoolkit/cvat


automatically created annotations against the manually checked ones is provided in Table 21.
Data sampling. From the training set we randomly sample 100K images per class. For validation, we

sample 100 images per class from the manually corrected set (images used for the bustle and shot type tasks
may partly overlap which is not an issue since they are treated as independent classification problems).

The annotations for bustle and shot type as well as the code of the toolchain used to create it are
provided at https://github.com/wbailer/PeopleAtPlaces.

3.11.3. ToDY: Dataset for time of day and season

In order to build a dataset, we need a large scale outdoor dataset. We amend the Skyfinder dataset,
which is a subset of the Archive of Many Outdoor Scenes (AMOS) dataset [129], consisting of about 1,500
weather webcam images per camera from 53 webcams, each covering one or multiple years. The images
come with location (see Figure 11 left for a plot), date and time metadata, image timestamps (in UTC),
basic weather conditions and a number of derived attributes. We aim to label each of the images with time
of day and season based on the available metadata. The time of day classes and their definitions are listed
in Table 19, the season classes are the meteorological seasons [151], i.e., spring, summer, fall and winter.

As the location of the webcams from which the images were collected are known, as well as the dates
and times when the images were taken, we can derive the season from the date and the hemisphere, and we
can determine the time of the day based on the sun’s position. We calculate the sun’s elevation over/under
the horizon at the location and time of the image, using the PyEphem5 library. Note that this calculation
will assume a horizon in a flat landscape, not considering any mountains or buildings. We are aware of this
limitation, but still assume that the calculated position will be a useful approximation of the real situation.

There are multiple definitions of dusk and dawn, and we use the one for civil dusk/dawn [152], which
defines begin of dusk/end of dawn when the sun is 6◦ below the horizon. While the begin of sunrise/end of
sunset is clearly defined with the upper tip of the sun disk being just/still visible, there is not such a clear
definition of the end of sunrise/begin of sunset. As the visual effect of sunrise/sunset extends beyond the
point where the sun is fully visible, we chose to set this mark at the sun being 3◦ above the horizon. A visual-
ization of those definitions is shown in Figure 11 (right). In addition, it needs to be considered whether a lo-
cation is sufficiently far north/south, so that polar night or day occur, and thus no sunset/sunrise happens.

Based on this information, we derive season and time of day images for each image in the dataset.
However, we observe three main issues with the data: (i) noisy images, in particular during nighttime, (ii)
incomplete images (due to data loss when transmitting the image from the camera) and (iii) inaccurate
timestamps. In order to estimate the noise level, we use the mask for the sky region provided for the
Skyfinder dataset, as the sky region does hardly contain structures with strong gradients. We split the
image into 8×8 patches, and we calculate the standard deviation of all patches containing at least 80%
sky, and determine the noise level as the median of the standard deviations in these patches. In order
to handle incomplete images, we calculate a RGB histogram of the image, and remove all images where
one value covers more than 50% of the pixels of the image.

The time provided in the metadata should match the time stamp of the downloaded image file,
when corrected by the UTC offset. However, even with a tolerance of 15 minutes, this does not hold
for about 2/3 of the images. This is in particular a problem for classifying twilight, sunset and sunrise,
as this inaccuracy may change the correct class. As we cannot tell which of the two times is correct,
we decided to manually check the images. We import the set of images into the CVAT annotation tool6,
and initialize the time of day with the automatically determined value. About 10K images have been
manually checked and the annotations have been corrected when necessary.

The toolchain also supports augmentation of the data by cropping versions of the images with a
smaller portion of sky region. From the sky annotations of the dataset, a horizon line is determined

5https://rhodesmill.org/pyephem/
6https://github.com/openvinotoolkit/cvat
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Figure 11. Location of webcams in the Skyfinder dataset (left), visualization of the times of day used (right).

Class Definition
night night time
twilight before sunrise/after sunset, using the definition of civil twilight
sunrise sun above horizon, until fully above horizon
sunset sun above horizon, after being fully above horizon
fulldaylight sun completely above horizon
day day time, i.e. fulldaylight, sunrise or sunset

(not used as a separate class, can be derived from the other classes)
Table 19. Definition of time of day classes.

as the 0.9 quantile of lowest sky pixels in each column. Then images with the same aspect ratio as
the original image but different fractions of the height above this horizon line are sampled. As the
annotations are global, they are still valid for the modified images.

We split the resulting season and time of day annotations into balanced training and test sets. This
results in 2,790 training files and 311 validation files per class for season, and 986 training files and 110
validation files per class for time of day.

The annotations for time of day and season as well as the code of the toolchain used to create it
are provided at https://github.com/wbailer/ToDY.

3.11.4. Experimental Results

We use EfficientNet-B3 [153] as the baseline model for location type classification and as a common
backbone for all tasks (see Figure 9). EfficientNet is a family of DNNs that differ in terms of number of
parameters and performance. According to [153], the B3 variant provides a good tradeoff, and variants
with better performance will have a significantly higher number of parameters. We train the model
using the Pytorch Image Models framework (TIMM) [154], with a learning rate of 0.016 for 75 epochs.

To put the results of the model in relation to the state of the art, we compare the performance of
the model on the validation set of the Places365 dataset against MAE [155], iSQRT-COV-Net [130]
and RS-VGG16 [131]. However, all these methods have a significantly higher number of parameters
as EfficientNet-B3. Still, its performance is slightly better than that of RS-VGG16. The results are
summarized in Table 20. Throughout the paper, we use accuracy at rank 1 (acc@1) as the main metric.

The results for bustle and shot type classification are provided in Table 21. We compare the results of
the computationally quite demanding annotation toolchain with the classifier trained on the datasets. The
models are trained for 25 epochs (50 for shot type) with a learning rate of 0.016. For bustle classification,
we observe that the results obtained from the classifier are significantly worse than that obtained with the
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Method no. params acc@1 acc@5
MAE (ViT-H) [155] 632M 60.3 -
iSQRT-COV-Net [130] >26M 56.320 86.270
RS-VGG16 [131] 19M 51.680 82.040
EfficientNet-B3 12M 51.874 82.825

Table 20. Comparison on Places365 validation (365 classes).

Method bustle bustle0 bustle1 shot type
acc@1 acc@1 acc@1 acc@1 acc±1@1

Toolchain 81.020 95.892 95.538 56.726 70.604
E2E 66.337 84.158 81.683 50.715 67.437

Table 21. Performance for bustle and shot type. Toolchain refers to the toolchain in Section 3.11.2, E2E refers to an
end-to-end trained classifier.

Pretraining ToD acc@1 ToD+ acc@1 Season acc@1
none 63.918 20.000 28.310
ImageNet 52.577 66.182 84.225
Places365 54.639 69.818 86.197

Table 22. Top-1 accuracy for time of day and season classification using EfficientNetB3. The pretraining column specifies
the base model being used, ToD+ refers to the time of day annotations after manual revision.

detectors in the annotation process. To investigate this further, we introduce two binary variants of the
problem: bustle0 classifies class unpopulated against all others, and bustle1 classifies {unpopulated, few peo-
ple, few vehicles} against all others. It turns out that in these cases the performance of the classifier is closer
to that of the detector toolchain. Our interpretation is that the network can well discriminate the presence
of people or vehicles, but responds similarly for images with different count or size of objects, which makes
it more difficult to discriminate the intermediate classes. This means that if a binary bustle classification
is needed, this can be done efficiently with the classifier, while for the multi-class problem, the (compu-
tationally more expensive) detector-based approach used for dataset annotation provides better results.

For shot type classification, we observe that the results come closer to that of the annotation toolchain,
but still stay below. We observe that many of the wrongly classified shots are those in nearby classes
(e.g., medium shot vs. medium full shot). We thus add an evaluation metric for measuring classification
into the correct or an adjacent class, which we call acc±1@1. We can observe that the performance
of the annotation toolchain is in this case significantly higher, and additionally the gap between the
performance of the classifier and the toolchain is reduced. For practical cases in editing, shots with
similar types (which may be border cases) might already be a useful result.

The results for bustle and shot type classification are provided in Table 22. The models are trained
for 450 epochs for season and 1,000 epochs for time of day (stopping early if a performance ceiling is
reached) with a learning rate of 0.016. We compare the performance when training EfficientNet-B3 from
scratch and from models pretrained on ImageNet and Places365. We provide two results for time of
day: ToD refers to the automatically generated annotations, and ToD+ to the annotations after manual
corrections. Overall, the performance starting from a pretrained model is better than starting from
scratch, and pretraining on Places365 provides slightly better results than pretraining on ImageNet. We
assume this is due to the fact that Skyfinder images are more similar to images in many categories in
Places365 than to those in ImageNet. The results of 86% accuracy for season and almost 70% accuracy
for time of day show that the resulting classifiers are practically usable.
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3.11.5. Conclusion

We have proposed two datasets to address relevant classification tasks in visual media production and
archiving: one addressed bustle and shot type classification, the other season and time of day classification.
We provide toolchains for generating the additional annotations, as well as the datasets, which include
manually verified and corrected subsets. The datasets are useful for classifying these properties in images,
and the toolchains enable adding these annotations to other similar datasets with limited manual effort.
As a baseline, we provide experimental results using EfficientNet-B3 for the four tasks on the two datasets.

3.11.6. Relevance to AI4Media use cases and media industry applications

The two datasets and toolchain are useful for all media-related use cases where it is important to classify
the scene (shot type), how populated it is, and to which time of day or season it belongs.

3.11.7. Relevant Publications

• W. Bailer, H. Fassold, "People@Places and ToDY: Two Datasets for Scene Classification in Media
Production and Archiving", MultiMedia Modeling: 29th International Conference (MMM 2023),
Bergen.
Zenodo record: https://zenodo.org/records/7318045

3.11.8. Relevant software/datasets/other outcomes

• The two datasets are available on Zenodo at https://zenodo.org/records/8398916.
• The code of the toolchain used to create the datasets are provided at
https://github.com/wbailer/PeopleAtPlaces and https://github.com/wbailer/ToDY.

3.12. Deep Learning to detect objectification in films and visual media
Contributing partner: UCA

3.12.1. Introduction

In film gender studies, the concept of “male gaze” refers to the way the characters are portrayed on-screen
as objects of desire rather than subjects. In this article, we introduce a novel video-interpretation
task, to detect character objectification in films. The purpose is to reveal and quantify the usage of
complex temporal patterns operated in cinema to produce the cognitive perception of objectification.
We introduce the ObyGaze12 dataset, made of 1,914 movie clips densely annotated by experts for
objectification concepts identified in film studies and psychology. We evaluate recent vision models, show
the feasibility of the task and where the challenges remain with concept bottleneck models. Our new
dataset and code are made available to the community.

3.12.2. Methodology

In this section, we introduce the process that led to the creation of the ObyGaze12 dataset.

3.12.2.1. Definition of the objectification The first task was to define the objectification con-
struct. To do so, a structured thesaurus based on the literature on psychology and films studies has been
created. From this 5 sub-construct of objectification were identified resulting in 11 concepts spanning
3 modalities (vision, text and sound). The thesaurus is described in details in [156]. Figure 12 shows
how objectification is manifested in various ways.
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Figure 12. In modern film media, the unequal characterization of gender on screen frequently evokes concepts of
objectification, such as (A) unequal gaze (Pulp Fiction, 1994), (B) Nudity and submissive postures (Pulp Fiction, 1994),
(C) animalisation or infantilisation (Marley and Me, 2008), and (D) transparent clothing, camera framing, domestic
gender roles, and voyeurism (Gone Girl, 2014).

3.12.2.2. Annotation The annotation process consists in, at least, 2 experts densely annotating
12 movies: they manually delimit all the segments they find relevant for objectification, and label each
with a level of objectification. To allow for fine-grained data and model analysis, they also annotate
which objectification concepts are present.
Every selected movie is annotated by two experts for objectification level and concepts over the movie
scenes. Specifically, the annotators were asked to repeat a three-step process for every scene they deemed
interesting from an objectification perspective: (1) watch the movie entirely and when they identify a
scene worth annotating, (2) delimit the clip, and (3) assign an objectification level and annotate the
concept(s) involved in the objectification rating. We define four levels of objectification:

• Easy Negative (EN): no objectifying concept is present.
• Hard Negative (HN): one or some concepts are present, are annotated, but are deemed

insufficient to produce a perception of objectification.
• Not Sure (NS): objectification is perceived and concepts are annotated but the annotator

considers they do not sufficiently explain the perception of objectification.
• Sure (S): objectification is perceived and explained by the annotated concepts from the thesaurus.

3.12.2.3. Analysis of the data Here we comment on some interesting statistics of the resulting
annotations and concepts of the 1,914 clips originally delimited in the MovieGraphs dataset.

First, we verify data consistency by computing the inter-annotator agreement (IAA). Given the task
of annotating timespans, we choose the γ agreement measure introduced in [157]. It attributes a score
between 1 (complete agreement) and −∞. A value of γ≤0 indicates no agreement. Considering all four
categories EN, HN, NS, S, we obtain an average γ=0.42. Not considering the clips annotated Not Sure
(NS), which is the uncertain and “noisy” class in human annotations, the IAA increases to γ=0.69. This
shows the consistency of the obtained annotations despite the interpretive nature of the task. Second,
we analyze the obtained annotations in Fig 13. The Sure category is the least represented with 16%, the
Easy Negative being, as expected, the most represented class with 52% of clips. It is interesting to note
that every concept is approximately annotated with the same rate throughout the Hard Negative, Not
Sure and Sure levels of objectification. Finally, it is very interesting to observe that the average number
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Figure 13. Distribution of visual factors annotated for each level of objectification (HN = Hard negative, NS = Not sure,
S = Sure). The percentage of the dataset for each level of objectification as well as the average number of concepts per clip
are also shown. (Best viewed in colors)

Table 23. F1-score on the binary task of objectification detection for models trained with easy or with hard negatives and
tested on easy or all negative samples, with standard deviations.

Test EN vs. S (EN U HN) vs. S
Train EN vs. S HN vs. S EN vs. S HN vs. S

ViViT-B/16 0.53 (0.18) 0.62 (0.13) 0.54 (0.24) 0.73 (0.1)
X-CLIP 0.79 (0.05) 0.71 (0.05) 0.66 (0.05) 0.82 (0.03)
Random 0.54 0.55
All positive 0.08 0.06

PCBM-DT 0.68 0.44 0.58 0.38
PCBM-LR 0.64 0.43 0.50 0.37

of concepts annotated per clip increases with the level of objectification: 1.26 concepts on average per
Hard Negative clip, 1.71 for Not Sure, up to 2.6 for Sure. It gives an important insight into our video
interpretation data: that objectification is a compositional process.

3.12.3. Experimental Results

The experiments have two objectives: to verify that the new classification task is feasible, and to identify
the challenges of designing efficient models. To tackle these objectives, we consider pre-trained vision
models and specifically address the following research questions:

• Task accuracy – What are the baseline performances by pre-trained vision models on the
objectification detection task? How does the performance vary with hard negative examples?

• Concept representation – Can we implement interpretable models of objectification using
concepts? What is the quality of representation of every concept, and what are the objectification
concepts poorly captured by current models?

Task accuracy The setting of this experiment is described in detail in [156]. We report the F1-scores in
Table 23. We observe that the inclusion of Hard Negative examples improves the classification
results, showing the importance of a fine-grained annotation for highly-interpretive tasks. The best
results based on existing models are of moderate quality, which calls for more investigation into where
the difficulties lie.
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Concept Accuracy To infer on-screen objectification, it is key for the model to detect the means
of its production. The means of producing objectification through the eight concepts can be subtle to
detect, making it difficult to provide the final interpretation. To investigate this difficulty, we implement
Post-hoc Concept Bottleneck Models (PCBMs) [158], which allow us to approach a classification task
with pre-trained models in an interpretable way when concept-annotated data is available. In our
case, from the X-CLIP embedding space where our video clips are represented, we identify a Concept
Activation Vector (CAV) [159] for every concept. We then project the X-CLIP embedding of every
clip onto the subspace defined by the eight CAVs. The representation of the clip that is the output of
this bottleneck is a low-dimensional vector with number-of-concepts components. This vector can then
be fed to an interpretable classifier for the objectification detection task. A comprehensive description
is provided in our first paper [156]. However the conclusion is that the X-CLIP embedding related to
concepts Type of shot, Posture, Look and Appearance are harder to separate linearly.

3.12.4. Conclusion

This work has an explicit societal motivation in its purpose to tackle, with the help of AI, the analysis
of complex temporal patterns operated in cinema that produce the perception of certain characters
as objects. This is a challenging but valuable task that aims to uncover and quantify differences in
how various identities may be portrayed on screen. A distinctive element of our work is the subjective
judgement involved in annotating granular video elements for objectification. Video annotation is tedious,
and approaching data annotation for such an interpretive task in a rigorous way is even more so, and
difficult to scale. We therefore believe that pursuing high-quality, dense annotations with well-defined
concepts goes a long way to tackle this new video interpretation task, which represents a valuable new
challenge for the computer vision community.

3.12.5. Relevance to AI4Media use cases and media industry applications

This dataset and preliminary models can be used in use cases where one is concerned with investigating
the possible representational biases present in videos included in training data or used for any other
objective, such as illustrating a certain story.

3.12.6. Relevant Publications

• J.Tores, L.Sassatelli, H.Wu, C.Bergman, L.Andolfi, V.Ecrement, F.Precioso, T.Devars, M.Guaresi,
V.Julliard, S.Lecossais, "Visual Objectification in Films: Towards a New AI Task for Video
Interpretation", 2024 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Seattle.

3.12.7. Relevant software/datasets/other outcomes

The dataset and code are made available at https://github.com/husky-helen/ObyGaze12.
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4. Media content production

4.1. Overview
Task 5.2 (T5.2) “Media content production” of AI4Media investigated multiple aspects of automatic or
semi-automatic media content production, focusing on the creation, adaptation, and enhancement of media
content. The task examines both the pure synthesis of media content exploiting computational methods
such as Deep Generative Models as well as methodologies that help in the acquisition and streaming of such
content to end-user devices. Research activities in T5.2 cover a wide range of topics relevant to content
production, including cinematography planning, with emphasis on UAV media production, procedural
content generation and sound synthesis of musical instruments based on synthetic music sounds.

4.2. Photoconsistent and Trajectory Guided Novel-View Synthesis Tool for
UAV Cinematography Based on Autoregressive Transformers

Contributing partner: AUTH

4.2.1. Introduction

Novel view synthesis is the task of generating new images that render an object or scene from a different
viewpoint than the one given. It aims to create new views of a specific subject starting from a number
of pictures taken from known points of view. The fields of computer science research, vision research,
and artificial intelligence are involved in defining suitable approaches to the problem. The novel view
synthesis problem can be approached in two different ways: as a problem of image interpolation between
two known images or image extrapolation from one image or a subset of images. This work addresses the
problem of image extrapolation. The goal is to synthesize a target image with an arbitrary target camera
pose from given source images and their camera poses. These synthetic images can be very useful when
they come from a UAV, taking advantage of the fact that it is possible to pre-calculate the trajectories
that the camera has to execute, from a series of known UAV cinematography shot-types. Based on that
and on Autoregressive Transformers, an end-to-end tool is presented that achieves novel-view synthesis
from previously unvisited points of view for aerial cinematography robots.

The main contributions of this work are as follows:
• Trajectory guided novel-view synthesis from known, but not previously visited, viewpoints address-

ing the image extrapolation problem.
• An Open-Source end-to-end tool implemented in ROS for image generation from a known trajectory

and an initial image.
The whole framework has been implemented end-to-end using the ROS (Robot Operative System)

framework, [160], in such a way that it can be executed with real data.
This research work was conducted as part of a Junior Fellows Exchange programme between AUTH

and Centro Avanzado de Tecnologías Aeroespaciales CATEC. The exchange began on 18 May 2023 and
concluded on 14 July 2023

4.2.2. Methodology

The cinematographic aerial vehicle and its environment were simulated using the following tools; On
the one hand, the environment was simulated using the 3D computer graphics game engine Unreal
Engine 4.27. This allowed us to reduce the disparity with reality through its exceptional photorealistic
capabilities. On the other hand, to simulate the aerial robot and the mounted camera, from which
images of the environment were taken, AirSim [161], a cross-platform simulator designed for autonomous
systems research, was used.
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In order to generate the synthesized data and subsequently evaluate the tool, a trajectory generator
has been developed based on the UAV shot types ORBIT, FLYBY, and FLYOVER from [162]. To
produce the trajectories, the following simplifying assumptions have been made: the target is located
at a known position in world coordinates and remains stationary, meaning that its velocity is zero.

4.2.2.1. GeoGPT Transformer The main module of the developed software is the Autoregressive
transformer used to solve the image extrapolation task. For this purpose, an implementation based
on GeoGPT [163]. Taking as input the initial camera image of the AirSim UAV and the following N
positions and orientations of the trajectory being executed, GeoGPT will generate as output N novel
views of the target inside the simulated environment.

In this autoregressive transformer architecture, a modified self-attention block, has been added in
which the camera position is taken into account to generate the novel view. The architecture has been
trained with default parameters. However, the number of transformer layers has been decreased to 16
to achieve training speed-ups and memory consumption decrease. It has been experimentally verified
that this parameter change does not affect the tool performance in this specific task.

4.2.3. Experimental Results

In order to evaluate the performance of the tool, the lost visual consistency while generating novel views
had to be measured. Therefore, the spacing between viewpoints was used as the variable to be modified.
One image per second was taken at each position; therefore, the gap between positions was directly
related to the speed of the aircraft. In other words, the aim was to evaluate at what speed the simulated
aerial robot could take (or generate) images without losing visual consistency. In the experiments, the
number of novel views to be generated was set to 5.

A total dataset of around 4.000 images with all their associated poses in the World Coordinate
System (WCS) has been created at minimum speed, i.e. one image per second. The images have been
generated from pre-calculated trajectories around the central target of the environment. The model has
been trained on a workstation with 4 RTX1080 12 GB and 128 GB RAM for approximately 12 hours.

Regarding the metrics used to assess the consistency of the novel views, the same metrics will be used
as in the original GeoGPT work. Two metrics will be used: Learned Perceptual Image Patch Similarity
(LPIPS), [164] and PSNR. LPIPS measures the perceptual similarity in deep feature space, and PSNR
measures pixel-wise differences between two images. Therefore, a series of images with different gap sizes
between them has been generated to evaluate the tool’s performance.

Table 24. Metrics comparison based on viewpoints spacing

Gap 5 Gap 15 Gap 25 Gap 35

PSNR (↑) 23.05 21.84 18.51 17.32
LPIPS (↓) 1.8726 2.2412 2.7132 2.9870

Fig. 14 shows qualitatively the results obtained with each evaluated configuration. It is apparent that
the consistency of the images is good when the gap between camera shots is small, which is analogous to
the UAV moving at a very low speed. However, when the gap is around 25 positions between viewpoints,
it is observed how, from the second image, there begins to be a notable offset between the predictions
and the ground truth. Finally, in the most extreme case, which implies that the aircraft moves at high
speed, only the first generated image is consistent, with the rest having a considerable visual difference
from the ground truth. A metric-based comparison of the generated novel views compared to the AirSim
UAV camera shots in the simulated environment is provided in Table 24
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Figure 14. Comparison between prediction and ground truth with different gap length.

4.2.4. Conclusion

In this paper, we have presented an end-to-end tool for generating novel views from unvisited points
of view. Future improvements for the tool could include replacing GeoGPT with a diffusion model,
which would generate images even more consistently, especially in more photorealistic environments.
Additionally, a great improvement of this method could be to modify the utilized DNN architecture
training to include camera trajectory estimation. This could lead to an inference stage that would need
only an initial image and the desired shot type as input, and a synthetic video shot as its output.

4.2.5. Relevance to AI4Media use cases and media industry applications

This method is useful for UC3 (AI in Vision - High quality Video Production and Content Automation)
since it yields a methodology useful for automatic video prediction based on a desired UAV shot-type.
This could be immensely helpful for media organizations, since, a UAV pilot could record multiple low
FPS videos on the field to keep memory consumption minimal. Then, in the post-processing stage, using
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novel-view synthesis methods like the one presented, intermediate, novel frames can be generated to
achieve synthetic but natural-looking, higher-FPS, videos.

4.2.6. Relevant Publications

• Marco A. Montes-Grova, Vasileios Mygdalis, Francisco J. Pérez-Grau, Antidio Viguria and Ioannis
Pitas, "Photoconsistent and Trajectory Guided Novel-View Synthesis Tool for UAV Cinematog-
raphy Based on Autoregressive Transformer", 2024 IEEE International Workshop on Machine
Learning for Signal Processing (MLSP 2024)
Zenodo record: https://zenodo.org/records/8276584

4.2.7. Relevant software/datasets/other outcomes

The open-source implementation of the developed tool, implemented end-to-end using the ROS frame-
work, can be found in the following github repository: https://github.com/catec/nvs_trajectory_
guided_ros

4.3. Real-time object geopositioning from monocular target detection/tracking
for aerial cinematography

Contributing partner: AUTH

4.3.1. Introduction

Currently, aerial cinematography plays an important role in media production. In recent years, the
field of automated aerial cinematography has seen a significant increase in demand for real-time 3D
target geopositioning for motion and shot planning. Targets to be filmed can be e.g., cars or persons.
To this end, many of the existing cinematography plans require the use of complex sensors that need
to be equipped on the subject or rely on external motion systems. This work addresses this problem
by combining monocular visual target detection and tracking with a simple ground intersection model.

Inspired by [165], we have developed a complete Robot Operating System (ROS)-based software that
consists of 3 modules: a target detector, a tracker, and an auxiliary management module. Operationally,
the software works as follows: The management module handles input/output and triggers the target de-
tection and tracking modules. Given that there have been no previous target detections, the management
module provides images to the target detection module. This operation is repeated until there are output
target detections. If a target has been detected, the management module uses the detected ROI to instan-
tiate the tracking module. Unless a certain quality threshold is not achieved or a specific threshold of time
has been exceeded, the outputs of the software module are given by the tracker module. The tracker mod-
ule always provides two outputs, one bounding box prediction, and one tracking quality score [166]. The
acceptable quality threshold and the tracking time windows are the system’s hyperparameters, which can
be set before a filming mission. The management module takes into account the time and quality variables
and decides whether to re-employ the tracking module or ask for new detections from the detection module.

This research work was conducted as part of the Junior Fellows Exchange programme between AUTH
and Public University of Navarre (UPNA). The exchange began on 1 November 2022 and concluded
on 22 November 2022.

4.3.2. Methodology

4.3.2.1. 2D target detection Object detection is the task of identifying and localizing object
instances within an image, formulated as a combined classification and regression problem. Inspired
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by the whitened self-attention operation [167], we developed a transformer-based object (target) detector
that replaces the attention operation with a linear multiplication, by introducing auxiliary (pre-computed)
matrices that perform a transformation that highlights known or computed data properties, modeled
in graph structures. An example of a target detection using this software is shown in Figure 15.

Figure 15. Sample output of the proposed 2D detection and tracking software.

4.3.2.2. 2D target tracking In aerial cinematography, a big challenge is that the target also
disappears from the field of view quite often. In fact, according to Visual Object Tracking Challenge reports
[168], occlusions are the most common causes of tracking failure, hence they should be taken into account.

To address the above-mentioned challenge, we have opted for a two-fold approach. Since we only
focus on finding the correct analogy of the bounding box, we have selected the SiamFC siamese tracker
[169], which is very fast, and very good at maintaining and finding the correct scale of the bounding
box. Furthermore, inspired by [166], we have developed a framework that accounts for target occlusions
and estimates the tracking quality for each output bounding box.

4.3.2.3. 3D Object geopositioning Once the boundary box of the target has been identified
relative to the center of the camera, the distance is obtained from the height of the drone above ground
level (AGL) h, the angle of pitch of the camera θ, and the vertical angle between the rays that project
to the camera focal center and to the middle bottom of the boundary box.

4.3.3. Experimental Results

To test the model, a flight experiment was carried out with a heavy-lifting aerial cinematography
hexacopter in a safe open-field environment. The key hardware components of the hexacopter system were:

1. Flight controller: responsible for maintaining stable flight across the flight plan and sending
real-time telemetry data including GPS and attitude via ROS. The flight controller software is
based on Ardupilot software.

2. Positioning camera: responsible for real-time image capturing and sending them to the onboard
computer via ROS.

3. Onboard computer: Jetson AGX Xavier, responsible for receiving location, pose, and detection
images, synchronizing times, and performing detection and tracking. The detection location is
shared through ROS to coordinate aerial shots.
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The selected objects of interest are electrical towers for their fixed and equally spaced positions. They
also present features to guarantee the repeatability of the experiment. Nevertheless, this architecture is
suitable for detecting all categories included in the COCO 2017 [170] pre-trained model without further
training. The experiment conditions are listed below:

• Altitude: 30 m, constant Above-Ground-Level (AGL). Flight speed: 6 m/s.
• Parallel side-flight to the towers at a distance of 30 m.
• Number of towers flown for each pass: 4 towers.
• Camera mount angle: 15 º of pitch to the bottom.
• Diagonal Field-Of-View (FOV): 92 º. Sensor type: 3:2. Cw: 640 px. Ch: 480 px.
• Magnetic declination at location: +0.76666 º.
The estimated angular error and distance error for each target are summarized in Figures 16 and

17, respectively.

Figure 16. Angular error in estimation over hexacopter-to-target distance.

Figure 17. Hexacopter-to-target distance error estimation over actual distance to subjects.

The results demonstrate that distance and angular errors increase with distance to the target. This
trend is more pronounced for distances greater than 100 meters. While the estimated distance values are
well defined by the uncertainty model, errors are more significant than expected for long distances. This
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discrepancy is attributed to the implicit limitations of the flat terrain assumption used in the algorithm,
as the experimental location featured slight uphill inclinations causing an overestimation of the distance.

In some cases, it is also observed how the error tends to increase at distances below 60 meters. Since
the experiments were carried out parallel to the power line when the drone is about to pass a tower
(and thus the distance is minimum), the bottom of the tower falls out of the detection camera’s field
of view, but the algorithm is still able to detect it and track it. This produces inaccurate geopositioning
of the tower. In future works, we will consider identifying whether the detection of the tower may be
incomplete to improve this aspect.

Finally, Figure 18 presents the experimental position estimations for each target on the map. The
position estimation for targets when they are further than 120 meters from the hexacopter, displays
a higher error rate (red and orange dots). On the contrary, when the target is closer than the 120
meter-distance threshold, the approximation is reasonably good (yellow and green dots). This implies
that the algorithm is suitable for most types of shots discussed in the bibliography [162].

Figure 18. Object of interest actual coordinates and algorithm-generated coordinates comparison. Pins represent the
real-world positions of 4 aerial cinematography targets. Red and orange dots are erroneous positional estimations that
happen when the target is >120 meters away from the camera. Yellow and green dots are acceptable or accurate position
estimations that are produced with targets 80 to 120 meters away from the camera.

4.3.4. Conclusion

In this study, we have presented a real-time 3D position estimation algorithm for aerial cinematography
based on image detection and tracking. The uncertainty of the algorithm was evaluated based on
different variables, and the results were validated with experimental flight data. The results demonstrate
a reasonable level of accuracy, with the vast majority of measurements below 100 meters of distance
featuring an absolute error lower than 5 meters and 3 degrees of yaw. The algorithm’s main limitation is
using a flat-earth assumption for the ground model, which may be improved using an alternative ground
model that does not require iterative solving. Future work includes implementing this algorithm in an
automatic planning system for aerial cinematography shots.
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4.3.5. Relevance to AI4Media use cases and media industry applications

This method is useful for UC3 (AI in Vision - High quality Video Production and Content Automation)
since it yields a fast and automatic way for high-quality and accurate video production. By utilizing
UAVs paired with modern versions of well-researched computer vision algorithms (i.e., target detection
and tracking), fast and automatic high-accuracy cinematography can be achieved.

4.3.6. Relevant Publications

• D .Aláez, V. Mygdalis, J. Villadangos, and I. Pitas, "Real-Time Object Geopositioning from
Monocular Target Detection/Tracking for Aerial Cinematography", 2023 IEEE 25th International
Workshop on Multimedia Signal Processing (MMSP 2023)
Zenodo record: https://zenodo.org/records/8276584

4.3.7. Relevant software/datasets/other outcomes

Additional video comparison with a YOLOv5 [171] detector and flight experiment videos are provided
as supplementary material at https://youtu.be/NwakO8FnA5s and https://youtu.be/CJpHkhE2kSM.
This includes two videos featuring the 3D flight visualization with the detection overlay and a live
bounding box comparison of a standard YOLO detector and the DETR detector without tracking.

4.4. Forecasting in Multimedia
Contributing partner: UNIFI

4.4.1. Introduction

In this subsection, we discuss UNIFI’s contribution regarding forecasting quantities in media streams.
Predicting future events is a fundamental prerequisite to implement automated production pipelines.
Most of the work regarded the models for trajectory forecasts [172, 173, 174, 175]. While these models
are in general preferred since they are able to reach longer timeframes and higher accuracy, they are
also reliant on world reconstructions and accurate detection and tracking. UNIFI also worked in a more
challenging setting where only first-person view of scenes is available[176, 177]. Finally, considering the
central role of humans in media, UNIFI also studied progress in action recognition[178].

4.4.2. Methodology

4.4.2.1. SMEMO SMEMO is a new model with an end-to-end external working memory, which
we refer to as Social MEmory MOdule, capable of modeling agent interactions for trajectory prediction.
In SMEMO, the motion of each agent is processed into two streams, which we refer to as Egocentric
and Social. The former is dedicated to modeling relative displacements of an agent from one timestep
to another. This allows to understand how individual agents move, regardless of their actual position in
space. The latter instead, processes the absolute agent positions to obtain knowledge of where an agent is
with respect to the environment. This information is then stored into an external memory, shared across
agents. Our model therefore can learn to perform social reasoning by manipulating memory entries to
predict future positions for all agents in the scene.

In the Egocentric Stream, at each timestep t, past displacements ∆xit are observed for each agent
trajectory xi∈S. Each displacement is first processed by an encoder E∆ to obtain a projection δit into
a higher dimensional space. The temporal sequence of δit is then fed to a recurrent motion encoder ET ,
which generates a condensed feature representation τ it .
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In the Social Stream, past absolute positions xit are considered for each agent trajectory xi∈S. A
projection πit is obtained with an encoder EΠ. This yields a sequence of temporized descriptors, which
is directly fed to the Social Memory Module. This module acts as a recurrent neural network and
processes a sequence of input features in parallel for each agent. It generates a compact social descriptor
σit, summarizing social behaviors between all agents in the social context S up to the current timestep t.
The i superscript denotes a separate social descriptor for each agent, beyond the fact that all participate
in a common social context. This is necessary since agents interact differently with the others depending
on their position and movement.

The egocentric and social representations, τ it and σit, are finally concatenated and fed to a recurrent
motion decoder DT and the model autoregressively predicts future displacements ∆xit+1, for each agent,
with a decoder D∆. Each autoregressive step works as follows. E∆ and EΠ respectively process each
∆xi0:P and xi0:P independently, generating at each timestep the latent representations δit and πit, until
the present is reached.

For each timestep in the future, instead, δit and πit are replaced with a vector of zeros to allow the
autoregressive trajectory generation. The recurrent encoder ET and the Social Memory Module therefore
keep updating their internal state and new τ it and σit are generated for each instant in the future.

4.4.2.2. FLODCAST We design FLODCAST, a novel optical FLOw and Depth foreCASTing
network that anticipates both modalities at each future time step by observing the past ones.

FLODCAST takes a sequence X={X1,X2,...,XT} of T past observations composed of dense optical
flows and depth maps. In detail, each Xt encodes the input features for the image It in the past,
that are obtained by concatenating the optical flow OFt with the depth map Dt. In other words,
Xt=(OFt⊕Dt). We use a shared UNet to compute an intermediate representation Φt for each Xt.
XT−K,XT−K+1,...,XT are then forwarded into our ConvLSTM module to extract our future prediction
feature Ω that is used as an input for the two final branches. The model generates as output a sequence
X̂={X̂T+1,X̂T+2,...,X̂T+K}, that is a sequence of K future optical flows and K depth maps. We set
T=3 and K=3 in all our experiments.

Since optical flows and depth maps encode very different information about the scene, we add two sep-
arate heads after extracting features from the input in order to handle multimodal predictions. Therefore,
we feed in input a sequence of concatenated optical flows and depths {X1,X2,...,XT} to a single recurrent
ConvLSTM network, in which a UNet backbone is used to extract features at 64 channels for each input
Xt, t=1,...,T , so to output a tensor of size (H×W×64), where (H×W) is the input resolution. Our
feature extractor is the same UNet architecture as in [176], i.e. a fully convolutional encoder-decoder
network with skip connections, consisting of 5 layers with filters {64,128,256,512,1024} respectively.
These 64-channel features capture meaningful spatio-temporal contexts of the input representation. The
features are then passed to the two convolutional heads, which are end-to-end trained to simultaneously
generate the sequence of future optical flows and depth maps. Each head is a fully convolutional network
made of sequences of Conv2D+ReLUs with {32,16,8} filters.

Finally, we append at the end of the optical flow head a convolution operation with 2×K channels
and we use a tanh activation function, so to produce the (u,v) flow field values normalized in (−1,1).
Instead, after the depth head, we attach a convolution operation with a K channels and a sigmoid
activation in order to get depth maps normalized in (0,1). Instead of outputting one prediction at a
time as in prior work [176], we directly generate K flows and depth maps simultaneously, to make the
model faster compared to autoregressive models which would require looping over future steps.

To train FLODCAST we compute a linear transformation of the original input values, by rescaling
depth map values in [0,1] and optical flows in [−1,1] through a min-max normalization, with minimum
and maximum values computed over the training set.

We use the reverse Huber loss[179], called BerHu for two main reasons: (i) it has a good balance
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between the two L1 and L2 norms since it puts high weight towards values with a high residual, while
being sensitive for small errors; (ii) it is also proved to be more appropriate in case of heavy-tailed
distributions, that perfectly suits our depth distribution. BerHu minimizes the prediction error, through
either the L2 or L1 loss according to a specific threshold c calculated for each batch during the training
stage. Let x= ŷ−y be the difference between the prediction and the corresponding ground truth. This
loss B(x) is formally defined as:

B(x)=

 |x|, |x|≤|c|
x2+c2

2c , otherwise
(16)

Thus, we formulate our compound loss, using a linear combination of the optical flow loss Lflow and
the depth loss Ldepth (Eq. 17):

L=αLflow+βLdepth (17)

Specifically, we apply the reverse Huber loss to minimize both the optical flow and depth predictions,
using the same loss formulation, since the threshold c is computed for each modality, and that value
depends on the current batch data. Therefore, Lflow is the loss function for the optical flow computed as:

Lflow=
1

M

M∑
j=1

B(|OFj−ÔF j|) (18)

where M=B×R×2, since the flow field has (u,v) components over R image pixels and B is the batch
size, whereas OFj and ÔF j are the optical flows, respectively of the ground truth and the prediction
at the pixel j. Likewise, we do the same for the depth loss Ldepth:

Ldepth=
1

P

P∑
j=1

B(|Dj−D̂j|) (19)

where P=B×R, Dj and D̂j are the depth maps, respectively of the ground truth and the prediction at
the pixel j. We set c= 1

5maxj(|yj−ŷj|), i.e. the 20% of the maximum absolute error between predictions
and ground truth in the current batch over all pixels.

4.4.3. Experimental Results

4.4.3.1. SMEMO In Table25 we report results for SMEMO on Stanford Drone SDD for 20 futures in
terms of Final Displacement Error (FDE) and Average Displacement Error(ADE). On the SDD dataset,
SMEMO obtains state-of-the-art results, except for (FDE) at K=20, where it reports competitive results
with the top three performing methods.

4.4.3.2. FLODCAST We report depth forecasting results in Table 26. We exceed all the previous
methods at short-term and mid-term predictions. Specifically, we beat all the existing approaches at
short-term by a large margin for all the metrics, also reporting the highest inlier percentage. At mid-term
term we exceed all the state-of-the-art approaches, in terms of AbsRel and SqRel, including the recent
DeFNet (-42% and -8%), which employs both RGB frames and optical flows, even considering the
camera pose during the training.

4.4.4. Conclusion

We presented several methods to perform forecasting in multimedia content. The algorithmic nature of
SMEMO is able to learn the set of social rules yielding behaviors of pedestrians during their interaction.
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K=20
Method ADE FDE Method ADE FDE

Trajectron++ [180]* 19.30 32.70 MID [181] 9.73 15.32
SoPhie [182] 16.27 29.38 MANTRA [183] 8.96 17.76
EvolveGraph [184] 13.90 22.90 LB-EBM [185] 8.87 15.61
CF-VAE [186] 12.60 22.30 PCCSNet [187] 8.62 16.16
P2TIRL [188] 12.58 22.07 MemoNet [189] 8.56 12.66
Goal-GAN [190] 12.20 22.10 LeapFrog [191] 8.48 11.66
Expert-Goals [192] 10.49 13.21 Y-Net [193] 8.25 12.10
SimAug [194] 10.27 19.71 SMEMO 8.11 13.06
PECNet [195] 9.96 15.88

Table 25. Results on SDD. K is the number of predictions generated by the models.

We report state-of-the art results for SMEMO on ETH/UCY and SDD datasets. As a byproduct, we
show that SMEMO can provide explainable predictions by design, simply looking at attention weights
of its memory reading controllers.

Regarding FLODCAST, we shown the superiority of exploiting both optical flow and depth as input
data against single-modality models, showing that leveraging both modalities in input can improve
the forecasting capabilities for both flow and depth maps, especially at farther time horizons. More-
over, FLODCAST can be applied on the downstream task of segmentation forecasting, relying on a
mask-warping architecture.

4.4.5. Relevance to AI4Media use cases and media industry applications

This methods are useful for UC3 (AI in Vision - High quality Video Production and Content Automation)
since it yields a method to forecast trajectories of moving objects that can help UAV and other agents
in planning their own trajectory for automatic cinematography applications.

4.4.6. Relevant Publications

• Marchetti, Francesco, Federico Becattini, Lorenzo Seidenari, and Alberto Del Bimbo. "Smemo:
social memory for trajectory forecasting." IEEE Transactions on Pattern Analysis and Machine
Intelligence (2024).

• Marchetti, Francesco, Federico Becattini, Lorenzo Seidenari, and Alberto Del Bimbo. "Explainable
sparse attention for memory-based trajectory predictors." In European Conference on Computer
Vision, pp. 543-560. Cham: Springer Nature Switzerland, 2022.

• Ciamarra, Andrea, Federico Becattini, Lorenzo Seidenari, and Alberto Del Bimbo. "FLODCAST:
Flow and depth forecasting via multimodal recurrent architectures." Pattern Recognition(2024).

4.4.7. Relevant software/datasets/other outcomes

SMEMO AI4EU asset page: https://www.ai4europe.eu/research/ai-catalog/smemo-social-memory-trajectory-forecasting

4.5. 3D, 4D and other Modalities
Contributing partner: UNIFI
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Table 26. Quantitative results for depth forecasting after t+k on Cityscapes test set, both at short-term and mid-term
predictions, i.e. at k=5 and k=10 respectively.

Short term k=5

Lower is better ↓ Higher is better ↑

Method AbsRel SqRel RMSE RMSE-Log δ<1.25 δ<1.252 δ<1.253

Copy last 0.257 4.238 7.273 0.448 0.765 0.893 0.940

Qi et al. [196] 0.208 1.768 6.865 0.283 0.678 0.885 0.957
Hu et al. [197] 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Sun et al. [198] 0.227 3.800 6.910 0.414 0.801 0.913 0.950

Goddard et al. [199] 0.193 1.438 5.887 0.234 0.836 0.930 0.958
DeFNet [200] 0.174 1.296 5.857 0.233 0.793 0.931 0.973

FLODCAST w/o flow 0.084 1.081 5.536 0.196 0.920 0.963 0.980
FLODCAST 0.074 0.843 4.965 0.169 0.936 0.971 0.984

Mid term k=10

Lower is better ↓ Higher is better ↑

Method AbsRel SqRel RMSE RMSE-Log δ<1.25 δ<1.252 δ<1.253

Copy last 0.304 5.006 8.319 0.517 0.511 0.781 0.802

Qi et al. [196] 0.224 3.015 7.661 0.394 0.718 0.857 0.881
Hu et al. [197] 0.195 1.712 6.375 0.299 0.735 0.896 0.928
Sun et al. [198] 0.259 4.115 7.842 0.428 0.695 0.817 0.842

Goddard et al. [199] 0.211 2.478 7.266 0.357 0.724 0.853 0.882
DeFNet [200] 0.192 1.719 6.388 0.298 0.742 0.900 0.927

FLODCAST w/o flow 0.130 2.103 7.525 0.320 0.863 0.931 0.959
FLODCAST 0.112 1.593 6.638 0.231 0.891 0.947 0.969

4.5.1. Introduction

In this subsection, we discuss UNIFI’s contribution regarding learning representation for underused
modalities such as 3D static and dynamic streams and event data. In [201], Graph Neural Networks
have been used to upsample point cloud data. Two contribution regarded the study of emotions from
facial imagery with underused modalities. A novel 4D dataset was proposed in [202] and a neuromorphic
sensor was used to understand emotions from event data in [203].

4.5.1.1. Graph Neural Networks for PointClouds Our proposed method makes use of message
passing Graph Networks, different neighbourhood sampling techniques and Generative Adversarial
training.

We employed a Graph Neural Network for this task. More in detail, our architecture has been devel-
oped starting from [204]. The employed architecture works on unordered lists of x,y,z,t points, representing
the last n frames fused together, using two Graph Convolutional Neural Networks (GCNs from here on) in
an adversarial setting. The discriminator is based on [204], while the generator improves on the architec-
ture proposed in [204]. In particular, we used different neighbors sampling techniques that were developed
with the intent of collecting, for each point, features contemporaneously of its immediate neighborhood
and also from furthest vertices of the whole point cloud without making the computation too expensive.
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The fully convolutional nature of our generator network allows us to potentially train and test at
different input and output resolutions.

The basic module composing our generator network is made of the combination of Edge Convolu-
tion [205] and Graph Attention Networks (GAT) [206]. The Edge Convolution allows us to perform
message passing over a dynamic graph in which the edges are updated as the point cloud changes. The
GAT side is used to perform an attentional aggregation over the features collected from the dynamic
local neighbourhood, this in contrast with much more common choices for aggregation such as max or
average. We refer to this combination module as Edge Convolution with Attention.

The core of the generator side of the architecture is the Parallel Double Sampling (PDS) module
that performs two different graph convolutions using two different sets of sampled points. A simplified
illustration of this module is presented in Figure 19. For each point, two sets of operations are performed
in a parallel fashion. The first set, is a pipeline composed of:

• Radius filtering: For each vertex, a filtering step leaves as neighbors, with the capability of
passing messages, only those vertices that belong to a sphere of radius r, centered on the vertex.

• Furthest Point Subsampling: We use the Furthest Point Subsampling (FPS) algorithm in [204]
in order to sample temporarily, a fraction s of the original points that are the farthest away, inside
the radius, from a starting point.

• Convolution: Graph convolution is applied over the remaining vertices, independently of their
number, and their features are aggregated.

The second set of operations, performed in parallel to the first one, is composed of:
• K-NN: A fixed number of k closest vertices is selected as neighbors.
• Convolution: Graph convolution is applied over the vertices, and their aggregated features.

Ball Query
EdgeConv

KNN
EdgeConv

MLP

Parallel Double Sampling

Figure 19. Schematic representation of the proposed Parallel Double Sampling (PDS) module.

Finally, the two sets of features are concatenated and fed to a linear layer that maps 2×Channelsin→
Channelsout.

The developed architecture is composed of two Graph Convolutional Networks (GCNs) working in
an adversarial setting (GAN) [207]. It is illustrated in the bottom of Figure 20. Basically, the point
cloud given as input is processed as a graph using message passing based convolution.
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The discriminator is inspired by the PointNet++ architecture [204], since it also targets a classification
task. We use the same structure that progressively reduces the number of points using max-pooling
operations and finally a sequence of linear layers before the output as shown in the bottom part of Figure 20.

The generator side of the model is instead built as an initial sequence of Edge Convolution with
Attention modules followed by our Parallel Double Sampling (PDS) module. It is also inspired by
the PointNet++ architecture [204]. In the top part of Figure 20 a simplified visualization of the PDS
generator is presented. The generator is composed of multiple Graph Convolutions with Attention
followed by a single PDS. The intuition behind this choice is to collect various features for each node, using
different neighborhood sampling techniques. Once the original node has been enriched with the local
features, the PDS will use them to generate multiple new vertices according to the scale factor. Finally
this new vertices position is summed with the closest one that originated it, in a sort of residual fashion.

The generator loss Lg is composed of an adversarial component Ladv coming from the Discriminator,a
full reference reconstruction loss Lrec computed as the Chamfer Distance between the restored point
cloud and the original one and an additional Density Loss LD. We used the LSGAN from [208] loss
for our training, which assumes the form:

Ladv=min
G
L(G)=

1

2
Ez∼pz(z)

[
(D(G(z))−c)2

]
, (20)

for the generator, and:

min
D
L(D)=

1

2
Ex∼pdata(x)

[
(D(x)−b)2

]
+ (21)

+
1

2
Ez∼pz(z)

[
(D(G(z))−a)2

]
, (22)

for the discriminator.
The model is trained end-to-end using multiple losses. Beside the adversarial component Ladv, we

also compute the point-to-set distance (Chamfer distance) Lrec between the reconstructed point cloud
and the target one and, similarly to [209], we take into account the neighbourhood of each point. That
is, for each reconstructed point pr∈Pr, we find the closest point pt∈Pt in the target point cloud, and
compute both the distance between them and the difference in terms of local neighbors:

LCD(Pr,Pt)=
∑
r∈Pr

min
t∈Pt

||r−t||22+
∑
t∈Pt

min
r∈Pr

||r−t||22. (23)

We define a vertex p neighbourhood density D(p) as the normalized sum of its neighbours in a given
radius:

D(p∈P)= 1

Nmax

∑
n∈Ballp

1, (24)

LD(Pr,Pt)=
∑
r∈Pr

min
t∈Pt

||D(r)−D(t)||22+
∑
t∈Pt

min
r∈Pr

||D(r)−D(t)||22. (25)

The generator final loss is therefore given by:

Lrec=λ1LCD+λ2LD+λ3LAdv, (26)

where values for λi have been empirically determined (λ1=1.0,λ2=0.5,λ3=0.1).
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Figure 20. Schematic representation of the proposed GCN architecture. Top: Generator architecture; Bottom:
Discriminator architecture.

4.5.1.2. Florence 4D Faces We identified a key missing aspect in the current literature of 4D
face analysis, that is the ability of modeling complex, non-standard expressions and transitions between
them. Indeed, current models and datasets are limited to the case, where a facial expression is performed
assuming a neutral-apex-neutral transition. This does not hold in the real world, where people contin-
uously switch between one facial expression to another. These observations motivated us to generate
the proposed Florence 4D dataset, which is described in the following sections.

Florence 4D includes real and synthetic identities from different sources: (a) CoMA identities; (b)
high-resolution 3D face scans of real identities; (c) synthetic identities.

The CoMA dataset [210] is largely used for the analysis of dynamic facial expressions. An important
characteristic of this dataset that contributed to its large use is the fixed topology, according to which
all the scans have 5,023 vertices that are connected in a fixed way to form meshes with 9,976 triangular
facets. The dataset includes 12 real identities (5 females and 7 males).

On the Web, a large number of 3D models of synthetic facial characters, either females or males,
can be purchased or downloaded for free. Using these online resources, we were able to add 63 synthetic
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Figure 21. Plutchik’s wheel of emotions [9], illustrating expression relations.

identities (33 females and 30 males) to the data, selecting those that allow editing and redistribution
for non-commercial purposes. Subjects are split in three ethnic groups, Afro (16%), Asian (13%), and
Caucasian (71%). Because such identities are synthetic, the resulting meshes are defect free, and perfectly
symmetric, which is different from real faces. To make models more realistic, morphing solutions were
applied to include face asymmetries.

We acquired 3D scans of 20 subjects (5 females and 15 males) with a 3DmD HR scanner. Subjects
are mainly students and university personnel, 30 years old on average. Meshes have approximately 30k
vertices. Written consents were collected for these subjects for using their 3D face scans.

Combining together the identities from the three sources indicated above, we obtained an overall
number of 95 identities, 43 females and 52 males. Identities corresponding to synthetic 3D models and
3D scans of real subjects have different topology when compered with CoMA, and a variable number
of facets and vertices. Instead, one objective of our dataset was that of providing identities with the
same topology as the CoMA dataset (i.e, 5,023 vertices and 9,976 triangular facets). To this end, we
used a workflow that involved the joint use of the DAZ Studio [211] and R3DS Wrap 3 [212] software
to homogenize the correspondence of the identity meshes. All identities were converted into morphs of
the DAZ Studio’s Genesis 8 Female (G8-F) base mesh using the Wrap 3 software that allows one mesh
to be wrapped over another by selecting corresponding points of the two meshes. The wrapped meshes
were then associated with the G8-F mesh as morphs. At the end of the process, we got a G8-F mesh
with 95 morphs of different identities. After animating the facial expressions and before exporting the
sequence of meshes, we restored the animated G8-F to the original topology of the CoMA dataset.

With the basic Genesis 8 mesh, we also got a set of facial expressions, in the form of morphs that
we used for our dataset. The number of presets was expanded by downloading free and paid packages
from the DAZ Studio online shop and from other sites. The base set included 40 different expressions.
A paid package of 30 more expressions was added, obtaining a total of 70 different expressions. These
expressions were classified according to the Plutchik’s wheel of emotions [9], which is illustrated in
Figure 21. Following this organization of expressions, we generated a set of secondary expressions from
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the eight primary ones (for each primary expression, the number of expression per class is indicated):
anger, AR (6), fear, FR (6), sadness, SS (13), disgust, DT (9), surprise, SE (11), anticipation, AN (4),
trust, TT (6), joy, JY (15). Details are given in Table 27.

Table 27

Primary expression Expressions
Anger, AR (6) Angry1, Angry2, Fierce, Glare, Rage, Snarl
Fear, FR (6) Afraid, Ashamed, Fear, Scream, Terrified, Worried
Sadness, SS (13) Agony, Bereft, Ill, Mourning, Pain, Pouting, Pouty, Sad1, Sad2,

Serious, Tired1, Tired2, Upset
Disgust, DT (9) Arrogant, Bored, Contempt, Disgust, Displeased, Ignore, Irritated1,

Irritated2, Unimpressed
Surprise, SE (11) Awe, Confused, Ditzy, Drunk1, Frown, Hurt, Incredulous, Moody,

Shock, Surprised, Suspicious
Anticipation, AN (4) Cheeky, Concentrate, Confident, Cool
Trust, TT (6) Desire, Drunk2, Flirting, Hot, Kissy, Wink
Joy, JY (15) Amused, Dreamy, Excitement, Happy, Innocent, Laughing, Pleased,

Sarcastic, Silly, Smile1, Smile2, Smile3, Smile4, Triumph, Zen

In the dataset, we named the expressions with pairs of names representing the abbreviation of the
primary emotion and the facial expression represented, e.g., JY-smile or SE-incredulous. The Genesis 8
mesh also has 70 morphs of facial expressions available, in addition to 95 identity morphs.

Using the above expression classification, we generated the expression sequences of each identity by
iterating through the activation of the expression morphs for each identity morph. The dataset includes
two types of sequences for each identity: single expression and multiple expressions.

For each identity, the animation of each morph expression is generated as follows:
• Frame 0 - neutral expression (morph with weight 0);
• Random frame between 10 and 507 - expression climax (morph with weight 1);
• Frame 60 - neutral expression (morph with weight 0).

The meshes in a sequence are named with the name of the expression and the number of the corresponding
frame as a suffix (e.g., Smile_01. An example is shown in the top row of Figure 22.

For each identity, we created mesh sequences of transitions from a neutral expression to a first
expression (expr. 1), then from this expression to a second one (expr. 2), then back from the latter to
the neutral expression. Also in this case, the climax frames of the two expressions were randomized to
obtain greater variability (i.e., the apex frame for each expression can occur at different times of the
sequence). Summarizing, these sequences were created following this criterion:

• Frame 0 - neutral expression (morph expr. 1 weight 0);
• Random frame between 15 and 40 - morph expr. 1 with weight 1, and morph expr. 2 with weight 0;
• Random frame between 50 and frame 75 - morph expr. 1 with weight 0, and morph expr. 2 with

weight 1;
• Frame 90 - neutral expression (morph expr. 2 with weight 0).
Meshes in a sequence are named with the initials of the primary emotions to which the two expressions

involved in the animation belong to, followed by the name of the first and second expression plus a
numeric suffix for the frame (e.g., AN-AR_Confident_Glare_01. An example is shown in the bottom
row of Figure 22.

7With the randomization of the climax frame, we generated a greater variability in the speed of the transition from the
neutral to the climax expression and back to the neutral expression for each identity.
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Figure 22. Sample frames from a generated sequence: (top) the expression passes from neutral to apex and to neutral again;
(bottom) the expression passes from neutral to apex for expr. 1, then to apex for expr. 2, and finally to neutral again.

Table 28 reports a quick summary of the main characteristics of the Florence 4D released data. In
particular, we reported the number of identities (male and female), the number of vertices per mesh
(same topology for all models), the number of different expressions per identity, the number of sequences
that show a neutral-apex expression-neutral transition (6,650 in total); the number of sequences with
neutral-expr. 1-expr. 2-neutral transition. Note that, in this latter case, all the possible expression
combinations have been generated for a total of 198,550 sequences.

We also note the neutral-expr-neutral sequences include 60 frames each, with the apex intensity for
the expression occurring around frame 30; 90 frames are instead generated for the sequences with an
expression-to-expression transition, with the expr. 1 apex and the expr. 2 apex occurring around frame
30 and 60, respectively.

Table 28. Florence 4D expression dataset: summary of released data

#IDs (m/f) #vert #exprs. # n-exp-n/# f # n-exp1-exp2-n/# f
95 (52/43) 5,023 70 70*95 / 60 2090*95 / 90

Some examples of the generated sequences are illustrated in Figure 23. In the top row, the apex frames
of nine expression sequences (i.e., smile, wink, disgust, sad, angry, arrogant, fear, happy irritated) of a
male synthetic subject are illustrated. The second and third row compare frames of an angry expression
for a male and a female subject. The two bottom rows, instead, show the transitions happy-pain, and
confident-frown for a given subject.

4.5.1.3. NEFER: Neuromorphic Event-based Facial Expression Recognition The purpose of
NEFER is to capture genuine micro-expressions associated to specific emotions with both an event camera
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Figure 23. Examples frames from generated sequences: (top) apex frames of nine expression sequences for subject
DAZ_MCH20; (middle) angry expression for a male (DAZ_M_CH020) and a female (DAZ_F_CH073) subject;
(bottom) For subject DAZ_F_CH046 the transitions happy-pain, and confident-frown are shown.

and a standard RGB camera. We considered the 7 primary emotions defined by Ekman [213], namely
Disgust, Contempt, Happiness, Fear, Anger, Surprise and Sadness, since these have been identified as
independent from culture, history and personality and are performed in a similar way by everyone.

In order to obtain realistic and non-simulated expressions, we asked a set of volunteers to maintain
a neutral facial expression while watching a selection of videos. A reward has been offered to the
participants to encourage a proper behavior during the test (high-stakes situation). The volunteers that
took part in the creation of NEFER are both males and females of age ranging between 24 and 52 years,
for a total of 29 users.

We showed to each user 21 different videos, 3 for each of Ekman’s basic emotions. The videos have
been selected from online streaming platforms (e.g. YouTube). Each video was trimmed to the same
length of 7s to keep the recording sessions as short as possible so not to induce unwanted expressions due
to, for instance, boredom. This choice also simplifies training schemes with deep learning frameworks
which process data in mini-batches of the same size. The overall procedure for the data acquisition and
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Figure 24. Four samples from the NEFER dataset. First row: happiness; Second row: fear; third row: disgust; fourth row:
surprise. Subtle movements are almost invisible with RGB but are emphasized in event frames.

video selection was inspired by previously collected dataset from the state of the art [214, 215].
For the recording we used two capturing devices: a GOPRO Hero+ action camera, recording videos

at 60FPS and 1920 × 1080px resolution, and a Prophesee Evaluation Kit HD, recording event videos at a
resolution of 1280× 720px. The cameras have been mounted on a fixed recording rig in a room lit with nat-
ural light. We specifically avoided any presence of artificial light to avoid background noise that could alter
the event-based recordings. Users are also isolated from other people which could generate distractions.

Users have been asked to sit in front of the screen at approximately 60cm from the cameras. The
RGB and event streams have been programmatically synchronized in order to capture two videos of
the same duration and content. After viewing each video, we asked the volunteers to provide a personal
evaluation of the observed footage. In particular, we asked two questions: (i) select among the 7 basic
emotions, plus a "None" option, the most suitable one to describe the emotions stemmed from viewing
the video; (ii) the intensity, on a 1 to 5 scale, of such emotion. We used the collected answers to create
two alternative versions of the annotations, one considering the labeling of the user and one following
our a-priori video-emotion assignment. The two versions mostly differ in the fact that following user
labelings we have the additional neutral emotion and a slight unbalance in the sample distribution.
Overall, recording sessions lasted 18 minutes on average. Figure 24 shows a few samples from the dataset.

The wide range of off-the-shelf functionalities for RGB-based computation is not available for event-
based data. This includes modules that nowadays are common building blocks in computer vision pipelines
such as face detectors and landmark estimators. In addition, it is necessary to preprocess the raw data of
the neuromorphic sensor in order to use it with frame-based computational tools. Bridging this gap is not
trivial, since due to the asynchronous nature of the domain, the usual annotation process for many different
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Figure 25. Examples of detected faces and estimated landmarks on real event videos of NEFER. Better viewed in color on
a PC screen. Bounding boxes are shown in green, landmarks are shown in yellow.

tasks becomes cumbersome and expensive. Even generating relatively simple annotations such as facial
bounding boxes, which are reliably obtainable with RGB data, would require lots of manual annotation.

To provide additional annotations for event-based data we exploit RGB data and an event camera
simulator, ESIM [216]. Through the use of the ESIM simulator we convert the RGB videos into physically
accurate simulated event streams. We then run a face detector and facial landmark estimator on the
RGB frames, which is easily done with tools such as FaceAlignment [217]. We train a face detector
(Yolov2)[218] and a landmark estimator [217] on simulated data and test it on real event streams.
This approach provides satisfactory results on most frames, decimating the annotation time. The final
annotations are manually refined and validated using CVAT [219].

ESIM [216] is an event-based camera simulator that can generate a synthetic event-based stream from
its RGB video counterpart in a physically realistic way. The images are rendered by the simulator at
a high frame rate, interpolating pixel brightness along the camera trajectory using an adaptive sampling
technique, which adapts the frame rate based on a prediction of the previous signals. We feed to the
simulator all the RGB frames to generate a synthetic event-based version of each stream. In this way,
we are able to associate the bounding boxes provided by face alignment on RGB frames with event data.
The simulator-generated outputs are encoded using an exponential time surface [220]. Note the synthetic
event-based videos obtained from the RGB data are used only as a means for training models to quickly
collect annotations. These are not pixel-wise aligned with the real event streams and we do not treat
them as part of the final dataset, which only comprises real event data.

Using the synthetic data from the simulator, we generated an annotated dataset in the event spectrum
to train a face detector. First, we generated face annotation for RGB frames using FaceAlignment [217],
an open-source tool for face analysis8. We then bound the face labels with the corresponding synthetic
event frames obtained with ESIM. This allowed us to train a YOLOv2 [218] on the synthetic version
of NEFER. We found the detector to have good generalization capabilities from synthetic to real event
data, which yielded high-quality annotations at a slight cost of manual validation using CVAT [219].

The facial landmark detection is performed by an Xception [221] architecture trained on the synthetic
data from ESIM to regress the position of 68 landmarks of the face. Similarly to face detection, we obtained
the ground truth labels from the RGB videos by using FaceAlignment [217]. The Xception architecture is
composed of three stages, all of them employing depthwise separable convolutions along skip connections,
resulting in a faster convergence training [221]. The final linear layer outputs the 136 normalized
numbers representing the coordinates of the standard 68 facial landmarks. The model is optimized using
Adam with a learning rate of 8×10−4 for 10 epochs over 30K frame samples with the use of standard

8https://github.com/1adrianb/face-alignment
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augmentation techniques (random changes in brightness, contrast, rotation, translation, and crop).
We provide a simple baseline for the dataset. This baseline architecture is based on a 3D convolutional

network C3D [222]. It has been chosen as it has been a long-standing, simple, standard approach for
video-based action and activity recognition tasks[223, 224, 225, 222]. The C3D model is implemented
using 5 3D convolutional blocks, all with kernel size 3 and padding 1, followed by a 3D max-pooling
of size 2 and stride 2. This chain of sequential blocks reduces the input stacked sequence of images down
to a 72 channels feature map, which is then flattened and fed to two fully connected layers of size 512
and 64 before a final classification layer. ReLU activations are present between all layers.

We train the same model separately with RGB-frame-based data and with event data obtained by
converting events into frame-wise representations using Temporal Binary Representation (TBR) [226].
We detect the face using our pre-trained detector, and resize the bounding box to a 200 × 200px patch
before feeding it as input to the model.

Temporal Binary Representation [226] (TBR) is an aggregation strategy to map the asynchronous
events into a stream of synchronous frames that can be then processed by a standard computer vision
pipeline. Given a fixed ∆t we can build the binary representation bi of a pixel at (x,y) by checking for
an event in such a time interval, bix,y=1(x,y).

We can then collect N consecutive representations and stack them together as B∈RH×W×N forming
for each pixel a binary string [b0x,y,b

1
x,y,...,b

N
x,y].

This approach manages to create a frame processable by traditional Computer Vision algorithms
with a minimal memory footprint and by retaining temporal information within the value of each pixel.

For our experiments, we used this representation setting ∆t=15 milliseconds and N=8.

4.5.2. Experimental Results

4.5.2.1. Graph Neural Networks for PointClouds To measure the reconstruction quality we
applied the standard Chamfer Distance (CD), a point-to-set metric since following the same protocol
as reported in [227] that uses the CD as reconstruction metric for measuring the dissimilarity between
a point and a point set.

We compared our approach with respect to six state-of-the-art solutions in the literature for 4D
reconstruction from point cloud sequences, namely, PSGN 4D, ONet 4D, OFlow, LPDC, 4DCR, and
RFNet-4D. The PSGN 4D extends the PSGN approach [228] to predict a 4D point cloud, i.e., the point
cloud trajectory instead of a single point set. The ONet 4D network is an extension of ONet [229] to define
the occupancy field in the spatio-temporal domain by predicting occupancy values for points sample
in space and time. The OFlow network [230] assigns each 4D point an occupancy value and a motion
velocity vector and relies on the differential equation to calculate the trajectory. The LPDC [231] learned
a temporal evolution of the 3D human shape through spatially continuous transformation functions
among cross-frame occupancy fields. The 4DCR solution [232] used a compositional representation
that disentangles shape, initial state, and motion for a 3D object that deforms over a temporal interval.
Finally, RFNet-4D [227] jointly reconstructs objects and their motion flows from 4D point clouds.

Tables 29 and 30 report results for our solution and for the other methods as given in [227]. For
our method (last line in the tables) we used 3 frames for upscaling at 60fps with a scale factor of ×4
starting from low-resolution point clouds composed of 1024 vertices. For the unseen individual and seen
motion protocol in Table 29, our approach achieves the second best score. From Table 30, it can be
observed that our method reached a reconstruction error of similar magnitude with respect to the two
best performing methods, i.e., RFNet-4D and LPDC. It is worth noting that RFNet-4D obtained the
reported error using a larger number of input frames (i.e., 17 against 3 to 8 as used in our tests). It
was not possible to test the RFNet-4D with our setting because the code was not publicly available.

In Table 31, we report the inference time, in seconds, for various different configurations of our
model. All the measurements correspond to experiments executed on an Nvidia 2080Ti GPU. The
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Method Chamfer Distance x 10−3↓
PSGN-4D [228] 0.6877
ONet-4D [229] 0.7007
OFlow [230] 0.2741
4DCR [232] 0.2220
LPDC [231] 0.2188
RFNet-4D [227] 0.1594
Ours 0.1758

Table 29. Reconstruction accuracy for the unseen individuals and seen motions protocol. We report the Chamfer distance
(lower is better). Results for the best and second best performing methods are given in bold and underlined, respectively.
Our approach scored the second best accuracy.

Method Chamfer Distance x 10−3↓
PSGN-4D [228] 0.6189
ONet-4D [229] 0.5921
OFlow [230] 0.1773
4DCR [232] 0.1667
LPDC [231] 0.1526
RFNet-4D [227] 0.1504
Ours 0.1638

Table 30. Reconstruction accuracy for the seen individuals and unseen motions protocol. We report the Chamfer distance
(lower is better). Results for the best and second best performing methods are given in bold and underlined, respectively.
Our approach results in the third best performance.

values reported in the table evidence that our approach can open the way to real-time upscaling. As
reported in [227], their method used 17 inout frames to reconstruct an output frame, while our range
of frames is between 3 (for models using larger input point clouds) and 8 (for smaller inputs) due to
memory constraint at training time.

Method Input size Upscale × Inference time (s) ↓
Ours 1024 3 0.103
Ours 1024 2 0.089
Ours 512 4 0.046
Ours 512 2 0.039
Ours 256 8 0.034
Ours 256 4 0.030
Oflow[229] - - 0.95
LDPC[231] - - 0.44
RfNet4d[227] - - 0.24

Table 31. Inference time for different configurations of our model using a three-frames buffer. Every test was performed on
an Nvidia2080Ti. For the other models it must be noted that they used a 17 frame input sequence to output a frame.
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Table 32. Reconstruction error (mm) on expression-independent (left) and identity-independent (right) splits

Expression Split Identity Split
Method CoMA D3DFACS Florence 4D CoMA D3DFACS Florence 4D
PCA 0.76±0.73 0.42±0.44 0.70±0.81 0.80±0.73 0.56±0.56 0.16±0.17
DL3DMM [235] 0,86±0,80 0.73±1.15 0.83±1.03 0.89±0.79 1.15±1.50 0.17±0.18
Neural3DMM [233] 0.75±0.85 0.59±0.86 1.45±1.43 3.74±2.34 2.09±1.37 1.41±1.09
S2D-Dec 0.52±0.59 0.28±0.31 0.57±1.24 0.55±0.62 0.27±0.30 0.10±0.08

4.5.2.2. Florence 4D faces In the following, we report a baseline evaluation for the proposed dataset.
We are interested in assessing to what extent our dataset, composed of re-parameterized real scans and
totally synthetic sequences, compares to a reference dataset of real scans. We do this by evaluating the
task of landmark-based 3D model fitting. As reference datasets to compare with, we chose CoMA and
D3DFACS as they share the same mesh topology as Florence 4D, and are composed of 4D expression
sequences. They are also common benchmarks employed in other recent studies [233, 210]. For a consistent
comparison and fulfill our goal, given the way larger amount and variability of sequences included in
Florence 4D, we selected 1,222 sequences from it, corresponding to the 7 standard expressions, to make
it comparable in size and content to CoMA and D3DFACS. Following similar previous works [233, 234],
we performed experiments by splitting the data into train and test. To make sure they do not overlap, in
one case, we divided the data based on the identities (Identity Split), in the other, based on expressions
(Expression Split). In both the cases, we performed a 4-fold cross validation.

Since the main focus of Florence 4D is on expressions, we decided to exclude the problem of identity
reconstruction, to avoid ambiguities in the results. The goal is to fit a neutral (not average) 3D face
of a subject Sn ∈RN×3 to a target expressive face Se guided by a set of 3D landmarks Ze ∈R68×3.
For evaluation, we set up a baseline by first comparing against standard 3DMM-based fitting methods.
Similar to previous works [235, 236], we fit Sn to the set of target landmarks Ze using the 3DMM com-
ponents. Since the deformation is guided by the landmarks, we first retrieved the landmark coordinates
in the neutral face by indexing into the mesh, i.e., Zn=Sn(Iz), where Iz∈N68 are the indices of the
vertices that correspond to the landmarks. We then found the optimal deformation coefficients that
minimize the Euclidean error between the target landmarks Ze and the neutral ones Zn, and use the
coefficients to deform Sn. We experimented the standard PCA-based 3DMM and the DL-3DMM [235].
We also evaluated against recent deep models, including the Neural3DMM [233] and the very recent
S2D-Dec [234]. In order to use Neural3DMM as a fitting method, we used the modified architecture as
defined in [234], where the model was trained to generate an expressive mesh given its neutral counterpart
and the target landmarks Ze as input. The mean per-vertex Euclidean error between the reconstructed
meshes and their ground truth was used as measure, as in the majority of works [233, 237, 238, 210].

Table 32 reports the results. It can be noted that for the expression split, results are similar for all
the compared datasets. We argue this represents a piece of evidence that the synthetic expressions are
as difficult to reconstruct as the real ones, making them valid to be used in practice. Results for the
identity split are instead much lower for the proposed Florence 4D. Likely, the variability of synthetic
identities is lower than that of real ones, being obtained as a result of a generative software process.

4.5.2.3. NEFER: Neuromorphic Event-based Facial Expression Recognition We imple-
mented our C3D model using PyTorch and trained it using the Adam optimizer initialized at the default
learning rate value of 1×10−4 which is then reduced following the scheduling technique presented in [239]
with the annealing strategy. As a loss function, we adopt the Binary Cross-Entropy Loss, regularized
with weight decay.

We compare the performances of our model by training it separately first on the RGB videos and
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Data A-Priori Labels % Reported Labels %

RGB 14.60 - 14.37 -
TBR Event 22.95 +57.2% 30.95 +115.4%

Table 33. Absolute accuracy and relative performances of our baseline model over the different data domains and using
both labelling versions of NEFER.

then on the event streams, using both the self-reported user annotations and the a-priori expected one
as labels for the target emotion. We define a validation split by selecting 20% of the users at random
(thus keeping each user either in the training set or in the validation set to avoid unwanted biases), for
a total of 126 videos.

We found that the RGB model results in poor accuracy, obtaining an average of 14.37% using the
user labels and 14.60% using the expected ones. The event-based model instead showed much better
performances, reaching an accuracy of 22.95% with the user labels and 30.95% using the expected
ones. We report these experimental results in Table 33. This confirms that neuromorphic cameras are
well suited for analyzing faces and that event footage carries valuable information for identifying subtle
micro-expressions that are not easily detectable with RGB data.

Interestingly, we observed that our baseline model, just as the human a-priori assumptions, tends
to confuse classes that share similar expressions, such as fear with surprise or anger with contempt even
when trained on the self-reported emotions.

4.5.3. Conclusion

4.5.3.1. Graph Neural Networks for PointClouds We presented a fully convolutional graph-
based approach for time-varying point clouds upscaling using a novel and different approach with respect
to most of the state-of-the-art models. Our proposed method is comparable with state-of-the-art solutions
in terms of upsampling performance but it has a much lighter architecture that allows the implementation
on edge devices with limited computational capabilities.

As a future development this type of application could be implemented as an update for older LiDAR
devices or to allow faster 3D point cloud streaming by only transmitting/sampling a subset of the original
points.

While out method tackles the problem in a different way bringing some advantages it still has some
limitations and drawbacks:

• Training time and memory footprint. Not relying on an encoder-decoder model implies having the
whole point cloud at every stage of the network in memory, this slows down training and poses
some limitations in the number of input frames;

• Results for the reconstruction accuracy are comparable with those reported in the state-of-the-art,
though a bit lower.

4.5.3.2. Florence 4D Faces Florence 4D’s design and generation was guided by the goal of ad-
vancing the research in 4D facial analysis, with a particular focus on dynamic expressions. Compared
to current datasets, its unique characteristic is that of including sequences of complex, non-standard
expressions. Differently from the existing ones, Florence 4D also includes dynamic transitions across
expressions, extending the standard neutral-peak-neutral setting. All the sequences were generated with
randomized velocity for improved realism. The dataset is a combination of real and synthetic identities,
while the expressions are fully synthetic. An experimental validation highlights the little domain gap
with respect to real expressive scans, making it a valuable resource for real applications.
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4.5.3.3. NEFER: Neuromorphic Event-based Facial Expression Recognition We presented
a first release of NEFER, a dataset for expression recognition based on event camera data. This dataset
is composed of paired visual spectrum images and event camera streams. For every sequence of frames,
both the expected emotion and the self reported one by the user are given. Every frame has multiple
annotations, namely the user face bounding box and the respective facial landmarks that we collected
by leveraging models trained on synthetic data obtained using a simulator. Finally, we presented and
discussed a 3D convolutional baseline, trained on both version of our dataset, which achieved improved
results on event camera data with respect to the RGB frame based data.

4.5.4. Relevance to AI4Media use cases and media industry applications

This methods and datasets can be leveraged not just to analyze data from new media (3D, 4D, events)
but also to create new content and are therefore useful for 3C2-8 (Synthetic Video Generation from
Single Semantic Label Map).

4.5.5. Relevant Publications

• Berlincioni, Lorenzo, Luca Cultrera, Chiara Albisani, Lisa Cresti, Andrea Leonardo, Sara Picchioni,
Federico Becattini, and Alberto Del Bimbo. "Neuromorphic event-based facial expression recogni-
tion." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (2023).

• Principi, Filippo, Stefano Berretti, Claudio Ferrari, Naima Otberdout, Mohamed Daoudi, and
Alberto Del Bimbo. "The florence 4D facial expression dataset." In 2023 IEEE 17th International
Conference on Automatic Face and Gesture Recognition (FG), pp. 1-6. IEEE, 2023.

• Berlincioni, Lorenzo, Stefano Berretti, Marco Bertini, and Alberto Del Bimbo. "4DSR-GCN: 4D
Video Point Cloud Upsampling using Graph Convolutional Networks." In Proceedings of the 1st
International Workshop on Multimedia Content Generation and Evaluation: New Methods and
Practice, 2023.

4.5.6. Relevant software/datasets/other outcomes

• NEFER dataset: https://github.com/miccunifi/NEFER
• Florence 4D Facial Expression dataset: https://www.micc.unifi.it/resources/datasets/
florence-4d-facial-expression/

4.6. Image and Video Quality Enhancement
Contributing partner: UNIFI

4.6.1. Introduction

In this subsection, we discuss UNIFI’s contribution regarding evaluation and improvement of multimedia.
In [240] a multimodal approach was developed to turn captioning algorithms into full-reference and
no-reference image quality assessors. A GAN for Video enhancement based on keyframes was proposed
in [241].

4.6.2. Methodology

4.6.2.1. KeyFrame GAN Our architecture is based on U-Net [242] and it is composed of an
encoder, that processes the input so that it is smaller in terms of spatial dimensions but deeper in terms
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of the number of channels, and by a decoder, that inverts the process. Multi-scale reference features
are combined with the features of the degraded image in a progressive manner. This approach can make
the network learn coarse-to-fine details and is beneficial to the restoration process.
Our model takes 3 inputs:

• a degraded (i.e. highly compressed) image;
• a high-quality reference image (i.e. a video I-frame);
• a binary image that is white only in correspondence with the facial landmarks of the compressed

image.
The model produces a restored image from the compressed one.

We use a pre-trained VGG-19 [243] to extract multi-scale features from the degraded, reference and
landmarks binary images. The reference (guidance) image is previously warped to the degraded one
based on the facial landmarks using Moving Least Squares. We extract features at 4 different scales
from the layers relu_2_2, relu_3_4, relu_4_4 and conv_5_4 of the VGG-19.

To align the warped reference and degraded features we adopt AdaIN [244]. This helps reduce the
difference in style and illumination between the two images and thus improves the restoration. We
denote by Fd and Fg the degraded and guidance features. The AdaIN can be written as

Fg,a=σ(Fd)

(
Fg−µ(Fg)
σ(Fg)

)
+µ(Fd) (27)

where σ(·) and µ(·) represent the mean and the standard deviation.
After going through multiple dilated residual blocks, the degraded features are progressively upsam-

pled by enlarging the spatial resolution and reducing the number of channels. At the same time, they are
combined with the reference features by means of Adaptive Spatial Feature Fusion and Spatial Feature
Transform (SFT) [245] blocks.

The SFT block generates affine transformation parameters for spatial-wise feature modulation in-
corporating some prior condition. The scale α and the shift β parameters are learned from the features
outputted by the corresponding ASFF block. The output of the SFT block is formulated as

SFT=α⊙F r+β (28)

where ⊙ is the element-wise product and F r are the restored features, that is the features originated
from the degraded ones and restored in the decoding part of the architecture.

Following [246], we train the network to learn the residual image, so there is a skip connection
between the degraded image and the restored output. This choice reduces the overall training time and
improves its stability.

The fusion of the features of the reference and degraded images is a fundamental part of exemplar-
based approaches, as it allows to fully exploit the information supplied by the guidance image. Adopting
a concatenation-based approach, as in [247, 248], does not take full advantage of the reference features.

Thus, in our multi-scale architecture, we rely on multiple Adaptive Spatial Feature Fusion (ASFF)
blocks [249]. While the reference image generally contains more high-quality details, the degraded image
should have more weight in the reconstruction of the overall face components. For example, if the mouth
of the reference image is closed while that of the compressed image is open, the reconstruction of the
teeth should be mainly based on the restored features from the degraded image. For this reason, ASFF
blocks generate an attention mask based on the degraded image facial landmarks to guide the fusion
of the guidance and restored features.

For most guided face restoration methods, the performance is diminished by the pose and expression
difference between reference and degraded images because it introduces artifacts in the reconstruction
result. Thus, we spatially aligned the reference and compressed images with an image deformation
method based on Moving Least Squares (MLS) [250].
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Let p and q be respectively the sets of facial landmarks of the reference and degraded image, with |p|=
|q|=N . In our case,N=68. We aim to find a deformation function f to apply to all the points of the refer-
ence image. Given a point v in the image, we solve for the best affine transformation lv(x) that minimizes

N∑
i=1

wi|lv(pi)−qi|2 where wi=
1

|pi−v|2
(29)

Because the weights wi are dependent on the point of evaluation v we obtain a different transformation
lv(x) for each v. We define the deformation function f to be f(v)=lv(v).

Since lv(x) is an affine transformation we can rewrite it in terms of a linear transformation matrix M

lv(x)=(x−p∗)M+q∗ (30)

where p∗ and q∗ are weighted centroids

p∗=

∑N
i=1wipi∑N
i=1wi

q∗=

∑N
i=1wiqi∑N
i=1wi

Based on this insight, the least squares problem of eq. (29) can be rewritten as

N∑
i=1

wi|p̂iM−q̂i|2 (31)

where p̂i=pi−p∗ and q̂i=qi−q∗. The affine deformation that minimizes eq. (31) is

M=

(
N∑
i=1

p̂Ti wip̂i

)−1 N∑
j=1

wjp̂
T
j q̂j

With this closed-form solution for M, we can write a simple expression for the deformation function f

f(v)=(v−p∗)

(
N∑
i=1

p̂Ti wip̂i

)−1 N∑
j=1

wjp̂
T
j q̂j+q∗ (32)

Applying this deformation function to each point of the reference image lets to warp it according to the
facial landmarks of the degraded image.

4.6.2.2. LANBIQUE Classic Full-Reference image quality evaluation methods rely on the similarity
between an image which has been processed by some algorithm D and a reference undistorted image.
Considering the use case of image enhancement of an image that was compressed, GANs are a good solution
since they are great at filling in high frequency realistic details in image enhancement tasks; in this case the
resulting enhanced image is compared to the reference. Unfortunately, when using classical MSE based
Full-Reference metrics such as SSIM and PSNR GAN restored images yield lower performance, although
they appear as “natural" and pleasant to human evaluators. For this reason, in [251, 3] semantic tasks are
used to evaluate the quality of restored images. Measuring the performance of a semantic task such as
detection on restored images gives us an understanding of the “correctness" of output images. Given some
semantic task (e.g. object detection), a corresponding evaluation metric (e.g. mAP) and a dataset, the
evaluation protocol consists in measuring the variation of such metric on different versions of the original
image. Interestingly, this evaluation methodology gives hints on what details are better recovered by GANs.
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In certain cases, detection is a task describing scene semantics in a very approximate fashion; usually
detectors do not degrade for object classes that are clearly identifiable by their shape since even high
distortions in the image are not able to hide such features. The gain in image quality provided by GANs,
according to object detection based evaluation, resides in producing high quality textures for deformable
objects (e.g. cats, dogs, etc).

In this paper we advocate the use of a language generation task for evaluating image enhancement.
The idea is that captioning maps the semantics of images into a much finer and rich label space represented
by short sentences. To be able to obtain a correct caption from an image many details must be identifiable.

We devise the following evaluation protocol for image enhancement using reference captions. We
pick an image captioning algorithm A. Image captioning is the task of generating a sequence of words,
possibly grammatically and semantically correct, describing the image in detail. Given a set of reference
captions S and the caption generated from an input image A(I), we want to measure their similarity
with a language metric D:

LANBIQUE(D,A;I,S)=D(A(I),S) (33)

We look at the performance of a captioning algorithm A on different versions of a dataset (e.g. COCO):
compressed, original and restored. The pipeline of this evaluation approach is depicted in Figure 62.

In particular, we analyze results from two highly performing captioning methods [252, 4] which
combine a bottom-up model of visual entities and their attributes in the scene with a language decoding
pipeline. Both methods are trained over several steps incorporating semantic knowledge at different
levels of granularity. In particular, the bottom-up region generator is based on Faster R-CNN [253]
which is based on a feature extractor pre-trained on ImageNet [86] and then fine-tuned to predict object
entities and their attributes using the Visual Genome dataset [254]. In [252], further knowledge is
incorporated into the model by training the caption generation model using a first LSTM as a top-down
visual attention model and a second level LSTM as a language model. Meshed memory transformers [4]
share the exact same visual backbone as [252] but exploit a stack of memory-augmented visual encoding
layers and a stack of decoding layers to generate caption tokens.

No matter how captioning models are optimized, our results show that the behavior of the captioning
model for image quality assessment is consistent over several metrics as shown in Table 35.

Captioning is evaluated with several specialized metrics measuring the word-by-word overlap between
a generated sentence and the ground truth [255], in certain cases including the ordering of words [256],
considering n-grams and not just words [257, 258] and the semantic propositional content (SPICE
[259]). These metrics evaluate the similarity with respect to a set of reference captions S, that is usually
composed of five references.

Unfortunately, in most of the cases reference captions are not available as they often must be collected
with great expense of effort and resources; in fact, standard datasets used for image quality evaluation do
not include captions. However, it is possible to evaluate any kind of test image with our language based
approach by modifying the pipeline. The idea is that the reference image is enough high quality to provide
a valid caption for the evaluation of LANBIQUE. We caption the reference image IHQ using the same
captioner A we use for the test image I, then we maintain the same procedure we previously described:

LANBIQUE-NC(D,A;I,IHQ)=D(A(I),A(IHQ)) (34)

Since we change the evaluation pipeline with respect to the previous case, we argue that there may be
a drawback with respect to the original version of the approach. As a matter of fact, modern captioners
provide just one description per image and this means that the computation of D metric is done just
between two sentences. However, this does not affect the performance of our approach significantly,
provided that the A generates high quality captions.

In the following, we show how our approach can be extended to work in a No-Reference setting. In
many occasions we may not have a high quality image available to be compared with the one to be
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Table 34. Quantitative comparison between the proposed approach and other state-of-the-art methods for Constant Rate
Factor (CRF) 42 on DFD dataset. Best and second best results are in bold and underlined, respectively. ↑= higher values
are better, ↓= lower values are better.

Method PSNR ↑ SSIM ↑ LPIPS ↓ BRISQUE ↓ CONTRIQUE ↓ CONTRIQUE-FR ↓ VMAF ↑ VMAF-NEG ↑

GWAINet 22.25 0.608 0.129 24.18 50.16 20.79 44.65 36.60
HiFaceGAN 29.38 0.828 0.075 28.41 48.75 18.67 47.77 45.11
PSFR-GAN 29.68 0.833 0.057 29.07 46.87 16.46 48.55 46.22
GFP-GAN 27.51 0.822 0.081 34.17 50.84 23.01 57.55 48.51
GPEN 27.61 0.813 0.075 28.67 49.42 21.36 55.86 49.26
DFDNet 27.03 0.827 0.065 32.38 46.84 16.04 55.15 48.95
ASFFNet 28.29 0.834 0.062 29.67 46.27 17.48 51.74 46.84

Ours 26.19 0.779 0.037 27.41 44.95 13.16 56.87 54.20

tested. For this reason, we modify our language based pipeline by adding an additional blind restoration
module R. We assume that the images to be tested are corrupted by one or a combination of unknown
distortions that are responsible of a global reduction of the visual quality. In this extended model, our
aim is to restore corrupted input image I in order to use the enhanced version as the reference image.
After this operation is completed, we are able to feed both the corrupted image and the restored one
to the same captioning module, hence we generate their text descriptions and finally we calculate the
ultimate score based on some language metric D:

LANBIQUE-NR(D,A,R;I)=D(A(I),A(R(I))) (35)

Typically, image distortions are not known a priori so it may be a difficult task to train many networks
capable of handling all the possible combinations of corruption processes and then select the best one
for a specific restoration. For this reason, we choose to train a single network following a degradation
model, so that it can restore most types of distorted images and recover their original quality as best as
possible. In order to ensure a good output quality, we employed Real-ESRGAN [260] as the restoration
module. We have modified the original model by adding JPEG2000 in the training procedure, then we
have fine-tuned a pre-trained version of such network with the new introduced distortion.

In most of the cases, recovered images represent a solid reference for our evaluation model, as they are
very close to real images from the point of view of human perception. In this setup, our LANBIQUE-NR
assigns high scores to slightly distorted images, as their reconstruction is likely very perceptually close,
and the captions generated are pretty close. On the other hand, highly distorted images are transformed
into better quality data that differ significantly from input. In this case, the captions between the two
versions may differ much more, thus leading to lower scores of language metrics.

4.6.3. Experimental Results

4.6.3.1. Keyframe GAN

4.6.3.2. LANBIQUE In Table 35 we report results of LANBIQUE using various captioning metrics
D. Interestingly, all metrics show that captions over reconstructed images (REC rows) are better with
respect to caption computed over compressed images (JPEG rows). This shows that image details that
are compromised by the strong compression induce errors in the captioning algorithm. On the other
hand, the GAN approach is able to recover an image which is not only pleasant to the human eye but
recovers details which are also relevant to a semantic algorithm.

In Table 36 we report results on COCO for Full-Reference and No-Reference indexes. In this setup,
we compress the original images at different QFs and then we restore them with a QF specific artifact
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Table 35. Evaluation of image restoration over compression artifacts with GAN using LANBIQUE with different
captioning metrics (best results highlighted in bold). For each metric we denote higher(↑) or lower(↓) is better. JPEG q
indicates a JPEG compressed image with QF=q (e.g. 10), while (REC q) indicates the corresponding reconstruction
using [3]. Captions created from reconstructed images obtain a better score for every metric.

QUALITY BLEU_1↑ METEOR↑ ROUGE↑ CIDEr↑ SPICE↑
JPEG 10 0.589 0.173 0.427 0.496 0.103
REC 10 0.730 0.253 0.527 1.032 0.189
JPEG 20 0.709 0.241 0.513 0.937 0.174
REC 20 0.751 0.266 0.543 1.105 0.201
JPEG 30 0.740 0.258 0.535 1.054 0.194
REC 30 0.757 0.269 0.549 1.133 0.205
JPEG 40 0.748 0.263 0.542 1.087 0.200
REC 40 0.758 0.270 0.549 1.132 0.206
JPEG 60 0.755 0.267 0.546 1.117 0.204
REC 60 0.760 0.270 0.550 1.137 0.207
ORIGINAL 0.766 0.274 0.556 1.166 0.211

Table 36. Evaluation using No-Reference and Full-Reference metrics on MS-COCO. For each metric we denote higher(↑)
or lower(↓) is better. JPEG q indicates a JPEG compressed image with QF=q (e.g. 10), while (REC q) indicates the
corresponding reconstruction using [3]. NIQE and BRISQUE rate better GAN images than the ORIGINAL. SSIM always
rate restored images worse than compressed. PSNR shows negligible improvement. [4] and CIDEr have been used by
LANBIQUE-NC respectively as language model and language metric.

QUALITY NIQE↓ BRISQUE↓ PSNR ↑ SSIM↑ LPIPS↓ LANBIQUE-NC ↑
JPEG 10 6.689 52.67 25.45 0.721 0.305 0.542
REC 10 3.488 17.93 25.70 0.718 0.144 1.118
JPEG 20 5.183 43.99 27.46 0.796 0.187 0.956
REC 20 3.884 17.85 27.60 0.784 0.085 1.289
JPEG 30 4.474 37.72 28.61 0.831 0.134 1.165
REC 30 3.601 18.32 28.81 0.819 0.060 1.370
JPEG 40 4.011 33.61 29.41 0.852 0.105 1.260
REC 40 3.680 18.68 29.44 0.836 0.048 1.424
JPEG 60 3.588 28.15 30.71 0.880 0.067 1.366
REC 60 3.885 19.45 30.61 0.862 0.032 1.482
ORIGINAL 3.656 21.79 - - - -

removal GAN. We use the uncompressed image generated caption as ground truth. The results show
that, for restored images, PSNR accounts for a slight improvement while SSIM indexes lower than the
compressed counterparts. This is an expected outcome, as in [3] it is shown that state of the art results
on PSNR can be obtained only when MSE is optimized and on SSIM if the metric is optimized directly.
Nonetheless, GAN enhanced images are more pleasant to the human eye, therefore we should not rely
just on PSNR and SSIM for GAN restored images. LANBIQUE, using [4], is in line with LPIPS [261].

4.6.4. Conclusion

4.6.4.1. Keyframe GAN We have proposed a novel GAN-based method and a keyframe selection
system that improves the visual quality of videoconference videos enhancing the appearance of faces. A key
element of the system is the policy that updates a set of previous I-frames and exploits them to improve
the visual quality improvement process. The proposed approach improves over competing state-of-the-art
methods in terms of perceptual metrics and is rated much better in terms of fidelity by human evaluators.
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4.6.4.2. LANBIQUE We have proposed LANBIQUE, a new approach to evaluate image quality
using language models. Existing metrics based on the comparison of the restored image with an
undistorted version may give counter-intuitive results. On the other hand, the use of naturalness based
scores may in certain cases ranks restored images higher than original ones.

We show that instead of using signal based metrics, semantic computer vision tasks can be used to eval-
uate results of image enhancement methods. Our claim is that a fine grained semantic computer vision task
can be a great proxy for human level image judgement. Indeed we find out that employing algorithms map-
ping input images to a finer output label space, such as captioning, leads to more discriminative metrics.

4.6.5. Relevance to AI4Media use cases and media industry applications

These methods are useful for 3C2-9 - Management of contribution under bandwidth constraints.
Keyframe GAN can be useful for 3B2-1 (Video super resolution). LANBIQUE can be used to assess

the quality of restored content and to score existing content quality. Both methods provide a high degree
of automation for several multimedia production process in m

4.6.6. Relevant Publications

• Agnolucci, Lorenzo, Leonardo Galteri, Marco Bertini, and Alberto Del Bimbo. "Perceptual quality
improvement in videoconferencing using keyframes-based gan." IEEE Transactions on Multimedia
(2023)

• Galteri, Leonardo, Lorenzo Seidenari, Pietro Bongini, Marco Bertini, and Alberto Del Bimbo. "Lan-
bique: Language-based blind image quality evaluation." ACM Transactions on Multimedia (2022)

4.6.7. Relevant software/datasets/other outcomes

Source code: https://github.com/LorenzoAgnolucci/Keyframes-GAN

4.7. Expressive Piano Performance Rendering from symbolic data
Contributing partner: IRCAM

4.7.1. Introduction

The research presented in this section and in section 4.8 aims to develop innovative algorithms to generate
synthetic yet realistic musical sound mixes starting from musical scores present in a digital format.
First, this approach can be employed to generate music content in media or video games, and it can
also have artistic applications for music composers, by rendering previews of their compositions before
hiring musicians. Second, on top of the aforementioned artistic purposes, this approach is interesting for
producing large datasets of realistic musical mixes from symbolic annotations [262]. Such automatically
generated datasets of realistic mixes will be used to further train models for various Music Information
Retrieval (MIR) tasks, such as automatic transcription, instrument identification, tempo and down-beat
estimation, or key and mode recognition.

To this end, we propose in the current section a neural model for rendering expressive performances
of inputted piano music compositions. As a summary: the network applies changes in the input digital
music scores, in the symbolic domain, in order to get expressive performances as humans would play,
still in the symbolic domain. These changes are about: time, articulations and velocity of the notes. In
section 4.8, a differentiable piano synthesizer is presented, which generates realistic piano sounds from
symbolic performances.
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Performance rendering: Performance rendering is the task of imbuing a music score with expressive
features as if a musician performed the score in a way to bring out emotional qualities. To get an
expressive rendition of the music, performers have the liberty to shape sound parameters that are not
explicitly described by the written score [263]: for piano pieces, musicians make an interpretation of the
score by mainly reshaping the timing, articulation and nuance of the notes.

Previous works for the task used data-driven methods to predict performance features that enhance
the score note indications [264, 265, 263, 266]. More recently, Variational Auto-Encoders (VAE) condi-
tioned on score features have proven to be successful at modeling the diversity in performance expressivity,
as several renditions of the same piece are conceivable [267, 268, 269, 270]. The performance features are
defined as the difference in timing, articulation, and velocity of the played notes compared to the exact
rendition of the score [271]. However, obtaining such features requires the collection of MIDI (Musical
Instrument Digital Interface) performances with their associated digital scores and to align them at
note-level [272, 273]. These required matching and alignment steps limit the amount of data available for
training [274] and the application of the models to piano music, where performance MIDI data can be
collected more easily [275]. Also, most of these works are highly-informed as they take different markings
in the digital scores into account for guiding the expressive rendering, such as rests, beat information,
hand part, position in the measure, key and time signatures, articulation and ornament markings, slurs
or beams. This reliance on markings specific to the sheet music format hinders the usage of these models
in modern music production frameworks (Digital Audio Workstation, sequencers) where MIDI data are
directly manipulated without using such markings.

Concurrently, GANs have been successfully applied for various tasks transferring data from one
domain to another without aligned pairs, such as image-to-image translation [276], audio timbre matching
[277] or music genre transfer [278]. In the light of such results, this work attempts to address expressive
performance rendering as a domain transfer task, by transforming MIDI scores into human-like perfor-
mances without supervision on the performance features and reliance on score markings. To this end, an
adversarial approach is employed to map the outputs of a low-informed performance rendering model to
the distribution of human performances, without providing matching pairs of scores and performances.
Trained on publicly available datasets, the proposed method and its experiments are presented here,
including an early subjective evaluation.

The experiments show promising results for the method as it can infer expressive qualities into scores,
although not with the same amount of naturalness as in performances rendered by real pianists and
by a highly-informed supervised baseline.

4.7.2. Methodology

The proposed approach, illustrated in Figure 26, is composed of a performance rendering model G that
takes a score X as input and produces an expressive interpretation X̃. The rendered performances are
fed into a discriminator D, among performances Y from a dataset of recorded human performances.
The performance rendering model and the discriminator have opposed objectives, as the discriminator
D aims to differentiate the real performances from the ones rendered by the model G, while the latter
tries to produce performances indistinguishable from the real ones.

Data formatting: Both the scores X and real performances Y are encoded as sequences of N notes
with the minimal amount of features needed for describing them:

X={xn}n≤N={pn,on,dn,vn}n≤N . (36)

The notes are ordered by their absolute onset time: for the n-th note, pn is its normalized MIDI pitch,
on its delta-time with the previous note onset, or relative Inter-Onset-Interval (IOI), capped at 4 seconds,
dn its duration in absolute time and vn its normalized MIDI velocity.
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Figure 26. Training pipeline for the symbolic performance rendering model R: its final mix function modifies the score X
with modifying features output by the Note Decoder, in order to deceive the discriminators Di. During training, the
unaligned score X and performance Y are drawn at random from their respective sets.

Rendering model: The performance rendering model G predicts modifying features ∆X=G(X)
from the score note features in order to modify them into performance-like note features X̃ through
the mix function:

X̃=mix(X,G(X))

={pn,on+δon,dn×δdn,vn×δvn}n≤N ,
(37)

with δon the micro-onset timing, δdn the articulation and δvn the expressive velocity of the n-th score
note.

These modifying features are obtained by first processing the note-wise score features with a convolu-
tional Score Encoder. Then, the same hierarchical modeling from [267] is applied: the note-wise features
are merged into chord-wise features, which enables a more coherent modeling of the full sequence. This
note-to-chord operation, or N2C, is performed by average pooling the features of simultaneous notes into
a common chord-wise feature. The inverse operation C2N can later convert chord-wise features into note-
wise features by duplicating the chord feature for each of its notes. On the contrary of hierarchical strategies
employed in other works [269, 270], the note-to-chord alignment matrix required for N2C and C2N can
be directly extracted from our low-informed MIDI data representation, using the sequence of relative
IOI {on}n≤N . Further implementation details on the N2C and C2N operations can be found in [267].

Before returning to the note-granularity, the chord-wise features are further processed by a Chord
Decoder, which is a CRNN with a bidirectional GRU layer. Finally, fine-grained adjustments at note-level
are made with the Note Decoder and a skip connection from the note-wise score encoding. The final
micro-onset timing δon is obtained through a linear activation function, while the articulation δdn and
the expressive velocity δvn are mapped to [0.25,4] with a scaled sigmoid function.

Discriminator: Taking inspiration from speech processing using discriminators with a multi-scale
architecture [279], we use k = 3 discriminators Dk with identical architectures, mirrored from the
performance rendering model, with the exceptions of the N2C and C2N operations, as chords in real
performances are not as easily defined as in scores. Each discriminator is fed with a downsampled
sequence of (real or rendered) performance notes by average pooling with sizes {1,3,9}. Discriminators
with longer pool sizes look at features at higher levels in the performances and thus, can help transferring
such knowledge and long-term coherence to the performance rendering model G. To stabilize the GAN
training, Gaussian noise is added to the inputs of the discriminators, as in [278].
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Loss functions: The least-square variant of the GAN objective (LSGAN) is used to train the discrimina-
tors and the performance rendering model. Their respective loss functions LDk

and LG,gan are defined as:

LDk
= E
Y∼pperf

[∥Dk(Y )−1∥2]+ E
X∼pscore

[∥Dk(G(X))∥2],

LG,gan= E
X∼pscore

 ∑
k=1,2,3

∥Dk(G(X))−1∥2

. (38)

We have observed that the instability of the vanilla adversarial training may lead the performance
rendering model to displace the notes in extreme values, causing the original piece to be unrecognizable.
To ensure that the performances remain fairly close to their scores, an additional regularization term
Lscore is added:

Lscore(X)=λscore

∥∥∥G(X)−X
X

∥∥∥
2
, (39)

with λscore a fixed vector weighting how much each performance component (timing, articulation,
velocity) can deviate from the score indication. Here, λscore={1,1,0.1}.

The total loss for the performance rendering model G is:

LG(X)=λganLG,gan(X)+Lscore(X), (40)

with λgan the balance between the GAN objective and the score regularization loss. This balance is
decisive for the final behavior of G since the two loss components have opposite influences on its training:
Lscore refrains G from modifying the scores while LG,gan encourages exploring different interpretations
in order to deceive the discriminator. In our experiments, λgan=2.

4.7.3. Experimental Results

Datasets: The proposed approach was trained and evaluated using the scores from the ASAP dataset
[274] and all performances from the MAESTRO dataset (v3.0.0) [275], which are both publicly available.
The human performances from MAESTRO were recorded in MIDI format using Yamaha Disklaviers.
The ASAP dataset has notably matched a set of these performances with their original scores at note-level,
and has thus been used to some extent in previous performance rendering works [267]. However, since
the proposed method does not require aligned scores and performance, the entirety of both datasets
can be used, which amounts for 962 training performances, 137 validation performances, 107 training
scores, 15 validation scores and 35 test scores (following the train-validation-test split of [280]).

The velocity indications were kept from the ASAP scores in MIDI format, which can either be constant
throughout the piece or mapped from the score nuances and markings using simple rules. The scores and
performances are split into segments of 128 consecutive notes, with random pitch shifting during training
by ±7 semi-tones, as in [268]. Validation data is used to monitor and avoid potential over-fitting of the
performance rendering model by reproducing the training performances from their corresponding scores.

Subjective evaluation: A short listening test has been conducted to evaluate the interpretation
quality of the performances rendered by the model. 7 scores from the ASAP test subset were selected,
covering 5 different composers. 4 MIDI performances were generated by different methods for each score:

• Human is a corresponding human performance from the ASAP dataset.
• Deadpan is the direct export of the MIDI score.
• a rendition by our Proposed approach.
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Figure 27. Box-plot of the MOS (Opinion Mean Score) of the different performance rendering methods: piece-wise at the
left and overall at the right, with Holm-Bonferroni corrected two-sided Mann-Whitney U tests. The thickened bars indicate
the median values while the white triangles indicate the mean values. p-value annotation legend: ns for p>0.05; * for
p≤0.05; ** for p≤0.01; *** for p≤10−3 and **** for p≤10−4.

• a rendition from the graph-based variant of VirtuosoNet [270], a highly-informed model using
score markings in MusicXML format and is trained with a private dataset of 226 scores matched
and aligned with MAESTRO performances, which is larger than ASAP.

The first 20s of each performance were synthesized using the Arturia Piano V3 software9, a physical-based
piano synthesizer. 19 professional audio and piano players were asked to rate the naturalness of the
presented performances, using a 5-point Likert scale (from 1 - Bad, to 5 - Excellent). Each trial randomly
presented 3 different performances from each method. Results are reported in Figure 27.

The Holm-Bonferroni corrected two-sided Mann-Whitney U tests indicate a statistical difference
at α=0.05 between the Human rendition and each of the other methods, and between VirtuosoNet
and Deadpan. The overall results show that the proposed approach does enhance the scores with
expressive features in comparison to the raw rendition of the piece, but still not with the same amount
of naturalness as actual pianists and the highly-informed VirtuosoNet. This was to be expected as our
proposed unsupervised training task without score markings is harder than the training objectives of
VirtuosoNet, for about the same quantity of training data.

By examining the ratings piece-wise, one can notice the poorer renditions of the proposed method for
slower tracks (Schubert’s 13th Sonata and Beethoven’s 18th Sonata). This may suggest that the model
lacks an understanding of the global musical content of the scores and applies similar modifying features
for every track, which renders inappropriate performances for slower-paced compositions. However, we
have observed during preliminary experiments that some other configurations of the model (with different
loss weightings for instance) do not exhibit such an issue, but they render less realistic performances
overall than the presented configuration. Such sensibility to training hyper-parameters is typical of GAN
and we hope strengthening the score understanding of the model would reduce this instability.

9https://www.arturia.com/products/software-instruments/piano-v/overview

Final report on Multimedia Summarisation, Analysis and Production 110 of 322

https://www.arturia.com/products/software-instruments/piano-v/overview


4.7.4. Conclusion

In this section, we presented a neural model for rendering expressive performances of inputted piano
music compositions. The training is based on two MIDI file datasets for: raw scores (inexpressive) and
interpretations (expressive). Contrarily to other works about the same task, we use here a GAN approach,
which makes it possible to train the model without aligned pairs. In section 4.8, a differentiable piano
synthesizer is presented, which generates realistic piano sounds from symbolic performances.

4.7.5. Relevance to AI4Media use cases and media industry applications

• UC5-B (AI for Games: Music for games):
This method matches with the music sub-use case of UC5, for the music production of video games.
The showcase demonstrator of UC5, which gathered the demonstrators of the two sub-use cases,
also used the synthesized Piano sound from the DDSP-Piano module. Because of the lack of time,
we had not the opportunity to improve the expression rendition of the chosen music MIDI files
using the Expressive Performance Rendering, but this integration is feasible, and quite easy.

• UC6 (AI for Human Co-Creation):
This method also matches with UC6 which deals with music co-creation. For the integration of the
DDSP-Piano synthesizer, the UC6 demonstrator accepts MIDI files as inputs, and so it is possible to
insert this new module in the framework. For the same reason, this integration had not been realised.

4.7.6. Relevant Publications

• L. Renault, R. Mignot, and A. Roebel. "Expressive Piano Performance Rendering from Unpaired
Data." International Conference on Digital Audio Effects (DAFx23), Copenhagen, Denmark, Sept.
2023. https://doi.org/10.5281/zenodo.8386761.

4.7.7. Relevant software/datasets/other outcomes

Demonstration page: http://renault.gitlab-pages.ircam.fr/thesis-support/chap_5-2

4.8. Differentiable Piano Synthesizer
Contributing partner: IRCAM

4.8.1. Introduction

From expressive piano performances, stored in MIDI format, see section 4.7, the production of realistic
music recordings of piano needs a sound synthesizer. In deliverable D5.2 (section 3.8), the first version
of the Differentiable Piano synthesizer (DDSP-Piano-v1) was presented. In this section we present first
a summary of the previous model, then the last refinements of the architecture is detailed, and finally
we present a subjective evaluation of the produced sounds.

DDSP-Piano-v1: Our proposed approach tackles the task of piano sound synthesis from a symbolic
representation, by enhancing and adapting the DDSP framework (see [281]) to handle polyphonic MIDI
input and to reproduce particular properties of the piano sound, such as partials inharmonicity, partials
beating, and noise of the hammers, the keys and the pedals.

The full synthesis architecture is illustrated in Figure 28. It takes as input all the parameters that
a pianist has over the instrument, being the played notes (pitches and velocities), the pedal actions, and
the piano and room context. The synthesis is controlled by a neural network, and the audio signal is
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Figure 28. Synthesizer Architecture. The blue boxes represent the trained modules for the control of the synthesis. The
synthesis modules from DDSP are represented by yellow boxes (Additive, Filtered Noise, and Reverberation). Finally, the
Multi-Resolution Spectral Loss (MSS) compares the input target signal (bottom left) and the output synthesized sound
(bottom right).

computed by summing the outputs of a multiple monophonic additive synthesizer (for sine parts) and
a subtractive differentiable synthesizer (for stochastic components). Finally, the room reverberation is
produced by a learned impulse response. The role of each trainable sub-module of our architecture is:

• Z-Encoder: encodes specific information related to the piano model and environment,
• Note Release: extends the note duration to take into account of the natural note damping after

the key release,
• Inharmonicity Network: explicitely sets the inharmonic distribution of partials,
• Detuner: encodes data to reproduce natural partial beatings,
• Context Network: prepares context conditioning in order to take into account of the interaction

between notes (sympathetic resonnances e.g.),
• Monophonic Network: computes the synthesizer controls for individual notes,
• Reverberation Dictionnary: stores learned impulse responses.
The differentiable synthesizer layers (yellow boxes in Figure 28) convert the controls into audio

signals, in the spectral modeling paradigm [282]: the additive synthesizer generates the quasi-harmonic
components of a piano note by summing multiple sinusoidal signals, and the subtractive synthesizer
generates the noisy elements (hammer, key and pedal noises) by filtering white noise with filters computed
from the noise magnitudes as in [281]. Finally, the reverberation sub-module convolves the summed
signals with the learned impulse repsonse. The final audio output is compared to the ground-truth audio
with a Multi-Resolution Spectral loss (MSS), as in [283, 281].

4.8.2. Methodology

Section 4.8.1 summarized the first proposition of a DDSP-based piano audio synthesizer from MIDI.
It combines expressive neural network layers with explicit modules that embed modeling knowledge of
the instrument: this modular approach allows for tackling specificities of the piano sound in a targeted
manner. However, while the overall synthesis quality appears to be quite decent and surpasses a pure
neural benchmark, some individual modules did not converge as expected. This section will go over a few
proposed modifications to the model, addressing some of these concerns, along with early evaluation results.
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Figure 29. Full architecture of DDSP-Piano v2. The blue rounded boxes represent the trained modules for the control of
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The full architecture of the updated DDSP-Piano is illustrated in Figure 29, and the main changes
are summarized here.

Tuning Model: The most apparent issue with the first iteration of DDSP-Piano is its inability
to fine-tune the frequencies tuning parameters to the target pianos. The detuner is replaced by the
parametric tuning model of [284] that takes the explicit inharmonicity model into account for
modeling the tuning deviations from the equal temperament (known as the Railsback curve). Added
parameters are the per-piano reference notes {xpitchref,i }i≤I, bass asymptotes {βi}i≤I, and decrease slopes
{αi}i≤I of the parametric octave type model. Similarly for the inharmonicity model, the instrument-
specific modifiers {δi,bi}i≤I are removed in favor of instrument-specific bass and treble linear asymptotes
{αB,i}i≤I, {βB,i}i≤I, {αT,i}i≤I and {βT,i}i≤I.

Back to signal-based analysis: From the attempts at strengthening the neural estimation of the
frequency-related layers, we have concluded that the safest approach would be to first estimate the
frequencies of individual piano notes, then fit the tuning and inharmonicity models on those estimations,
rather than relying on matching through the audio modality. Thanks to the aligned MIDI data, we
first extract all MAESTRO audio segments where only a single note is being played. Then, the method
of [285] is used for the joint estimation of the notes f0 and inharmonicity coefficient. The method has
proven to be more efficient for such estimations than other contemporary approaches.

Sub-module refinements: Since the instrument-specific modifiers are removed, the Z-encoder is sim-
ply integrated into the Context Network. Its instrument embedding output is applied through a FiLM
(Feature-wise Linear Modulation) layer [286], which has notably found usages for global conditioning [287].
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Reverberation modeling: Another shortcoming of the first DDSP-Piano is its reverb module that
has learned unrealistic features for usual room reverberations. Therefore, the explicitly learned FIR
(Finite Impulse Response) are replaced by a differentiable FDN-based reverb (Feedback-Delay
Network) module, with implementation and default parameters taken from [288]. In the same manner
as spectral modeling for instrument sound synthesis, the FDN structure is motivated by modeling
knowledge of natural reverberations, achieving realistic reverb FIRs with fewer parameters. One can
refer to the works of [288, 289] for an in-depth explanation of the layer: notably, the early reflections
are still modeled by a short FIR filter while the late reverberation is modeled by the FDN structure.
The structural constraints inherent to the module should prevent it from learning unrealistic features
and help to achieve better behavior disentanglement between the DDSP components.

Revised Training Procedure: Compared to the initial training strategy, we no longer alternate
between two phases. Instead, the estimation of frequency-related parameters (from the parametric tuning
model) is supposed to be completely done in a first stage, then the neural layers parameters are optimized
afterward in a second stage. As for the neural optimization phase, since the reverb module was changed, the
loss function is simply reduced to the MSS loss between the target and synthesized signals. Other optimiza-
tion parameters remain unchanged (Adam learning rate, frame rate, segment duration, validation-based
early stopping), with the exception of the increased output length due to the audio sampling rate upgrade.

4.8.3. Experimental results

This section presents a perceptual evaluation of the first version of DDSP-Piano, summarized in
section 4.8.1. This evaluation was not presented in D5.2.

An objective evaluation of the refined DDSP-Piano-v2 architecture was performed and revealed
improvements over the initial version. However, it will require a proper perceptual evaluation like the one
performed for DDSP-Piano-v1, and we do not present this objective evaluation of DDSP-Piano-v2 here.

Baselines: The proposed DDSP-Piano-v1 model is evaluated against other piano sound synthesis meth-
ods. All samples synthesized with the following systems are also downsampled to 16kHz and converted
to mono. The commercial software Pianoteq 710 with the default preset NY Steinway D Classical
is used as the physical-modeling-based baseline. Results from the physical modeling of the instrument are
synthesized in real-time using modal synthesis [290]. For the wavetable synthesizer benchmark, perfor-
mances are obtained by stitching isolated note recordings from the YDP Grand Piano11 soundfont, using
the open-source software Fluidsynth12. Finally, Piano-TTS v1, the TTS-inspired model from [283] is
elected as the pure neural audio synthesis benchmark. Also trained on MAESTRO dataset, this model is
a modified Tacotron-2 acoustic model followed by a simplified Neural Source-Filter (NSF) vocoder model.
MIDI-filter-bank-based spectra are used as the intermediate representation between the two sub-models,
which has the advantage of being aligned with the input piano rolls in the frequency/pitch axis.

Default and Ablated models: The Default configuration of DDSP-Piano is also compared to 4
different variants of the proposed method:

• Deep Inharmonicity: this variant replaces the explicit inharmonicity model with a DNN. Hence,
instead of using the inharmonicity equation known from a physics study, the DNN has the goal
to learn it from the training data, without structural bias.

10https://www.modartt.com/pianoteq
11https://freepats.zenvoid.org/Piano/acoustic-grand-piano.html
12https://www.fluidsynth.org/
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Figure 30. Box plots of MOS for each system. The thickened bars indicate the median values while the white triangles
indicate the mean values. Two-sided Mann-Whitney U tests with Holm-Bonferroni correction were conducted on relevant
systems pairs at α=0.05. p-value annotation legend: ns for p>0.05; * for p≤0.05; ** for p≤0.01; *** for p≤10−3 and
**** for p≤10−4.

• Reduced Context: in this variant, the conditioning input X is removed from the context control
computation. Hence, the network has not the ability to learn interactions between notes.

• No fine-tuning: in default configuration, two different training phases are done alternatively:
the first used fixed values for the inharmonicity and the detuning, and the second refines these
values. In this variant, only the first phase is computed.

• 2009-only: the default configuration uses a joint training for the different pianos and environments
of the MAESTRO dataset (10 configurations for 199 hours). This variant is trained only with
recordings made in 2009 (20 hours of training data).

Evaluation Results: A listening test was conducted for gathering MOS (Mean Opinion Score) on
all systems under evaluation. Eleven performances were hand-picked from the test data, covering all
recording environments and with a diversity of composers, registers, and note densities. The first 9
seconds of the performances were synthesized with all systems. Listeners were asked to rate their overall
quality on a 5-point Likert scale, from “very annoying” to “real recording”. In each trial, 2 samples from
each of the 8 systems and 2 real recordings were randomly presented to the listener for rating. We
gathered 52 participants that are musicians or audio professionals: 14 among them have notions of piano
playing and 29 have been playing the instrument for several years. Box-plot and mean values of the
MOS ratings are reported in Figure 30, with statistical tests following the evaluation procedure of [283].

Comparing the ratings of the model against its ablations:
• The quality difference between the Deep Inharmonicity variant and the models including

the explicit inharmonicity model is confirmed perceptually. Only the Default-against-Deep
Inharmonicity hypothesis is not statistically significant, but the median and quartile values still
suggest a slight advantage in favor of the Default configuration.

• Ratings also confirm that the second training phase does not improve the perceived quality,
suggesting that the natural beating between simultaneous notes in harmony may be sufficient for
achieving realistic-sounding partial beatings during polyphonic performances.

• Reducing the context also does not significantly hinder the perceived quality of the DDSP-Piano
model. It can be deduced that other components of the approach can be improved before the lack
of note interaction limits the perceived quality.

• Single piano modeling is still perceived as good sounding as variants trained on several pianos
simultaneously, which raises the question of the minimum amount of training data required for
achieving such quality. Note that previous neural-based synthesis works did not report the model
quality when trained on a single environment of MAESTRO.
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As for comparisons with the other piano synthesis methods:
• All variants of DDSP-Piano have a significant difference over the neural-based Piano-TTS bench-

mark. Although this baseline is more versatile since it was developed for speech synthesis at
first, our approach is better suited for piano sound synthesis, achieving better sound quality with
significantly fewer training parameters.

• Only the physical-modeling-based method achieves sound quality comparable to the real recordings
(even slightly better, although not significantly, as also found by [283]). Various unwanted noises
and the recording quality of the real samples may have been perceived as slightly annoying
compared to the clean sounds synthesized by the Pianoteq software. The quality of the training
data represents the upper bound limit of neural-based synthesizers, thus our model can benefit
from cleaner audio recordings.

• Nonetheless, there is still a significant gap in the perceived quality between the synthesis offered
by the DDSP-Piano model and the real recordings.

• As it stands, all variants of our approach are not significantly different from the sampling-based
synthesizer in terms of overall quality ratings, although with less variability. Among all evaluated sys-
tems, the ratings given to the synthesis from Fluidsynth are the most scattered: this may suggest
that some listeners are more sensitive than others to an unrealistic feature in this synthesis algorithm.

4.8.4. Conclusion

In this work, the used framework follows the traditional music production workflow, where the two
developed modules (Expressive Performance Rendering, sec. 4.7 and DDSP-Piano, sec. 4.8) operate the two
transformations between the three entities: composition, interpretation and sound. From a given symbolic
composition (made by humans or possibly generated by AI), the first model learns how to interpret it
(in order to convey emotions as a musician does), and the second learns how to produce realistic sounds.

The neural synthesizer is informed by high-level physics knowledge (e.g. inharmonicity), and has struc-
tural constraints (e.g. sines+noise, FDN reverberation), making it lightweight and strongly interpretable.
One of the motivations of this approach is to get explainable, reliable, trustworthy, and sustainable models.

Moreover, contrarily to other approaches of generative AI which generate full music mixes from
textual prompts (see e.g. [291], or other commercial services), without other controls; in this work, by
splitting the process into different modules which mimic the traditional music production, each step of
the music creation is more controllable, which is a key point for AI assistants in music creation.

Finally, let us remark that the developed modules are differentiable, hence this work makes a differen-
tiable bridge between the symbolic composition and the produced sounds, and allows the implementation
of more complex neural architectures. For example, by using datasets made of raw composition scores
and final mixes recordings, possibly not paired. The target is the pursuit of research works for realistic,
lightweight, explainable and controllable generative models, and also for Music Information Retrieval
(MIR) tasks, such as automatic transcription, instrument identification, tempo and down-beat estimation.

4.8.5. Relevance to AI4Media use cases and media industry applications

• UC5-B (AI for Games: Music for games):
This module has been integrated into the showcase demonstrator of UC5, which gathered the
demonstrators of the two sub-use cases. After selecting relevant MIDI music piece, with suitable
mood and ambiances, the music score has been adapted for piano solely. Then, DDSP-Piano
synthesized the audio from modified MIDI files.

• UC6 (AI for Human Co-Creation):
This module has been integrated into the prototype of UC6. UC6 uses generative models to help
musicians to create new sounds. It has been adapted to optionally get MIDI files as input, instead
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of audio files. Finally, DDSP-Piano as been integrated to this use case, as a generative model, in
order to produce realistic piano sounds.

4.8.6. Relevant Publications

• L. Renault, R. Mignot, and A. Roebel. "Differentiable Piano Model for MIDI-to-Audio Perfor-
mance Synthesis." 25th International Conference on Digital Audio Effects (DAFx20in22), Vienna,
Austria, sept., 2022. https://doi.org/10.5281/zenodo.7092602.

• L. Renault, R. Mignot, and A. Roebel. "DDSP-Piano: A Neural Sound Synthesizer Informed
by Instrument Knowledge." Journal of the Audio Engineering Society, 71(9), 552-565, 2023.
https://doi.org/10.17743/jaes.2022.0102, https://zenodo.org/records/8386706.

4.8.7. Relevant software/datasets/other outcomes

Source codes and models:
• https://github.com/lrenault/ddsp-piano
• DDSP-Piano repository on the AIonDemand platform

Demonstration pages:
• http://renault.gitlab-pages.ircam.fr/thesis-support/chap_4-1
• http://renault.gitlab-pages.ircam.fr/thesis-support/chap_4-2
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5. Learning from scarce data

5.1. Overview
Despite their high accuracy, DNNs typically require a lot of high-quality data to be properly trained,
making their deployment difficult in cases where large domain-specific datasets are not readily available.
Of course, fully supervised learning is the hardest scenario, since all training examples have to be correctly
annotated. Task 5.3 (T5.3) “Learning with scarce data” aimed to advance the state-of-the-art in
methods attempting to facilitate DNN learning from multimedia content in the face of data scarcity.
Unsupervised domain adaptation, semi-supervised learning, few-shot learning, data augmentation and
unsupervised representation learning are approaches falling under this category, sharing a common
theme of reducing the need for massive, domain-specific, fully and manually annotated training datasets.
Methods of this type can increase the applicability of DNNs in real-world scenarios, with T5.3 also
partially relating to WP3; notably to transfer learning and learning to count tasks.

T5.3 encompasses a wide range of activities, resulting in a substantial number of research outcomes.
These are organized in the following subsections as follows: first, works that address data scarcity through
various learning approaches, followed by those that focus on utilizing representation learning for accurate
content retrieval.

5.2. Few-shot Object Detection as a Semi-supervised Learning Problem
Contributing partner: JR

5.2.1. Introduction

Most of the literature on few-shot learning focuses on n-way k-shot problems (i.e., problems with n classes
and k samples per shot) on predefined splits (i.e, for base and novel classes) of a dataset. However, in
many practical few-shot settings the concept of a dataset is fluid, and the available data will evolve over
time, with different classes annotated on different datasets. Gupta et al. [292] call this setting of having a
set of datasets, for which each has exhaustive annotations for only one or a small set of classes, a federated
dataset. In such a setting. it is likely that unannotated samples of a class exist in all but one subsets of
the dataset. Because of this fact, we argue that few-shot learning is essentially a semi-supervised learning
problem. However, it appears that this view on few-shot learning is underrepresented in literature.

We, therefore, analyse whether approaches from semi-supervised learning could be applied in few-shot
learning to address this issue of partial annotations on the dataset. While positive samples can be
appropriately selected, the risk is that unannotated instances are considered negative samples, and
thus penalize detection that may be correct. We select approaches for adjusting the loss and for using
predicted samples in the training data. We perform experiments under a range of different settings,
using a fine-tuning based few-shot learning framework.

Few-shot learning. Given the need to handle different numbers of samples and add set of classes
incrementally, metric or contrastive learning seems more appropriate than meta-learning type of ap-
proaches in this setting. Methods of interest are thus [293], which uses a feature pyramid network
(FPN) to create an object detection pipeline using metric learning. Classification is done differently for
pretrained classes, while few-shot learning is done with FPN (in the DCN variant) instead. [294] propose
to train a generic object detector on ImageNet, sampling positive and negative candidate regions. This
approach is suitable for generic object detection, beyond the originally trained classes. An approach
based on meta-features and learning re-weighting of those features is proposed in [295]. It has been
proposed to apply fine-tuning only to region proposal and classification layers on a data set consisting
of many base class and few new class samples while fixing the feature extraction part of the network,
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Figure 31. We address the issue of partial annotations in few-shot object detection in a two-stage fine-tuning (TFA)
framework. Base setup of the framework (left), extended with soft-sampling to reduce the impact of negative samples
caused by missing annotations (middle) and predicting additional annotations (right).

using Faster R-CNN as a backbone [296]. The two-stage fine-tuning approach proposed in [297] has
been shown to outperform meta-learning approaches. A recent survey [298] confirms that fine-tuning
approaches are a strong baseline for few-shot object detection tasks.

Semi-supervised learning. There are basically two types of approaches from semi-supervised
learning that are relevant for our work. One type deals with reducing the impact of potentially missing
annotations to be considered as negative samples, and thus influencing the gradient, when objects are
detected in this region. The authors of [299] propose an extension of focal loss [300]. Focal loss contains
a scaling factor that depends on the prediction confidence. A confidence threshold is introduced, and
the loss below this threshold is defined as the mirrored positive branch of focal loss. Two variants of
a soft-sampling loss are proposed in [301], using a Gompertz function [302]. One is based on overlap
between the annotation and detection, rapidly downweighting the gradient when the overlap gets small.
The other is applied when the detector is used to generate missing annotations, and weights the gradient
according to the detection confidence.

The other type of approaches uses the partly trained detector to create annotations on the part of the
data lacking ground truth for the particular class(es). A Siamese network for sparsely annotated object
detection is proposed in [303]. The network consists of two detectors with shared weights, which are
fed with an input image and and augmented version of the input image, respectively. From the detector
outputs, a set of pseudolabels is generated, and each detector uses the union of the ground truth labels
and the pseudo labels of the other detector for supervision. A student-teacher approach is proposed
in [304], where the student learns both from annotated data and from pseudo labels generated by the
teacher. The teacher model is updated from the student model using exponential moving average, and
box proposals are generated using FixMatch [305]. The approach uses separate loss terms for labeled
and unlabeled images, which are combined using a weighting factor.

5.2.2. Methodology

Given the good performance of fine-tuning approaches, and the potential to plug in other types of
detectors, we use [297] as the basis of our work. This work proposes a two-stage fine-tuning (TFA)
approach. A backbone model such as Faster R-CNN is trained on the base classes using a standard
training approach. Then the last layer of the model is extended to include the novel classes, and the new
weights are randomly initialized. Fine-tuning of the model is performed by training with a dataset formed
from k samples from each of the base classes, and the samples of the novel classes. Both the classification
and bounding box regression branches are trained using this balanced dataset, but the feature extraction
part of the model is not updated. In addition, the fine-tuning step uses a cosine similarity based classifier,
which results in improved accuracy for the novel classes and lower decrease for the base classes compared
to an FC-based classifier. As an alternative to randomly initializing the new weights, a separate training
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step for the last layer can be performed with the new classes, and the results can be used to initialize the
weights of the novel classes in the combined model. We have done this training step for the novel classes in
all our experiments. We integrated two approaches into our training pipeline: a soft-sampling function to
handle missing annotations, and the use of a predictor to generate additional annotations for the missing
classes. The experimental implementations of the approaches tested in this work are available at GitHub13.

Soft sampling. We modify the gradient calculation to account for cases where there is no or small
overlap with a ground truth bounding box. The ground truth bounding boxes provide hard positive
and negative samples, while other image regions cannot be considered negative samples in our setting,
as they may contain samples of classes not annotated on the particular share of the dataset.

The overlap based soft-sampling function from [301] is defined as

G(o)=a+(1−a)e−be
−co

, (41)

where o is the overlap (i.e., IoU of annotation and detection regions), a is the minimum weight (for o=0), b
determines the location of the decay along the overlap range, and c controls the growth rate. This function
provides a weighting factor for the gradient of the specific head (classification or regression of the network).

The implementation of the two-stage fine-tuning approach we use14 uses cross-entropy loss for
classification and smooth L1 loss for box regression. We implemented the weighting of the respective
gradient based on box overlap in both branches. In order to inject the weighting factor into the gradient
without modifying the actual output of the loss function, we use Pytorch backward tensor hooks. The
vector of weighting factors for a batch is prepared when the loss is determined, and registered with the
tensor hook. When the gradient calculation is performed on the tensor, the function registered with
the hook is called and the weighting factors can be applied.

Using predictions. Inspired by the approach in [304], we use a similar approach of using a previous
version of the detector as teacher, and train a student with a combination of ground truth annotations
and predictions. The teacher model is always based on a model trained on the base classes. One option
is to use the model trained for the novel classes only as a predictor for the novel classes. The second
option is to use the model obtained from fine-tuning with the annotated few-shot set. With the first
option, we actually use two teacher models, as we use the base model for the base classes (annotating
images containing only annotations for novel classes), while we use the initial model trained for the novel
set on images containing only annotations for the base classes. With the second option we have only
one teacher model, but we use only the respective subset of classes. We generally use a single confidence
threshold for the model outputs, which is rather low, as the model trained (or trained and fine-tuned) on
few samples of the novel classes reports rather low confidence scores for these classes. However, it would
be possible to apply different confidence scores for the predictions of base and novel classes. Note that
currently the modified loss from [304] is not included in our approach. The complexity of supporting
this loss comes from the fact that the original of each data sample needs to be traced, so that the loss
function can consider the specific pair of class and data origin to determine the loss.

5.2.3. Experimental Results

We use a 10-shot training problem in our experiments. We use the MS COCO dataset [306], in particular
seed 0 and a split of the classes into 60 base and 20 novel classes, both as defined in [297]. We use
the same parameters for novel model training and fine tuning as in their work, i.e., when we fine-tune
with 10 samples, we use the parameters from the 10-shot configuration, and when we fine-tune with
30 samples, we use those from the 30-shot configuration.

13https://github.com/wbailer/few-shot-object-detection/tree/semi-supervised
14https://github.com/ucbdrive/few-shot-object-detection

Final report on Multimedia Summarisation, Analysis and Production 120 of 322

https://github.com/wbailer/few-shot-object-detection/tree/semi-supervised
https://github.com/ucbdrive/few-shot-object-detection


Data share θ samples samples images
10-shot additional searched

predicted 20 0.09 1406 194 2410
predicted 20 0.11 1296 304 10010
predicted 30 0.09 0 2400 5500

Table 37. Number of samples from different shares of the data, and additional images needed.

We create four baselines to compare our results against. All baselines start from the same model
trained on 10 samples of the 20 novel classes, but use different approaches for fine-tuning. All baselines
use ground truth data only.

Lower baseline. This is the default 10-shot pipeline with two-stage fine-tuning as described in [297].
Lower baseline (any 10). As the diversity of samples seems to have influence, especially when

the number of samples is small, this baseline uses the same setting as the lower baseline, but selects
10 new samples for the fine-tuning stage for each class, instead of using the same that were used to train
the novel classifier. In practice, this means that such a setup will require 20 annotated samples for the
novel classes instead of 10.

Upper baseline. This baseline uses the subset for the 30-shot training task in [297] for fine-tuning.
This means, 30 new samples are used for fine-tuning, and it total this would require 40 annotated samples.

Upper baseline (fixed 10). Similar to the upper baseline, we use 30 samples for fine-tuning, but
10 of them are those used in training the novel classifier.

For soft-sampling, the training pipeline is only slightly modified from the original setting. We only use
the overlap-based soft-sampling loss in the fine-tuning stage. As proposed in [301], we set the parameters
of the overlap-based soft-sampling function as a=0.25,b=50,c=20.

When using additional predictions, we would ideally want to use the same share of the data as in
one of the baselines. However, we found in earlier experiments that a balanced number of samples is very
important in a few-shot setting, due to the small sample sizes involved. Thus it will often not be possible
to find a sufficient number of samples for a particular class in the share of the data used for baseline
experiments. We use the following strategy to gather the required samples: We start from the set of images
of the 10-shot fine-tuning set, i.e., including the annotated samples of all classes, both from the base and
novel sets. We run the detector for novel classes on the images with annotations for the base classes, and
vice versa. If less than the target number of samples have been obtained, we randomly sample additional
images and run the detector. This process is repeated until the target number of samples has been obtained.

Table 37 lists the statistics of the data shares that have been created. The number in the data share
(20, 30) specifies the target number of samples. If the number is 20, this means that the dataset is intended
to be compared to the upper baseline (fixed 10), and used in combination with the 10 samples used for
training the classifier, while 30 means that it is intended to be used alone, to be compared with the upper
baseline. The threshold θ is the confidence threshold, and predictions with a confidence ≥θ are used.

We test two detectors to generate the predictions for use in fine-tuning. The first is to use the
detector obtained from training the novel classes, while the second performs initial fine-tuning using
the 10-shot dataset with the samples as for training the novel classifier, and uses the resulting detector
to generate additional annotations.

The results of our experiments are summarised in Table 38. In the table, the soft-sampling column
indicates whether soft-sampling has been applied. The column data share indicates the dataset used
for the experiments, where GT means ground truth data has been used, and predicted refers to one
of the predicted datasets from Table 37 (for these experiments also the confidence threshold θ used for
creating the dataset is reported). For the ground truth datasets, the k-shot datasets refer to the subsets
created according to [297], while 10+20 refers to using the 10-shot subset, and sampling 20 additional
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soft- data fine-t. all novel
sampling share param. AP AP50 AP75 AP AP50 AP75

lower baseline no GT 10-shot 10 28.8003 44.3573 31.6091 6.7166 12.4130 6.4037
upper baseline no GT 30-shot 30 28.7469 44.5792 31.6566 12.2760 21.4859 12.4071
lower baseline (any 10) no GT any10 10 27.1242 41.2260 29.9908 6.8099 12.7262 6.3758
upper baseline (fixed 10) no GT 10+20 30 28.1997 43.9137 31.0884 10.8204 19.5422 10.7415
soft both GT 10shot 10 29.3976 45.8916 31.8329 7.6669 15.0144 6.7683
soft cl. class. GT 10shot 10 29.3745 45.8880 31.9559 7.8241 15.0659 7.1854
soft (any 10) both GT any10 10 28.7596 44.6806 31.2693 8.0540 15.5329 7.3533
pred. novel, θ=0.09 no predicted 20 30 22.7838 35.6272 25.0973 5.9141 10.5430 6.0409
pred. fine-tuned, θ=0.09 no predicted 20 30 22.5899 36.6769 24.7648 6.9385 13.9793 6.5406

Table 38. Results for baselines, soft-sampling and prediction experiments. Average precision (AP) for IoU 50% and 75%
as well as average AP are provided for all and novel classes.

samples from the ground truth set, and any10 refers to 10 randomly sampled ground truth items. The
fine-tuned parameters column specifies which hyperparameters are used during fine-tuning. We use the
parameters for the 10 and 30 shot settings as proposed in [297].

We can make the following observations from the results. From the baseline experiments, we observe
that as expected using more samples in fine-tuning improves results for the novel classes, while the overall
results are very similar. Using different samples for fine-tuning than for the initial training provides
almost identical results for 10 samples, while using 30 new samples provides a larger improvement for
novel classes than adding only 20 samples to the 10 used before.

Using soft-sampling provides small but consistent improvements over the baseline, both for novel classes
and overall. The results with 10 new samples are slightly better than those using the same samples for the
novel classes. We also compared using the soft-sampling function in both heads and in the classification
head only. Using it in classification only provides a small improvement over using it in both heads.

When using the predictions, the results using the novel classifier do not outperform the baseline.
However, using the predictions after initial fine-tuning results in a small improvement for the novel
classes, but at the cost of reducing the overall performance.

5.2.4. Relevance to AI4Media use cases and media industry applications

Few-shot object detection is useful in order to extend object detection capabilities in sourcing (e.g.,
annotation of feeds of raw material) or archiving with specific object classes of interest for a particular
organization or production context. If the object class of interest is not covered by a publicly available
dataset (or license conditions do not permit the use of such a dataset), the labeling of a large amount
of training samples is typically not feasible. Few-shot object detection enables training with an amount
of samples that can be labeled by a single user with acceptable effort. While the resulting classifier is
likely to achieve lower performance than one trained on a thousands of samples, it may still provide
detection of otherwise uncovered classes. In addition, detection results (possibly in combination with
object tracking) can be used for retraining a classifier on a larger set.

5.2.5. Relevant Publications

• W. Bailer, H. Fassold, "Few-shot Object Detection as a Semi-supervised Learning Problem", Pro-
ceedings of the 19th International Conference on Content-based Multimedia Indexing (CBMI), 2022.
Zenodo record: https://zenodo.org/records/7037584

• W. Bailer, M. Dogariu, B. Ionescu, H. Fassold, "Few-Shot Object Detection as a Service: Facil-
itating Training and Deployment for Domain Experts", Proceedings of the 19th International
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Conference on Multimedia Modeling (MM), 2024.
Zenodo record: https://zenodo.org/records/10636415

5.2.6. Relevant software/datasets/other outcomes

The code for the framework is available at https://github.com/wbailer/few-shot-object-detection

5.3. Bioinspired learning approaches to data scarcity
Contributing partner: CNR

5.3.1. Introduction

Today’s neural networks are generally trained using Stochastic Gradient Descent (SGD) with the error
backpropagation algorithm (backprop), which reaches high accuracy when a large number of labeled
samples are available for training. However, gathering labeled samples is expensive, requires a significant
amount of human work, and, in many applications, a large amount of training data is simply not available.

Researchers started to investigate strategies for sample efficient learning [307, 308, 309, 310, 311, 312,
313]. In this setting, only a small number of labeled samples is assumed to be available. On the other hand,
gathering unlabeled samples is relatively simple; therefore, these approaches exploit unlabeled samples
to perform unsupervised training in addition to the supervised training process, leading to the so called
semi-supervised learning technique. It is well known that unsupervised pre-training helps initializing
the network weights in the neighborhood of a good local optimum [307, 308], thus easing convergence
in a successive supervised fine-tuning phase. Current semi-supervised approaches leverage autoencoder
architectures for the unsupervised part of the task [310, 311, 312], although they are still based on backprop.
Another approach, SimCLR [313], exploits data augmentation and an unsupervised contrastive criterion.

We addressed the sample efficiency issue by developing a semi-supervised learning approach, where an
initial unsupervised learning step, using all available data – unlabeled and labeled (but without using label
information) –, is followed by a supervised learning step using a small amount of labeled data. To perform
the unsupervised learning step we explore the use of the Hebbian learning paradigm, which mimics
more closely the synaptic adaptation mechanisms found in biological brains, according to neuroscientists.
Hebbian learning is a local learning rule [314, 315], i.e. it does not require error backpropagation, and it
does not require supervision. Moreover, the capabilities of biological brains to learn and generalize only
from a limited number of labeled samples make this approach appealing for the sample efficient learning
setting. Note also that backprop-based approaches are considered to be biologically implausible [316].

5.3.2. Methodology

Despite their promising results, current Hebbian learning solutions could hardly be used to address
large-scale problems, due to their demanding computational cost. In this perspective, we developed a
new Hebbian learning solution, named FastHebb, which is designed to better take advantage of GPU
acceleration. This is done in two steps. First, we notice that Hebbian learning with mini-batch processing
evolves in two stages, one is the weight update computation for each sample in the mini-batch, and the
other is the aggregation of updates over all the mini-batch elements. These two phases can be merged
together with a significant speedup. Second, the resulting Hebbian equations of synaptic updates can
be translated in terms of matrix multiplications, which can be executed very efficiently on GPU.

Our main contributions related to this activity are the following:
• We developed a semi-supervised learning approach that combines Hebbian learning with SGD on

object recognition tasks with Deep Convolutional Neural Networks (DCNNs).
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- All available training samples, unlabeled and labeled, are used for an unsupervised Heb-
bian pre-training phase (without using label information), where a nonlinear Hebbian Principal
Component Analysis (HPCA) learning rule is used to train internal layers (both convolutional
and fully connected);

- Then, labeled training samples and SGD are used to train a classifier, obtained as a final
fully connected layer, on the features extracted from previous layers;

• We compared the results from a sample efficiency perspective with those obtained by a baseline
network trained end-to-end with backpropagation, on the labeled samples, and with semi-supervised
learning based on Variational Auto-Encoder (VAE) [317] unsupervised pre-training, the latter using
all the available samples (VAE-based semi-supervised learning was also the approach considered
in [310]);

• Different datasets and different regimes of sample efficiency were explored, and it was shown that
the proposed semi-supervised approach (Hebbian + SGD) outperforms the other approaches in
almost all the cases where a limited number of labeled samples is available;

• We developed a scalable solution for Hebbian synaptic updates (FastHebb) and performed exhaus-
tive experimentation on large-scale datasets (ImageNet) and architectures (VGG) which (to the
best of our knowledge) have been out of reach for Hebbian algorithms so far.

5.3.3. Experimental results

Experiments on Tiny ImageNet allowed us to validate the scalability of our methods to large datasets.
Tiny ImageNet has 200 classes and the training set consists of 100,000 samples (90,000 of which are
used for training and 10,000 for validation). Results are reported in Table 39, were the top-5 accuracy
measures are shown, along with their 95% confidence interval.

In regimes where a limited number of labeled samples is available (between 1% and 5%), the Hebbian
approach outperforms other counterparts, in almost all the cases. On the other hand, when the number
of available labeled samples becomes larger, BP and VAE approaches (which exploit end-to-end fine
tuning in the supervised phase) are able to take advantage of supervision and improve over HPCA, and
our end-to-end fine tuning in HPCA+FT helps to further boost accuracy.

Specifically, HPCA outperforms BP in all layers up to 4% sample efficiency regime. In addition, we
can observe that HPCA generally outperforms backprop by roughly 1-2 percent points, reaching a peak
of almost 3 percent points on layer 3, in the 4% sample efficiency regime. With higher efficiency regimes,
backprop begins to outperform HPCA, starting from the higher layers. At 100% sample efficiency regime,
backprop outperforms HPCA on all layers. This is probably due to the fact that 90,000 labeled training
samples are sufficient for BP to correctly train all network layers, exploiting the supervised information.

We observe that HPCA always performs better than the VAE method when low sample efficiency
regimes are considered (between 1% and 5%), especially for higher network layers. VAE pre-training
seems to be more effective in regimes where more labeled samples are available (beyond 10%).

The HPCA+FT strategy is still preferable in low sample efficiency regimes (between 1% and 5%),
where it helps to further increase accuracy w.r.t. plain HPCA. In particular, in these regimes, we can
observe a further increase in accuracy up to 3% points on layer 5 (in the 5% regime). Fine tuning also
helps increasing accuracy in successive sample efficiency regimes, especially on higher layers.

5.3.4. Relevance to AI4Media use cases and media industry applications

This activity is related to UC3 (AI in Vision - High quality Video Production and Content Automation),
where it can be used to train a neural network to extract visual features in an unsupervised fashion to
allow effective retrieval of relevant visual material.
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Table 39. Tiny ImageNet accuracy (top-5) and 95% confidence intervals obtained with a linear classifier on top of various
layers, for the various sample efficiency regimes. Results obtained with supervised backprop (BP), VAE-based
semi-supervised approach (VAE), Hebbian PCA (HPCA), and HPCA plus Fine Tuning (HPCA+FT) are compared. It is
possible to observe that, in regimes where the number of available samples is low (roughly between 1% and 5% of the total
available samples), HPCA performs better than BP and VAE approaches in almost all the cases, leading to an
improvement up to almost 3% (on layer 3, in the 4% regime) w.r.t. non-Hebbian approaches. HPCA+FT helps to further
boost accuracy.

Regimes Method L1 L2 L3 L4 L5

1%
BP 9.89 ±0.15 10.10 ±0.26 9.99 ±0.17 9.15 ±0.23 9.53 ±0.21

VAE 9.63 ±0.26 9.49 ±0.39 7.58 ±0.28 5.99 ±0.19 5.55 ±0.23

HPCA 10.83 ±0.28 10.87 ±0.26 11.85 ±0.19 10.84 ±0.26 10.86 ±0.23

HPCA+FT 10.81 ±0.27 10.99 ±0.36 12.15 ±0.46 11.05 ±0.27 11.38 ±0.41

2%
BP 12.76 ±0.27 12.84 ±0.14 13.95 ±0.34 13.04 ±0.15 13.48 ±0.39

VAE 12.94 ±0.37 13.06 ±0.23 10.86 ±0.28 7.40 ±0.27 6.74 ±0.20

HPCA 13.84 ±0.17 14.35 ±0.15 16.18 ±0.15 14.52 ±0.32 14.03 ±0.15

HPCA+FT 14.12 ±0.23 14.32 ±0.31 16.89 ±0.61 15.28 ±0.28 15.71 ±0.47

3%
BP 14.12 ±0.20 14.65 ±0.57 16.50 ±0.32 15.76 ±0.27 15.99 ±0.38

VAE 14.31 ±0.18 15.17 ±0.20 13.67 ±0.36 8.35 ±0.29 7.74 ±0.19

HPCA 16.13 ±0.14 16.32 ±0.33 18.87 ±0.29 17.04 ±0.26 16.38 ±0.25

HPCA+FT 16.25 ±0.21 16.54 ±0.28 19.78 ±0.47 18.31 ±0.24 18.23 ±0.33

4%
BP 15.44 ±0.42 16.72 ±0.31 18.36 ±0.22 17.85 ±0.16 17.84 ±0.19

VAE 16.09 ±0.20 17.05 ±0.20 16.83 ±0.51 8.86 ±0.11 8.45 ±0.21

HPCA 17.64 ±0.49 18.27 ±0.34 21.07 ±0.17 19.16 ±0.33 18.13 ±0.39

HPCA+FT 17.70 ±0.44 18.33 ±0.24 21.95 ±0.57 20.86 ±0.32 20.55 ±0.28

5%
BP 16.75 ±0.25 17.94 ±0.25 20.26 ±0.21 20.15 ±0.35 19.84 ±0.36

VAE 17.44 ±0.26 18.62 ±0.32 19.16 ±0.52 9.92 ±0.24 9.29 ±0.17

HPCA 18.93 ±0.14 19.67 ±0.36 22.65 ±0.35 21.01 ±0.38 19.57 ±0.15

HPCA+FT 19.26 ±0.41 19.93 ±0.41 23.97 ±0.52 22.95 ±0.26 22.46 ±0.17

10%
BP 20.26 ±0.18 23.12 ±0.14 27.05 ±0.20 27.30 ±0.20 27.21 ±0.29

VAE 21.62 ±0.25 23.83 ±0.19 27.42 ±0.18 16.69 ±0.18 13.51 ±0.34

HPCA 22.15 ±0.43 23.69 ±0.24 27.02 ±0.24 25.73 ±0.34 23.08 ±0.17

HPCA+FT 22.82 ±0.33 24.34 ±0.29 28.69 ±0.36 28.79 ±0.26 28.13 ±0.38

25%
BP 28.97 ±0.26 32.63 ±0.36 37.38 ±0.13 38.81 ±0.20 38.80 ±0.39

VAE 29.40 ±0.31 32.42 ±0.29 39.93 ±0.31 37.97 ±0.62 37.89 ±0.54

HPCA 27.05 ±0.47 28.39 ±0.34 32.08 ±0.19 31.30 ±0.26 29.51 ±0.23

HPCA+FT 28.01 ±0.75 30.63 ±0.16 35.87 ±0.53 36.98 ±0.26 37.10 ±0.23

100%
BP 42.89 ±0.13 49.94 ±0.13 54.54 ±0.27 57.00 ±0.16 57.50 ±0.16

VAE 42.32 ±0.16 48.54 ±0.53 58.31 ±0.12 59.60 ±0.23 60.23 ±0.65

HPCA 35.74 ±0.15 38.29 ±0.19 38.78 ±0.07 38.61 ±0.21 36.99 ±0.36

HPCA+FT 40.34 ±0.31 45.00 ±0.40 53.12 ±0.26 52.95 ±0.28 53.96 ±0.43
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5.3.5. Relevant Publications

• G. Lagani et al., "Assessing Pattern Recognition Performance of Neuronal Cultures through
Accurate Simulation," 2021 10th International IEEE/EMBS Conference on Neural Engineering
(NER), 2021, pp. 726-729, doi:10.1109/NER49283.2021.9441166.

• Gabriele Lagani, Fabrizio Falchi, Claudio Gennaro, Giuseppe Amato, "Hebbian semi-supervised
learning in a sample efficiency setting", Neural Networks, Volume 143, 2021, Pages 719-731, ISSN
0893-6080

• Gabriele Lagani, Davide Bacciu, Claudio Gallicchio, Fabrizio Falchi, Claudio Gennaro, and
Giuseppe Amato. 2022. Deep Features for CBIR with Scarce Data using Hebbian Learn-
ing. In Proceedings of the 19th International Conference on Content-based Multimedia In-
dexing (CBMI ’22). Association for Computing Machinery, New York, NY, USA, 136–141.
https://doi.org/10.1145/3549555.3549587

• Lagani, G., Gennaro, C., Fassold, H., Amato, G. (2022). FastHebb: Scaling Hebbian Training of
Deep Neural Networks to ImageNet Level. In: Skopal, T., Falchi, F., Lokoč, J., Sapino, M.L., Bar-
tolini, I., Patella, M. (eds) Similarity Search and Applications. SISAP 2022. Lecture Notes in Com-
puter Science, vol 13590. Springer, Cham. https://doi.org/10.1007/978-3-031-17849-8_20

• Lagani, G., Falchi, F., Gennaro, C. et al. "Comparing the performance of Hebbian against
backpropagation learning using convolutional neural networks". Neural Comput & Applic (2022).
https://doi.org/10.1007/s00521-021-06701-4

• Lagani G., Falchi F., Gennaro C., Amato G. (2022) "Training Convolutional Neural Networks
with Competitive Hebbian Learning Approaches". In: Nicosia G. et al. (eds) Machine Learning,
Optimization, and Data Science. LOD 2021. Lecture Notes in Computer Science, vol 13163.
Springer, Cham. https://doi.org/10.1007/978-3-030-95467-3_2

• Lagani G., Falchi F., Gennaro C., Amato G. (2022) "Evaluating Hebbian Learning in a Semi-
supervised Setting. In: Nicosia G. et al. (eds) Machine Learning, Optimization", and Data
Science. LOD 2021. Lecture Notes in Computer Science, vol 13164. Springer, Cham. https:
//doi.org/10.1007/978-3-030-95470-3_28

• Gabriele Lagani, Fabrizio Falchi, Claudio Gennaro, Hannes Fassold, Giuseppe Amato, Scalable
bio-inspired training of Deep Neural Networks with FastHebb, Neurocomputing, Volume 595, 2024,
127867, ISSN 0925-2312, https://doi.org/10.1016/j.neucom.2024.127867

5.3.6. Relevant software/datasets/other outcomes

• GitHub repository of the Hebbian Learning CNN project: https://github.com/aimh-lab/
hebbian-learning-cnn

5.4. Domain Adaptation and Counting techniques
Contributing partner: CNR

5.4.1. Introduction

Most CNN-based methods require a large amount of labeled data and make a common assumption:
the training and testing data are drawn from the same distribution. The direct transfer of the learned
features between different domains does not work very well because the distributions are different. Thus,
a model trained on one domain, named source, usually experiences a drastic drop in performance when
applied on another domain, named target. This problem is commonly referred as Domain Shift [318].

This problem is relevant, for instance, when counting techniques developed for one application need
to be adapted to new applications.
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One possible solution to tackle this issue is represented by Unsupervised Domain Adaptation - (UDA).
Specifically, it aims at mitigating domain shifts between different domains, relying on labeled data in
the source domain and unlabeled data in the target domain. In other words, UDA techniques exploit
annotated data from the source domain as well as non-annotated data coming from the target domain
that is easy to gather since it does not require human effort for labeling. The challenge here is to
automatically infer some knowledge from this latter data flow to reduce the gap between the two domains
and, specifically, to learn feature representations that should be (i) discriminative for the main learning
task on the source domain and (ii) indiscriminative concerning the shift between the domains.

5.4.2. Methodology

At the beginning of the project, as reported in D5.1, we applied UDA techniques to density estimations
and, more specifically, to vehicle counting. We have also applied variations to these techniques to new
applications:

DL-based pipeline for whitefly pest abundance estimation on chromotropic sticky traps:
We developed an automated counting pipeline based on data-driven Artificial Intelligence, specifically
Deep Learning (DL), for estimating the number of pests in images of sticky chromotropic traps. Our
approach follows a modular paradigm and is model-agnostic: differently from most existing works that
employ specific object detectors, the module responsible for counting can be implemented with recent
SOTA methodologies, not only detection-based but also relying on regression. Its output is then fed into
downstream modules that produce unified outputs expressing localization and confidence scores of the
counted insects. The required data was collected by taking digital camera pictures of the traps placed
in insect hot spot locations at the University of Pisa (Italy). Subsequently, images were annotated by
putting dots over the centroids of the trapped insects of interest; dotting emulates the natural human
technique for counting objects (at least when the number of objects is greater than the subitizing range),
and it represents the golden standard concerning the labels needed for the supervised training of deep
learning models for the counting task [319]. We named this collection of images PST - Pest Sticky Traps
and publicly released it [320]. In this setting, we experiment with several approaches: our best-performing
solution achieves an average counting error of approximately 9% compared to human capabilities while
requiring mere seconds for computation, in contrast to the hours or days needed for manual human
inspections.

Learning to count biological structures with raters’ uncertainty: We developed a deep
learning-based counting system for biological structures that takes as input a microscopy image and
produces as output the localization of the objects to be counted; furthermore, it also produces associated
scores indicating the reliability of the detections that practitioners can use to exclude or include from the
total count. More in detail, we developed a two-stage architecture, each having its own separate training
phase. In the first stage, a deep-learning network that takes as input an image and produces as output a
set of coordinates localizing the biological structures to be considered will be developed, following several
different architectures and strategies based on segmentation, detection, and density estimation. This
model is trained with a large labeled dataset annotated by a single expert; due to the intricate patterns
characterizing the distributions of the biological structures, this dataset likely encompasses errors, and
consequently, the network output will present weak localization. In the second stage, the previously
localized objects are considered, and they are assigned an “objectness” score that indicates the reliability
of the detections. To do so, a scorer module that inputs a small cropped patch containing the previously
localized objects and outputs a scalar score is employed.

Detection of violence in videos: We used UDA techniques in the the specific task of violence
detection in trimmed videos, i.e., capturing an exact action (either violent or non-violent). This task is a
subset of human action recognition. Specifically, the goal is to binary classify clips to predict if they
contain (or not) any behaviors considered to be violent, differing from violent detection in untrimmed
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videos, a subset of action localization where the purpose is also to seek the action in the temporal
dimension. Despite its importance in many practical, real-world scenarios, it is relatively unexplored
compared to other action recognition tasks. Although some annotated datasets for video violence
detection in general contexts already exist, they are limited in size and in the considered different
scenarios. Therefore, existing Deep Learning-based solutions trained using these data systematically
experience performance degradation when applied to new specific contexts, such as violence detection in
public transport environments [321].

To mitigate this problem, we proposed an end-to-end DL-based UDA solution to detect violent
situations in videos in specific target scenarios where annotated data is scarce or lacking. Our proposal
relies on single image classification randomly sampled from the frames making up the video, a simple
technique already addressed by [322]. Starting from this, some UDA techniques for image classification
are employed during the training pipeline, automatically gathering some knowledge from the unlabeled
data belonging to the target domain. To the best of our knowledge, it is the first attempt at using a UDA
schema for video violence detection. We conducted experiments by exploiting, as the source domain,
several annotated datasets present in the literature dealing with video violence detection in general
contexts and, as the target domain, the recently introduced Bus Violence benchmark [321], a collection
of clips specific for detection of violent behaviors inside a moving bus. Experimental results show that by
using our UDA pipeline, we can improve the performance of the considered models by a significant margin,
thus suggesting that they generalize better over this new scenario without the need to use new labels.

5.4.3. Experimental Results

Here we report some results when using UDA solutions to adapt to violence detection.
The ResNet50 architecture with the UDA strategy, gains 7.4%, 0.37%, and 12.9% of accuracy

compared with the ResNet50 network without UDA, overcoming all the other considered methods tested.
Considering False Alarms and Missing Alarms, ResNet50 architecture with UDA mitigates this

issue, achieving better performance compared with the single ResNet50 model and often overtaking
all the other techniques. This behavior is linked with a lower number of detected False Negatives and
consequently affects and improves the Recall and F1-score. In Figure 32, we report some samples of True
Positive, True Negative, False Positive, and False Negative coming out from the ResNet50 architecture
with attached the UDA module.

5.4.4. Relevance to AI4Media use cases and media industry applications

This activity is related to UC3 (AI in Vision - High quality Video Production and Content Automation),
where it can be used as a solution to to adapt AI models to continuously evolving scenarios (eg. newly
occurring events, facts, or trends) when dealing with large and highly dynamic audio-visual archives.

5.4.5. Relevant Publications

• Luca Ciampi, Nicola Messina, Gaetano Emanuele Valenti, Giuseppe Amato, Fabrizio Falchi,
Claudio Gennaro (2023). MC-GTA: A Synthetic Benchmark for Multi-Camera Vehicle Tracking.
ICIAP 2023: 22nd International Conference on Image Analysis and Processing. September 11-15,
2023, Udine, Italy. https://doi.org/10.1007/978-3-031-43148-7_27

• Ciampi L. and Santiago C. and Costeira J. P. and Falchi F. Gennaro C. and Amato G., Un-
supervised domain adaptation for video violence detection in the wild, IMPROVE 2023 - 3rd
International Conference on Image Processing and Vision Engineering, pp. 37–46, Prague, Czech
Republic, 21-23/04/2023, https://doi.org/10.5220/0011965300003497

• Ciampi, Luca, Paweł Foszner, Nicola Messina, Michał Staniszewski, Claudio Gennaro, Fabrizio
Falchi, Gianluca Serao, Michal Cogiel, Dominik Golba, Agnieszka Szczęsna, and Giuseppe Amato.
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Figure 32. Some samples of predictions over the target domain. In the four rows, we report some samples of True
Positives, True Negatives, False Positives, and False Negatives concerning the best model, i.e., ResNet50 + UDA, for each
of the considered source domains (one for each column).

2022. "Bus Violence: An Open Benchmark for Video Violence Detection on Public Transport"
Sensors 22, no. 21: 8345, https://zenodo.org/records/7044203

• Giuseppe Amato, Fabio Carrara, Luca Ciampi, Marco Di Benedetto, Claudio Gennaro, Fabrizio
Falchi, Nicola Messina, Claudio Vairo, "AI and Computer Vision for Smart Cities", 8th Italian
Conference on ICT for Smart Cities And Communities, 14-16 September, 2022 | University of
Camerino - Ascoli Piceno, Italy

• Ciampi L., Carrara F., Amato G., Gennaro C. "Counting or Localizing? Evaluating Cell Counting
and Detection in Microscopy Images", In Proceedings of the 17th International Joint Confer-
ence on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISI-
GRAPP 2022) - Volume 4: VISAPP, pages 887-897, ISBN: 978-989-758-555-5; ISSN: 2184-4321,
https://zenodo.org/records/6367420

• Marco Di Benedetto, Fabio Carrara, Luca Ciampi, Fabrizio Falchi, Claudio Gennaro, Giuseppe
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Amato, "An embedded toolset for human activity monitoring in critical environments", Expert
Systems with Applications, Volume 199, 2022, 117125, ISSN 0957-4174, https://doi.org/10.
1016/j.eswa.2022.117125

• Luca Ciampi, Claudio Gennaro, Fabio Carrara, Fabrizio Falchi, Claudio Vairo, Giuseppe Amato,
Multi-camera vehicle counting using edge-AI, Expert Systems with Applications, Volume 207,
2022, 117929, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2022.117929.

• Luca Ciampi, Fabio Carrara, Valentino Totaro, Raffaele Mazziotti, Leonardo Lupori, Carlos
Santiago, Giuseppe Amato, Tommaso Pizzorusso, Claudio Gennaro, Learning to count biological
structures with raters’ uncertainty, Medical Image Analysis, Volume 80, 2022, 102500, ISSN
1361-8415, https://doi.org/10.1016/j.media.2022.102500

• M. Avvenuti, M. Bongiovanni, L. Ciampi, F. Falchi, C. Gennaro and N. Messina, "A Spatio- Tempo-
ral Attentive Network for Video-Based Crowd Counting," 2022 IEEE Symposium on Computers and
Communications (ISCC), Rhodes, Greece, 2022, pp. 1-6, doi:10.1109/ISCC55528.2022.9913019

• Ciampi, L., Santiago, C., Costeira, J.P., Gennaro, C., Amato, G., "Domain adaptation for traffic
density estimation", VISIGRAPP 2021 - Proceedings of the 16th International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and Applications, Volume 5, Pages
185-195, 2021

• Luca Ciampi, Valeria Zeni, Luca Incrocci, Angelo Canale, Giovanni Benelli, Fabrizio Falchi,
Giuseppe Amato, Stefano Chessa, A deep learning-based pipeline for whitefly pest abundance
estimation on chromotropic sticky traps, Ecological Informatics, Volume 78, 2023, 102384, ISSN
1574-9541, https://doi.org/10.1016/j.ecoinf.2023.102384

5.4.6. Relevant software/datasets/other outcomes

• Vehicle counting on the AI4Europe catalog: https://www.ai4europe.eu/research/ai-catalog/
ai-visual-vehicles-counting

5.5. Augmentation for Self-supervised and semi-supervised learning
Contributing partner: UNIFI

5.5.1. Introduction

In this subsection, we discuss UNIFI’s contribution on methods to perform learning in settings with
limited access to annotations. Effective color space augmentation was studied in self-supervised learning
in [323]. A pipeline for data augmentation based on synthetic object generation was presented in [324].
This approach is specifically addressing small-object detection when few small-objects are annotated.

5.5.2. Methodology

5.5.2.1. Planckian Jitter for Color Augmentation We call our color data augmentation proce-
dure Planckian Jitter because it exploits the physical description of a black-body radiator to re-illuminate
training images within a realistic illuminant distribution [325, 326]. The resulting augmentations are more
realistic than those of the default color jitter. The resulting learned, self-supervised feature representation
is thus expected to be robust to illumination changes commonly observed in real-world images, while
simultaneously maintaining the ability to discriminate the image content based on color information.

Given an input RGB training image I, our Planckian Jitter procedure applies a chromatic adaptation
transform that simulates realistic variations in the illumination conditions. The data augmentation
procedure is as follows:

Final report on Multimedia Summarisation, Analysis and Production 130 of 322

https://doi.org/10.1016/j.eswa.2022.117125
https://doi.org/10.1016/j.eswa.2022.117125
https://doi.org/10.1016/j.eswa.2022.117929
https://doi.org/10.1016/j.media.2022.102500
doi: 10.1109/ISCC55528.2022.9913019
https://doi.org/10.1016/j.ecoinf.2023.102384
https://www.ai4europe.eu/research/ai-catalog/ai-visual-vehicles-counting
https://www.ai4europe.eu/research/ai-catalog/ai-visual-vehicles-counting


1. we sample a new illuminant spectrum σT (λ) from the distribution of a black-body radiator;

2. we transform the sampled spectrum σT (λ) into its sRGB representation ρT ∈R3;

3. we create a jittered image I′ by reilluminating I with the sampled illuminant ρT ;

4. we introduce brightness and contrast variation, producing a Planckian-jittered image I′′.

A radiating black body at temperature T can be synthesized using Planck’s Law [327]:

σT (λ)=
2πhc2

λ5(e
hc

kTλ−1)
W/m3, (42)

where c=2.99792458×108 m/s is the speed of light, h=6.626176×10−34 Js is Planck’s constant, and
k=1.380662×10−23 J/K is Boltzmann’s constant. We sampled T in the interval between 3,000K and
15,000K which is known to result in a set of illuminants that can be encountered in real life [326]. Then,
we discretized wavelength λ in 10nm steps (∆λ) in the interval between 400nm and 700nm.

The conversion from spectrum into sRGB is obtained according to [328]:

1. we first map the spectrum into the corresponding XYZ stimuli, using the 1931 CIE standard
observer color matching functions c{X,Y,Z}(λ), in order to bring the illuminant into a standard
color space that represents a person with average eyesight;

2. we normalize this tristimulus by its Y component, convert it into the CIE 1976 L*a*b color space,
and fix its L component to 50 in a 0-to-100 scale, allowing us to constrain the intensity of the
represented illuminant in a controlled manner as a separate task; and

3. we then convert the resulting values to sRGB, applying a gamma correction and obtaining
ρT = {R,G,B}; the resulting distribution of illuminants is visualized with the Angle-Retaining
Chromaticity diagram.

All color space conversions assume a D65 reference white, which means that a neutral surface
illuminated by average daylight conditions would appear achromatic. Once the new illuminant has been
converted in sRGB, it is applied to the input image I by resorting to a Von-Kries-like transform [329]
given by the following channel-wise scalar multiplication:

I′{R,G,B}=I{R,G,B}·{R,G,B}/{1,1,1}, (43)

where we assume the original scene illuminant to be white (1,1,1). Finally, brightness and contrast
perturbations are introduced to simulate variations in the intensity of the scene illumination:

I′′=cB ·cC ·I′+(1−cC)·µ(cB ·I′), (44)

where cB=0.8 and cC=0.8 represent, respectively, brightness and contrast coefficients, and µ is a spatial
average function.

5.5.2.2. Down Sampling GAN We have designed a Downsampling GAN (DS-GAN) to overcome
the poor performance from well-known methods like bilinear interpolation or nearest neighbor to obtain
SLR objects. DS-GAN is a generative adversarial network that learns to correctly degrade HR objects
into SLR objects to increase the training set for object detection.

In this downsampling problem the aim is to estimate an SLR object from an input HR object with
a downsampling factor r. The problem to solve is an unpaired problem where HR objects do not have a
corresponding LR pair, but the network would have to learn the distribution of the features of the whole
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Figure 33. Downsampling Generative Adversarial Network (DS-GAN) architecture. The generator is trained with HR
objects to synthesize small objects. A discriminator between real and fake small objects forces the generator to produce
synthetic objects that are increasingly similar to real-world small objects.

LR subset while keeping similar visual appearance of the original HR object. For an image with C color
channels, HR has size W×H×C while both LR and SLR are described by W

r ×
H
r ×C. So, for training

the proposed GAN, two different image sets are required: (i) the HR subset composed of real large objects
(HR objects) and (ii) the LR subset composed of real small objects (LR objects). Both the LR and HR
subsets can be taken from the same dataset or from any additional one if more samples are needed.

Our DS-GAN architecture is shown in Fig. 33. The generator network (G) takes as input an HR
image concatenated with a noise vector (z) and produces an SLR image 4× smaller than the input (r=4).
For example, a 128×128 object will lead to a 32×32 object. The noise vector is randomly sampled
from a normal distribution and it is attached to the input image. This allows to produce numerous SLR
objects from a single HR object, thus modeling the fact that the HR image will be affected by multiple
types of LR noise. Following the methodology of [330] we further define a discriminator network (D)
which we optimize in an alternating manner along with the generator (G).

The generator is an encoder-decoder network —see Fig. 33— composed of six groups of residual blocks
[331]. Each group has two same-dimension residual blocks with pre-activation and batch normalization
as defined in [332]. To achieve a 4× downscaling, four 2× down-sample steps performed by pooling
layers are placed at the end of each of the first four groups and two 2× up-sample steps performed by
deconvolution layers at the end of each of the last two groups.

The discriminator —see Fig. 33— follows the same residual block structure (without batch normal-
ization) followed by a fully connected layer and a sigmoid function. The discriminator comprises six
residual blocks with two 2× down-sample steps. The details of the composition of both architectures
are better shown in Fig. 33.

With this architecture, our goal is to train G to generate an SLR sample conditioned on an HR
sample. To achieve this, the objective function chosen for the adversarial loss is the hinge loss [333]:

lDadv=Es∼PLR
[min(0,1−D(s))]+Eŝ∼PG

[min(0,1+D(ŝ))] (45)

where PLR is the LR subset distribution and PG is the generator distribution to be learned through the
alternative optimization. PG is defined by ŝ=G(b,z) |b∈PHR, where PHR is the HR subset. The general
idea behind this formulation is that it allows to train G with the goal of fooling D, that is trained to
distinguish SLR from LR images. With this approach our generator can learn to create SLR samples
that are highly similar to real LR images, and thus difficult to classify by D.

Correspondingly, we train G by optimizing a loss function L, defined as:
L=lpixel+λlGadv, (46)
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Table 40. Evaluation on downstream tasks. Self-supervised training was performed on ImageNet at (224×224) and
testing performed on the downstream datasets resized to (224×224).

AUGMENTATION CUB-200 VegFru T1K+ USED Flowers-102

Default Color Jitter (CJ) 54.52% 67.63% 71.44% 59.90% 93.16%
Planckian Jitter (PJ) 56.28% 65.84% 77.42% 60.03% 90.29%
LSC [CJ,PJ] 60.70% 74.73% 80.49% 64.07% 93.99%
LSC [CJ,CJ] 56.16% 70.59% 73.47% 61.07% 93.13%
LSC [CJ,CJ-] 53.14% 70.54% 78.32% 63.87% 93.47%

where lGadv is the adversarial loss, lpixel is the L2 pixel loss, and λ is a parameter that balances the weight
of both components.

The adversarial loss lGadv is defined based on the probabilities of the discriminator as:
lGadv=−Eb∼PHR

[D(G(b,z))], (47)

where PHR is the HR subset and z is the noise vector. The adversarial loss is computed in an unpaired
way, using the LR subset to make the SLR objects to be contaminated with real-world artefacts.

The lpixel minimizes the L2 distance between the input HR and the output SLR:

lpixel=
r2

WH

W
r∑
i=1

H
r∑
j=1

(AvgP(b)i,j−G(b,z)i,j) |b∈PHR, (48)

where W and H denote the input HR size, r is the downsampling factor and AvgP is an average pooling
function that maps the HR input to the output G(b,z) resolution. The lpixel is computed in a paired
way between the SLR object and the HR object downsampled to the output SLR resolution using an
average pooling layer. This component aims to keep the appearance of the synthetic objects similar to
the original HR objects.

In addition, to solve the stabilization of the discriminator training we normalize its weights by the
spectral normalization technique [333].

5.5.3. Experimental results

5.5.3.1. Planckian Jitter for Color Augmentation Given the ablation study results, we per-
formed the analysis of the proposed configurations on other downstream tasks using the backbone trained
on higher resolution images (224×224 pixels). We report in Table 40 the results for: Default Color Jitter,
Planckian Jitter, and latent space combinations.

Looking at the results, we see that the Planckian Jitter augmentation outperforms default color
jitter on three datasets (CUB-200, T1K+, and USED). Comparing the results on Flowers-102 with
those reported above at (32×32) pixels, we see that default color jitter actually obtains good results.
We hypothesize that for high-resolution images the shape/texture information is very discriminative,
and the additional color information yields little gain. Table 40 also contains results for latent space
combination, which confirm that the two learned representations are complementary. Their combination
yields gains of up to 9% on T1K+. As a sanity check we also include the latent space combination of
two networks separately trained with Color Jitter. This provides a small gain on some datasets, but
yields significantly inferior results than LSC.

5.5.3.2. DS-GAN For this experimentation, the SLR objects generated by the DS-GAN are com-
pared with the LR objects —aiming for the greatest similarity— as well as with the resizing functions:
linear interpolation, bicubic interpolation, nearest neighbours and Lanczos [334]. For this purpose, two
metrics will be used to validate the quality of the synthetic objects generated by DS-GAN: the Frechet
Inception Distance (FID) [335] and object classification.

Final report on Multimedia Summarisation, Analysis and Production 133 of 322



Figure 34. Real HR samples (left), and real LR samples (right).

FID is a popular metric for comparing the feature vectors calculated for real and generated images.
The FID score summarizes how similar the two groups are in terms of statistics on computer vision
features of the raw images calculated using a pre-trained image classification model. The lower the scores
the greater the similarity of the two groups, meaning that they have more similar statistics, which is
the purpose of our DS-GAN.

To support the above metrics, we also train an LR object classifier which differentiates between
background (negative) and LR object (positive). We resort to this metric since it is closer to the objective
of the full pipeline, i.e., the improvement of small object detection. On the one hand, the classifier is
trained with the LR training set as positive examples and a background set as negative examples. On
the other hand, the SLR set is used for positive examples and keeping the same backgrounds as negative
examples. We have generated different SLR sets, one for each of the resizing functions, and another
one for the DS-GAN. All the learned models are evaluated with the LR testing subset and different
backgrounds. The higher the accuracy, the better the quality of the objects synthetically generated.

The DS-GAN generator architecture has a final stride 4× smaller than the fixed size input image
(r=4). Most of the popular datasets —MS COCO [336], UAVDT [337], VisDrone [338]— consider as
small objects those smaller than 32×32 pixels. Therefore, we will train the DS-GAN to learn how to
reduce HR objects to that range.

We validate our data augmentation for small object detection approach with the car category on
the UAVDT dataset [337]. This dataset was selected because the whole set of objects are vehicles, which
allows us to isolate the results for a specific category, and also provides a large number of small instances
in the testing set. Quantitatively, UAVDT comprises 23,829 frames of training data and 16,580 frames
of test data, belonging to 30 and 20 videos of ≈ 1,024 × 540 resolution, respectively. The videos are
recorded with an UAV platform over different urban areas. UAVDT includes a total of 394,633 car
instances for training, where 107,091 are considered within the small subset (52.38%), and a total of
361,055 car instances for testing, where 274,438 are considered within the small subset (76.01%).

Considering that the camera motion in UAVDT slightly modifies the appearance of consecutive
frames, in this section, only 10% of the video frames are selected for training to avoid overfitting. The
details on the datasets for evaluating DS-GAN are given below:

• Real HR subset: To obtain the HR objects we select those objects from 48×48 to 128×128
pixels, and we add context to have an area of 128×128 pixels in objects with a smaller area. These
conditions result in a total number of 517 HR objects in the UAVDT dataset. To have a larger
number, we also select the cars in the VisDrone dataset with the same restrictions. VisDrone is
a dataset with a very similar nature to that of UAVDT, i.e., high-resolution videos recorded with
UAVs. The total number of HR objects is 5,731 after joining both datasets. Some HR examples
are shown in Fig. 34(left).
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Figure 35. FID (a) and classification accuracy (b) for different subsampling methods on the LR testing subset of UAVDT.

• Real LR training subset: To obtain the LR objects we select those objects under 32×32 with
sufficient context to cover an area of 32×32 pixels. This results in a total of 18,901 objects coming
from the UAVDT training set —these objects are a part of the UAVDT small subset, where redun-
dant instances have been discarded. However, in order to simulate a small object scarcity scenario,
the LR subset will only consist of approximately 25% of the videos of the UAVDT dataset. The
selected videos include a total of 5,226 LR objects. Some LR examples are shown in Fig. 34(right).

• Real LR testing subset: To evaluate the performance DS-GAN and the pipeline we use the
274,438 small objects coming from the UAVDT testing set with sufficient context to cover an area
of 32×32 pixels.

For training the DS-GAN, we augment the training data by applying random image flipping to
increase diversity. We provide a different noise vector (z) sampled from a normal distribution to each HR
object in order to simulate a large variety of image degradation types. DS-GAN is trained during 1,000
epochs with an update ratio 1:1 between the discriminator and the generator, and it is optimized with
Adam [339] with parameters β1 = 0 and β2 = 0.9. We set the base learning rate to 1e-4, decreasing it
twice during the training phase by a factor of 10. We use λ = 0.01 in Eq. 46 to balance the relevance of
the two components in the image generation process —lGadv is two orders of magnitude higher than lpixel.
Thus, the adversarial loss helps to learn to contaminate the HR input with noise and artefacts coming
from the LR subset, and the pixel loss helps to preserve the visual features from the original input.

Fig. 35a and Fig. 35b show the experimental results to evaluate the quality of the synthetic objects
generated by DS-GAN over the LR testing subset of UAVDT. Our approach is compared to the main
re-scaling functions: linear and bicubic interpolation, nearest neighbors and Lanczos [334]. The reference
values are obtained by the models trained on the LR training subset (blue bars).

The FID value in Fig. 35a is measured using the final average pooling features in Inception-v3 [340].
The reference value of the LR training objects compared with the LR testing subset is 27.62. The graph
of Fig. 35a shows how the small objects obtained by any re-scaling function lead to values above 100,
which is a poor performance relative to the reference value. The FID value of the SLR objects generated
by DS-GAN for the LR test objects is 45.15. This FID value shows how the objects generated by the
DS-GAN have better quality than those obtained by a simple re-scaling function, i.e., are more similar
to the real ones.

To complement the FID distance, we have trained a classification network (ResNet-50 pre-trained
on ImageNet [341]) with each of the defined subsets and tested them with the LR testing subset. Fig.
35b shows, again, how the SLR object generated by DS-GAN provides a considerably higher accuracy
(83.06%) than the re-scaling functions (≈74%), and are very close to the reference accuracy obtained
by the LR training subset (85.16%).

These results validate the conclusions reached in [342, 343], since re-scaling functions introduce artefacts
that make the output object differ considerably from real-world objects. Even though these differences are

Final report on Multimedia Summarisation, Analysis and Production 135 of 322



25% 30% 35% 40% 45% 50% 75% 100%
Training videos (%)

16

18

20

22

24

26

28

30

Av
er

ag
e 

Pr
ec

is
io

n 
(%

)

FPN AP@0.5:0.95

25% 30% 35% 40% 45% 50% 75% 100%
Training videos (%)

16

18

20

22

24

26

28

30

Av
er

ag
e 

Pr
ec

is
io

n 
(%

)

STDnet AP@0.5:0.95

LR
LR + SLR
LR + SLR (x2)
LR + SLR (x3)
LR + SLR (x6)
LR + SLR (x9)
LR + Interpolation

Figure 36. AP@[.5,.95]
s for small object detection in UAVDT for different percentage of training videos with the FPN and

STDnet architectures.

Data augmentation
FPN STDnet CenterNet

AP@.5
s AP@[.5,.95]

s AP@.5
s AP@[.5,.95]

s AP@.5
s AP@[.5,.95]

s

LR 39.0 17.6 41.2 19.0 51.9 22.6
LR + Interp. 38.1 16.5 38.8 16.9 46.9 18.4
LR + SLR 46.3 20.1 48.1 20.6 60.6 26.1
LR + SLR×6 50.9 22.5 51.5 23.4 63.5 26.8

Table 41. Comparison of several data augmentation approaches for small object detection with FPN, STDnet and
CenterNet networks on the small object testing subset of UAVDT. The training phase was conducted by simulating a low
instance small object scenario —25% of the UAVDT training videos.

not visually appreciable, they are identified by the layers within the CNNs (Inception-v3 and ResNet-50).
DS-GAN significantly improves this issue by learning the different artefacts found in real-world objects.

In order to evaluate our pipeline for data augmentation for small object detection we use the UAVDT
detection metrics that were originally defined by the MS COCO dataset, i.e., AP@.5 and AP@[.5,.95].
STDnet [344], FPN [345] and CenterNet [346] are adopted as the baseline detection networks.

The implementation details for DS-GAN are those defined in the previous section. The other
component that requires training is DeepFill for image inpainting. In this case, the default parameters [347]
are used to train the model on the UAVDT dataset. We have set τ=40 as the frame search range for the
position selector. The rest of the components of our pipeline are also configured with their default values.

We detail the results obtained by STDnet [344], FPN [345] and CenterNet [346] on the UAVDT testing
set for small objects. The training phase for all the models was conducted from the same 25% of the
videos as in the DS-GAN training, in order to simulate a scenario with a low number of LR objects, up to
the whole UAVDT training set. Here, the LR label means that no data augmentation has been applied for
training, so the images come directly from the standard UAVDT training set. The LR + Interp. and LR +
SLR labels mean the same images with real objects as in LR, and also duplicating those images replacing
the real LR objects with synthetic objects ones generated with the pipeline using bilinear interpolation
and DS-GAN, respectively. So that, in LR + Interp. and LR + SLR, the number of synthetic objects
is equal to the number of LR objects. Notice that LR + Interp. is a more elaborated solution than
[348], as it is the proposed pipeline, but replacing DS-GAN by bilinear interpolation. Finally, the LR
+ SLR×n labels mean that the number of SLR objects is n times higher than the number of LR objects.
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5.5.4. Relevance to AI4Media use cases and media industry applications

The proposed approaches can be used as augmentation procedures for any self-supervised framework
and can be relevant in UC3 and UC7 for tasks such as visual indexing and search and visual concepts
classification.

5.5.5. Relevant Publications

• Zini, Simone, Alex Gomez-Villa, Marco Buzzelli, Bartłomiej Twardowski, Andrew D. Bag-
danov, and Joost van de Weijer. "Planckian Jitter: countering the color-crippling effects of
color jitter on self-supervised training." International Conference on Learning Representations
(2023).https://dx.doi.org/10.48550/arXiv.2202.07993

• Bosquet, Brais, Daniel Cores, Lorenzo Seidenari, Víctor M. Brea, Manuel Mucientes, and Alberto
Del Bimbo. "A full data augmentation pipeline for small object detection based on generative adver-
sarial networks." Pattern Recognition (2023)https://doi.org/10.1016/j.patcog.2022.108998

5.5.6. Relevant software/datasets/other outcomes

Source code: https://github.com/TheZino/PlanckianJitter

5.6. MaskCon: Masked Contrastive Learning for Coarse-Labeled Dataset
Contributing partner: QMUL

5.6.1. Introduction and methodology

Supervised learning with deep neural networks has achieved great success in various computer vision
tasks such as image classification, action detection and object localization. However, the success of
supervised learning relies on large-scale and high-quality human-annotated datasets, whose annotations
are time-consuming and labour-intensive to produce. To avoid such reliance, various learning frameworks
have been proposed and investigated.

In this work, we consider an under-explored problem setting aiming at reducing the annotation effort –
learning fine-grained representations with a coarsely-labeled dataset. Specifically, we learn with a dataset
that is fully labeled, albeit at a coarser granularity than we are interested in (i.e., that of the test set).

Differently than previous works, instead of using self-supervised contrastive learning as an auxiliary
task, we propose a novel learning scheme, namely Masked Contrastive Learning (MaskCon). Our
method aims to learn by considering inter-sample relations of each sample with other samples in the
dataset (Figure 37). Specifically, we always consider the relation to oneself as confidently positive. To
estimate the relations to other samples, we derive soft labels by contrasting an augmented view of the
sample in question with other samples, and further improve it by utilizing the mask generated based
on the coarse labels.

5.6.1.1. Contrastive learning We first briefly introduce essential concepts about contrastive learn-
ing. Unlike the common supervised learning model, we can perform contrastive learning based on the
inter-sample relations Z= {zi ∈ (0,1)N}Ni=1, with each entry zij depicting the inter-sample relation
between xi and xj. Intuitively, zij=1 means that sample xi and xj generate a strong positive pair.
Since each sample may form multiple positive sample pairs, for brevity, we abuse the notation here with
Z denoting also the sample-wise normalized inter-sample relations. To learn such inter-sample relations,
instead of a parametric classifier, the f encoder is usually followed by a projector h, which is often
implemented as an MLP and learned by regularizing the inter-sample relations Z (eq. 50).
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Figure 37. Contrastive learning sample relations using MaskCon (ours) and other learning paradigms when only coarse
labels are available. MaskCon are closer to the fine ones.

More specifically, let us denote by hi≜h(f(xi) the projection. We first calculate the cosine similarity
di between a sample xi and the dataset H={hn}Nn=1:

di=[cos(hi,h1),cos(hi,h2),...,cos(hi,hN)], (49)

Let us further define qi ≜ softmax(di/τ0), where τ0 is the temperature hyperparameter. Then the
following empirical risk will be optimized:

R(f,h)=
N∑
i=1

Lcon(xi,zi;f,h), (50)

where the contrastive loss Lcon is defined as follows:

Lcon(xi,zi;f,h)=−
N∑
n=1

zni logq
n
i . (51)

5.6.1.2. Methodology To better learn with coarse labels, we introduce a novel contrastive learning
method, namely Masked Contrastive learning (MaskCon), within the framework of contrastive
learning that utilizes inter-sample relations directly.

More specifically, for sample xi, we estimate its inter-sample relations z′
i to other samples utilizing

the key view projection hk and the whole dataset {h1,...,hN} excluding itself (since it will always be
considered as a trustworthy positive), as below:

z′ij=
1(yj=yi)·exp(d′ij/τ)∑N

n=1,n̸=i1(yn=yi)·exp(d′in/τ)
,i≠j, (52)

where the similarity d′
i is given by

d′
i=[cos(hki ,h1),...,cos(h

k
i ,hi−1),

cos(hki ,hi+1),...,cos(h
k
i ,hN)].

(53)

Please note the use of the mask (1(yj=yi)) that excludes from the softmax that estimates inter-
sample relationships, the samples j that have a different coarse label with the sample i (and sets their z′ij
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to 0). While it is risky to consider all samples from the same coarse class as positive, we can confidently
identify those samples that do not have the same coarse class as negative. This reduces the noise in
z′
i. Finally, we re-scale the z′

i with its maximum

z′ij=z
′
ij/max(z′

i), (54)

to make the closest neighbour as positive as the sample itself and arrive at:

zmaskij =

{
1, if i=j
z′ij, if i≠j

(55)

Compared to Zsupcon, we thus reweight the samples of the same coarse label according to the similarities
in the feature space.

We denote the masked contrastive loss as Lmaskcon and, similarly to Grafit [349] and CoIns [350],
we also consider a weighted loss as the final objective:

L=wLmaskcon+(1−w)Lselfcon (56)

5.6.2. Experimental results

We compare our method with two competing methods: Grafit and CoIns. For a fair comparison, we
exhaust the weight w choices for both methods and report the best achievable results in all experiments.
Note that when w=0, Grafit and CoIns degenerate to self-supervised contrastive learning denoted as
SelfCon; Conversely, when w=1, Grafit degenerates to supervised contrastive learning [351] denoted as
SupCon, while CoIns degenerates to conventional supervised cross-entropy learning denoted as SupCE.
For reference, we also show the results when training with fine labels – this is denoted as SupFINE.

5.6.2.1. Evaluation protocol To evaluate the different methods on the test set with fine labels, we
use the recall@K [352] metric widely used in the image retrieval task. Each test image first retrieves top-K
nearest neighbours from the test set and receives 1 if there exists at least one image from the same fine class
among the top-K nearest neighbours, otherwise 0. Recall@K averages this score over all the test images.

5.6.2.2. Experiments on CIFAR100 dataset The common CIFAR100 dataset has 20 classes
of coarse labels in addition to the 100 classes of fine labels, with each coarse class containing five
fine-grained classes (500 samples). The results in Table 42 show that our method achieves significant
improvements over the SOTAs. In particular, it improves the top-1 retrieval precision from 47.25% to
65.52%, approaching the results by the model learned with fine labels (71.13%).

5.6.3. Conclusion

In this work, we propose a Masked Contrastive learning framework (MaskCon) for learning fine-grained
information with coarse-labeled datasets. On the basis of two baseline methods, we utilize coarse labels
and the instance discrimination task to better estimate inter-sample relations. We show theoretically that
our method can reduce the optimization error bound. Extensive experiments with various hyperparameter
settings on multiple benchmarks, including the CIFAR datasets and the more challenging fine-grained
classification datasets show that our method achieves consistent and large improvement over the baselines.

5.6.4. Relevance to AI4Media use cases and media industry applications

MaskCon represents a novel method for learning with coarse labels. It can be relevant in UC3 for tasks
such as visual indexing and search and visual concept classification.
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Table 42. Results on CIFAR100 dataset.

Method Recall@1 Recall@2 Recall@5 Recall@10

SelfCon 40.50 51.83 66.23 76.66
Grafit 60.57 71.13 82.32 89.21
SupCon 58.65 70.04 82.18 89.09
CoIns 60.10 70.89 83.14 89.52
SupCE 47.25 61.24 77.78 87.01

SupFINE 71.13 80.03 87.61 91.59

MaskCon (Ours) 65.52 (18.17↑) 74.46 83.64 89.25

5.6.5. Relevant publications

• Chen Feng, Ioannis Patras. "MaskCon: Masked Contrastive Learning for Coarse-Labeled Dataset."
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2023. Zenodo record: https://zenodo.org/records/8014242

5.6.6. Relevant software/datasets/other outcomes

• The Pytorch implementation can be found in
https://github.com/MrChenFeng/MaskCon_CVPR2023

5.7. Self-Supervised Video Similarity Learning
Contributing partners: QMUL, CERTH

5.7.1. Introduction and methodology

Self-supervised learning is a popular approach, especially for learning representations that are amenable to
transfer to different tasks [353, 354, 355, 356, 357]. SSL allows to scale-up the dataset size by not relying
on manual labeling and is known to obtain representations with high transferability. The commonly
studied setup is to consider SSL for pre-training on a proxy task and then perform supervised fine-tuning
on different target tasks [353, 354, 355]. In this work, we rather perform SSL and directly use the model
on video similarity-related tasks.

In this work, we adopt the ViSiL [358] architecture for video similarity, which needs labeled video
datasets for its development in prior works [358, 359], but we train it in a self-supervised way and argue
that instance-discrimination through augmentations is well suited for all the aforementioned tasks. To
pronounce the synergy, we develop an appropriate composition of video augmentations and propose a
model-tailored loss combined with a standard SSL loss. By eliminating the need for video annotations,
we are able to train on large video datasets and achieve state-of-the-art results on all target retrieval
and detection tasks. Evaluation is performed on three standard benchmarks, namely, VCDB [360],
FIVR [361], and EVVE [362].

Our aim is to learn a video similarity function s : V×V→R, where V is the space of all videos. The
goal is for two videos to have high similarity if they are relevant, and low otherwise. The definition of
relevance is task-dependent. In our experiments, we consider several evaluation tasks, where relevance
ranges from video copies to videos of the same physical event. Nevertheless, we perform training in a
single universal way without video labels for supervision. We perform training with self-supervision in
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the spirit of instance-discrimination, i.e., two augmented videos originating from the same original video
are considered as positive to each other, or negative otherwise. In some parts, we follow the work of
Pizzi et al. [363], who perform SSL for image copy detection.

5.7.1.1. Similarity network We adopt the ViSiL variant proposed in DnS [359], namely the
fine-grained attention student, as our similarity network architecture. It consists of a representation
network, a hand-crafted spatial matching function, a learnable temporal matching function, and a final
hand-crafted matching function that estimates the final video-level similarity.

The representation network fθ,ϕ : V→RT×R×D maps an input video to a D-dimensional vector per
region, for R regions per frame, for T frames, where R and T vary according to the frames’ size and video
length, respectively. This network consists of a pre-trained backbone network and has a parameter set θ
that is fixed in this work, similar to the prior ones [364, 361, 365]. The learnable part corresponds to the
parameter set ϕ, a dot-attention scheme [366] that is applied to weigh region vectors based on their saliency.

Given two input videos v and u and their corresponding representations, the hand-crafted spatial
matching is performed by the function g : RTv×Rv×D×RTu×Ru×D→RTv×Tu, that takes as input two
video representations and estimates the temporal similarity matrix. It computes the Rv×Ru spatial
similarity matrix for all frame pairs and then applies Chamfer similarity on each of them to estimate
the frame-to-frame similarity.

The temporal matching is performed by function hψ :RTv×Tu→RT ′
v×T

′
u. This is a four-layer CNN

that learns to capture temporal patterns in the input similarity matrices. It outputs a filtered temporal
similarity matrix. It holds that Tv =4T ′

v, and similarly for u, due to the CNN design that contains
strided max pooling operations. The parameters of the CNN, denoted by ψ, are learnable.

Chamfer similarity is applied and denoted by the function m : RT ′
v×T

′
u→R, taking as input the

filtered temporal similarity matrix and estimating the final video-level similarity, i.e., the scalar similarity
between the two videos.

To summarize, similarity s(v,u), for the video pair consisting of videos v and u, is equivalent to
s(v,u)=m(hψ(g(fθ,ϕ(v),fθ,ϕ(u)))), and the goal in this work is to learn ϕ and ψ with self-supervision
on videos, while θ remains fixed and is obtained from supervised pre-training on ImageNet. The reader
is referred to the original ViSiL work [358] for additional details.

5.7.1.2. Weak/strong video augmentations We apply two sets of augmentations to generate
two corresponding versions of a training video, i.e., one weakly and one strongly augmented version.
Formally, given an original video v, the output of an augmentation function A is a video tensor
ṽ=A(v)∈RTB×HB×WB×3, where TB, HB, and WB correspond to the number of frames, height, and
width of the video in the batch, respectively.

Weak augmentations consist of conventional geometric transformations (i.e., resized crop and
horizontal flip), applied globally on the entire video, and temporal cropping to select TB consecutive frames.

Strong augmentations consist of the weak augmentations and several other transformations
grouped into the following four categories:

Global transformations are frame transformations applied to all frames in a consistent way. We
use RandAugment [367], an automatic augmentation strategy that includes different geometric and
photometric image transformations and requires two hyperparameters, namely NRAug and MRAug.
These correspond to the number of randomly-applied consecutive transformations and their magnitude
value that determines their severity, respectively.

Frame transformations are applied independently per frame. We use overlay and blurring transfor-
mation15. Following advanced augmentations from prior work [363], we add random emojis and text,

15The RandAugment implementation we use does not contain blurring operations. Hence, global transformations do not
blur videos.
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each with probability poverlay, and blur frames with probability pblur. We opt for these operations to
emulate common video copy transformations.

Temporal transformations act only on the temporal dimension and include five operations, with one
applied per video. Following [358], we use fast forward, slow motion, reverse play, and frame pause, where
a single frame is duplicated several times consecutively. In addition, we propose Temporal Shuffle-Dropout
(TSD) to alter the global temporal structure but preserve the local one. The video is first split into short
clips, each of them with length randomly chosen in [4,...,TB/2]. In the shuffling phase, applied with
probability pshuf , the clip order is shuffled. In the dropout phase, a clip is dropped with probability
pdrop, where it is either discarded or filled with empty frames or Gaussian noise with probability pcont.

Video-in-video randomly mixes two strongly augmented videos, the host and the donor, in the
same batch. The donor video is randomly spatially down-sampled with a factor λviv and is overlaid
in a random location within the host video. Each strongly augmented video is chosen as donor with
probability pviv. Then, a host video is randomly chosen, while the mixed output replaces the donor
video. This process requires properly adjusting the instance-discrimination labels since the generated
video is the outcome of two others. Video-in-video transformation is very common in real-life video cases.

5.7.1.3. Loss on video similarity A random set of N videos, where each video is augmented
once with the weak and once with the strong augmentations, forms a training batch of size B=2N
denoted by B=[v1,···,v2N ]. We compute the similarity matrix S∈ [0,1]B×B, with elements Si,j=s(vi,vj),
comprising all pairwise video similarities within the batch. Each row of S consists of the self-similarity
on the diagonal, one positive-pair similarity, and B−2 negative-pair similarities16. Note that S is not
symmetric and that the diagonal elements are not equal to 1 because of hψ. For the i-th row of the
similarity matrix, let p(i) be the set of column indices of the positive pairs. Additionally for the i-th
row, let n(i) be the set of column indices of the negative pairs.

The total loss is a combination of two losses that optimize different parts of S: (i) the widely used
InfoNCE [368] loss estimated per row excluding the self-similarity value, and (ii) a loss that maximizes
the self-similarity, i.e., main diagonal, and minimizes the similarity with the hardest negative, i.e., the
negative with the highest similarity, for each video in the batch.

InfoNCE loss is estimated for each positive pair by

Lnce(i,j)=−log
exp(Si,j/τ)

exp(Si,j/τ)+
∑
k/∈p(i)∪iexp(Si,k/τ)

, (57)

where τ is a temperature hyper-parameter and (i,j) is a positive pair. The final InfoNCE loss is given
by the average over all positive pairs as

Lnce=1/P
∑
i

∑
j∈p(i)

Lnce(i,j), (58)

where P is the total number of positive pairs in the batch.
Self-similarity – hardest negative loss: Since the self-similarity is not equal to 1 by design, we

add a loss term that is trying to push it to high values. Together with that, an additional term pushes
the hardest negative of each row to have small similarity. For the i-th row, this loss is given by

Lsshn(i)=−log(Si,i)︸ ︷︷ ︸
self−sim

−log max
j/∈p(i)∪i

(1−Si,j)︸ ︷︷ ︸
hard−negative sim

, (59)

16This is the case where video-in-video augmentation is not used; otherwise, there can be more (less) positives (negatives).
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Retrieval Detection

VCDB
(C+D)

FIVR-200K EVVE VCDB
(C+D)

FIVR-200K EVVE
Approach Lab. DSVR CSVR ISVR DSVD CSVD ISVD

DML [371] ✓ - 52.8 51.4 44.0 61.1 - 39.0 36.5 30.0 75.5
LAMV [364] ✗ 78.6 61.9 58.7 47.9 62.0 62.0 55.4 50.0 38.8 80.6
TCAf [372] ✓ - 87.7 83.0 70.3 - - - - - -
VRLf [373] ✗ - 90.0 85.8 70.9 - - - - - -
ViSiLf [358] ✗ 82.0 89.0 84.8 72.1 62.7 40.9 66.9 59.5 45.9 74.6
ViSiLv [358] ✓ - 89.9 85.4 72.3 65.8 - 75.8 69.0 53.0 79.1
DnS [359] ✓ 87.9 92.1 87.5 74.1 65.1 74.0 79.7 69.5 54.2 74.3

S2VS (Ours) ✗ - 92.7 87.9 74.6 67.2 - 85.7 76.9 62.8 80.7
S2VS (Ours) ✗ 87.9 92.5 87.8 73.9 65.9 73.0 89.3 80.2 64.9 78.9

Table 43. State-of-the-art comparison via retrieval mAP (%) and detection µAP (%) on three evaluation datasets. Bold
and underline indicate the best and second best approach, respectively. Missing values are either due to unavailability or
unfair comparison due to leak of evaluation data during training.

and the total loss is given by the average over rows as Lsshn=1/B
∑
iLsshn(i). Note that the hard-negative

term resembles entropy maximization through the Kozachenko-Leononenko estimator and a consequent
spreading of elements in the representation space [369]. Differently to them, we perform this directly
on pairwise similarities and not on distances over a vector space.

To this end, we optimize a weighted sum of the losses presented above, as follows

L=Lnce+λLsshn, (60)

where λ is a hyperparameter that tunes the impact of Lsshn.

5.7.2. Experimental results

5.7.2.1. Datasets DnS-100K [359] consists of 115,792 unlabeled videos. It is used for knowledge
distillation in the original work, but we use it as a training set.

VCSL [370] is originally created for video copy localization. It contains 9,207 videos with more than
281K copied segments split into training, validation, and test set. Due to the unavailability of several
videos, we managed to collect only 8,384 videos. We use this dataset to train our model in a supervised
way, only to provide an indicative comparison with the proposed SSL approach.

VCDB [360] is created for partial video copy detection. The core dataset (C) contains 528 videos
from 28 discrete sets with over 9,000 copied segments. It also contains a set D of 100,000 distractor
videos. We use this dataset for evaluation for detection and retrieval of video copies, considering as
related the videos that share at least one copied segment. Moreover, we use the distractor set as an
alternative unlabeled training set. We use VCDB, VCDB (D), or VCDB (C+D) to indicate that only
set C, only set D, or both sets are used, respectively.

FIVR-200K [361] is used as a benchmark for fine-grained incident video retrieval. It consists of
225,960 videos and 100 queries. FIVR-200K includes three different subtasks: a) Duplicate Scene Video
Retrieval (DSVR), b) Complementary Scene Video Retrieval (CSVR), and c) Incident Scene Video
Retrieval (ISVR). In this work, we use the same subsets to evaluate for the corresponding detection
tasks, denoted by DSVD, CSVD, and ISVD. For quick comparisons, we also use FIVR-5K [358], a
subset of FIVR-200K. We use it in our ablations, denoted by FIVR, where the average performance
of the three subtasks is reported.

EVVE [362] is a dataset for video retrieval. It consists of 620 queries and 2,375 database videos.
Due to the unavailability of several videos, we use only 504 queries and 1906 database videos [358], which
is roughly ≈80% of the initial dataset. All reported methods are evaluated on this subset.

In summary, we train on DnS-100K, or VCDB(D), and evaluate on VCDB for video copies, on FIVR
for video copies, and incidents, and on EVVE for video copies, incidents, and events.
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5.7.2.2. Experiments We evaluate the performance of the proposed approach on different retrieval
and detection tasks related to video similarity, compare its performance to the state-of-the-art methods.

We compare the proposed S2VS method in Table 43 with the following approaches. DML [371] ex-
tracts a video embedding based on a network trained with supervised deep metric learning. LAMV [364]
trains a video representation using a generated dataset while relying on kernel-based temporal alignment.
TCAf [372] is a transformer-based architecture trained with supervised contrastive learning. VRL [373]
is a CNN and transformer-based network trained end-to-end with no labeled data. ViSiLf [358] is a
baseline without any training on videos that corresponds to the frame-to-frame similarity part of ViSiL
combined with Chamfer similarity. ViSiLv is the full similarity model trained with supervision. DnS [359]
is a ViSiL-based student network trained with distillation from a teacher trained with supervision; we
compare with the best-performing fine-grained attention student SfA. For TCA and VRL, the reported
results are taken from the original works. For the remaining approaches, we run the provided pretrained
networks, and following DnS [359], we implement LAMV and DML with the same features provided
in the official repository17.

5.7.3. Conclusion

In this work, we proposed a self-supervised learning approach for training video similarity networks.
Eliminating the need for labels allows us to train on large-scale video corpora, which, together with a
diverse set of video augmentations, form the key ingredient for achieving top performance. The obtained
single model has been evaluated on several target retrieval and detection tasks. It manages to perform
on par or outperform existing models that exploit labeled datasets, especially for detection due to better
similarity calibration across queries.

5.7.4. Relevance to AI4Media use cases and media industry applications

S2VS is a self-supervised framework video similarity network training, and can be relevant in UC3 and
UC7 for tasks such as visual indexing and search and visual concepts classification.

5.7.5. Relevant publications

• Kordopatis-Zilos, G., Tolias, G., Tzelepis, C., Kompatsiaris, I., Patras, I., & Papadopoulos, S.
(2023). Self-supervised video similarity learning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (pp. 4756-4766). Zenodo record: https:
//zenodo.org/record/8314217

5.7.6. Relevant software/datasets/other outcomes

Code is available at https://github.com/gkordo/s2vs.

5.8. Efficient Data Utilization for enhanced DNN Inference Reliability
Contributing partner: AUTH

5.8.1. Introduction

In this work, we introduce an efficient data utilization strategy for enhanced DNN inference reliability.
We propose an innovative approach that evaluates the performance of a DNN in handling large datasets
without the need to generate inferences for the entire dataset. Our primary goal is to ascertain whether a

17https://github.com/mever-team/distill-and-select
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dataset has been previously encountered by a DNN and, thus, if the DNN can produce reliable and accurate
inferences. To achieve this, we aim to determine the optimal data quantity required by DNNs to ensure
that their inferences are both accurate and reliable, without the necessity of utilizing the entire dataset.
This approach significantly reduces the need for extensive testing across large datasets, thereby decreasing
computational complexity typically associated with large-scale data processing. Additionally, it focuses
on assessing how well a DNN has integrated knowledge from its training data and its capability to apply
this knowledge effectively to new, unseen data. We advocate that this strategy not only aims to reduce
the computational complexity of the DNNs but also ensures that the networks maintain high reliability
and accuracy in their predictions, thus addressing some of the key challenges in Big Data analysis.

5.8.2. Methodology

In Big data environments, it is critical to establish the minimal amount of test data necessary for DNN
classifiers to reliably predict outcomes across an entire dataset without the need to individually analyze
each data point. We introduce a novel method for statistically analyzing DNN inferences, aiming at
reducing computational complexity while ensuring the reliability of these inferences.

Figure 38. Through our experiments, we determine the minimum amount of data required to provide reliable inferences
while maintaining high performance. Our method demonstrates that achieving optimal inference accuracy in Big data
environments does not require processing the entire dataset; instead, it efficiently delivers reliable inferences using the
fewest necessary data points.

To establish the necessary sample size for accurate DNN inferences in the classification problems
we explore, individual tests of the DNN are carried out across a range of dataset cardinalities. These
range from a single data sample to larger quantities (e.g., up to two thousand data samples, N , in our
simulation experiments).

For each one of these cardinalities in the range [1,...,2,000], the networks are tested repeatedly
multiple times so that the mean value and the variation of the evaluation metric can safely be estimated.
The selection of data cardinalities was determined through extensive experimentation, revealing that
further expansion of the dataset is unnecessary. In the scenarios examined, where the focus is on image
classification, classification accuracy is utilized as the evaluation metric.

To verify the normal distribution of the evaluation metrics, essential for applying statistical methods ac-
curately, the Shapiro-Wilk normality test [374] is employed on a random sample of 500 values. The normal
distribution of our data adheres to the empirical rule showcasing the characteristics of a normal distribution
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and its relevance to our statistical analyses. Using the 95% confidence interval, we determined the sufficient
number of testing samples needed for reliable DNN inferences. A confidence interval is a statistical range
derived from a sample of data that is utilized to estimate a population parameter. The interval is accompa-
nied by a confidence level, representing the degree of confidence in the interval containing the true popula-
tion parameter. The most commonly used confidence intervals include those with confidence levels of 90%,
95%, and 99% with critical values (Z-scores) of 1.645, 1.96, and 2.576 respectively. Specifically, a 95% con-
fidence interval indicates that if we were to repeatedly sample from a population and calculate a 95% confi-
dence interval for each sample, approximately 95 out of 100 intervals would contain the true mean value (µ).

When aiming to generate a 95% confidence interval estimate for an unknown population mean, it
implies that there is a 95% probability that the confidence interval will encompass the true population
mean. The 95% confidence interval for the population n mean can be expressed as:

95% confidence interval=X̄±1.96σ/
√
n. (61)

According to our proposed method, the minimum sample size was established to ensure that, with this
quantity of data, the evaluation metric falls within the 95% confidence interval of the overall sample mean.
More specifically, to ascertain the sufficient number of testing samples needed, we first confirm that the
evaluation metric values adhere to a Gaussian distribution. This verification allows for the calculation of
the sample mean, sample standard deviation and confidence intervals for the population mean. Then, the
minimum number of testing samples needed is determined based on the condition that the evaluation met-
ric corresponding to that number equals the total sample size mean value, with a 95% confidence interval.
In particular, when using the proposed method, the quantity of testing samples needed corresponds to
the number of samples necessary for the network to attain an evaluation metric equivalent to:

ē+1.96σe/
√
N. (62)

This criterion ensures a sufficient level of confidence in the DNN’s conclusions while maintaining the
high performance of the model.

5.8.3. Experimental results

In this section, we present the experimental results of our method applied to various datasets. Our aim
is to identify the minimum number of samples required for DNNs to provide reliable inferences. By
determining the minimum sample size, we can assess whether the dataset was previously encountered
during the model’s training. This approach ensures optimal performance while reducing computational
complexity and maintaining the production of reliable predictions in Big Data environments. To ascertain
the optimal number of test samples necessary for trustworthy inferences, the DNN is subjected to testing
using varying unknown testing sample sizes. In our experiments, the AlexNet [5] DNN architecture
is used. To assess the performance of the DNN classifier, classification accuracy is employed as the
evaluation metric. The primary outcomes of this study are presented in Table 44, which showcases the
experimental results across multiple datasets.

Figure 39 depicts the plot illustrating the correlation between the number of samples and the accuracy
scores. The plot demonstrates that with an increasing number of samples, the range of classification
accuracy scores becomes narrower. It is observed that when testing with limited data, misclassified data sig-
nificantly affect the model’s evaluation. The classification accuracy scores stabilize after a certain number
of samples, suggesting that additional increases in sample size do not significantly affect the performance.
This stabilization indicates that the model can deliver accurate inferences even with few data points.

The minimum test data set cardinality needed to ensure reliable and accurate DNN inferences is
determined based on the results presented in Table 44. The values indicating the minimum sample sizes
for various training datasets are presented in Table 45. The outcomes reveal that the DNN model can
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Table 44. Alex-Net Classification Accuracy of Multiple Datasets

Dataset Number of Testing Samples Mean Evaluation Metric Standard Deviation

F-MNIST [10]

15 0.9000 0.0573
500 0.9214 0.0113
1000 0.9249 0.0051
2000 0.9219 0.0057

Cifar-10 [375]

15 0.8667 0.0894
500 0.8184 0.0160
1000 0.8206 0.0119
2000 0.8175 0.0090

Cifar-100 [375]

15 0.5438 0.1282
500 0.6122 0.0366
1000 0.6107 0.0175
2000 0.6167 0.0117

MNIST [376]

15 1.0000 0.0000
500 0.9952 0.0034
1000 0.9956 0.0019
2000 0.9948 0.0014

Figure 39. AlexNet classification accuracy scores and the number of samples plot on the F-MNIST dataset [10].

be deemed reliable when delivering inferences for around 1% of the data it is trained on. This finding
indicates that the model can effectively handle large volumes of data while requiring significantly fewer
data points to produce reliable inferences.
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Table 45. Minimum number of data required to ensure reliable DNN (AlexNet [5]) inferences for each dataset and the
percentage in relation to the training dataset size.

Dataset Samples
needed

Percentage
of samples
needed

F-MNIST [10] 335 0.55%
Cifar-10 [375] 305 0.61%
Cifar-100 [375] 362 0.72%
MNIST [376] 253 0.42%

5.8.4. Relevance to AI4Media use cases and media industry applications

This method contributes to UC7 "AI for Content Organization and Content Moderation" by proposing
a novel method designed to enhance the efficiency of Deep Neural Networks (DNNs) in managing vast
amounts of data. This method addresses the primary challenge of enabling DNNs to provide high-quality
inferences using minimal data, a crucial aspect in big data analytics. Consequently, media companies can
manage visual content efficiently and cost-effectively. For example, a media organization may implement
the proposed methodology to compare and select the most effective AI tool for a specific task using only
a small portion of incoming task-specific data.

5.8.5. Relevant Publications

• "Efficient data utilization in deep neural networks for inference reliability", I. Valsamara, C.
Papaioannidis, and I. Pitas, "Big Visual Data Analytics Workshop (ICIP 2024)"
Zenodo record: https://zenodo.org/records/13384355

5.9. Representation learning for knowledge distillation: teaching represen-
tations in triplets

Contributing partner: AUTH

5.9.1. Introduction

Representation learning reveals complex dependencies in the dimensions of the feature vectors used as
data representations [377]. Learning a similarity measure that captures small differences within the same
class and significant between distinct classes is the main goal of deep metric learning [378]. A popular
loss function capturing dependencies in the feature space is triplet loss, which has shown remarkable
results in several computer vision tasks [379, 380, 381, 382]. Triplet loss increases the gap between the
intra-class and inter-class distances in order to develop a discriminative feature embedding [383]. Basic
distillation methods transfer knowledge but often fail to adequately compress the structural knowledge,
such as these dependencies between output dimensions. To address this issue, we propose a method
able to capture correlations and higher-order output dependencies.

This work investigates representation learning via knowledge distillation. We propose an approach
that optimizes the feature structure of the student DNN. Utilizing the concept of triplets, our method
seeks to capture data correlations and transfer structural knowledge. The objective is to compress the
knowledge of representations and its structural data dependencies from larger to smaller DNN models
while preserving performance accuracy. We propose a Triplet-Based Knowledge Distillation (TBKD)
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method that guides the student model to extract optimal representations and enhances its learning
process to effectively capture data similarities. The results demonstrate the efficiency of our method
in consistently enhancing the student’s training process, showing improvements in performance accuracy
across various DNN architectures and datasets.

5.9.2. Methodology

Figure 40. A visual explanation of a deep metric learning framework using triplet loss.

5.9.2.1. Triplet-based Knowledge Distillation (TBKD) loss The key idea of a typical deep
metric learning pipeline using triplet loss involves learning a representation that brings “positive” samples
closer to an anchor point in a given metric space while pushing “negative” samples further away from
the same anchor point as presented in Figure 40. As a result, for each triplet (xa,xp,xn) where xa is
called the anchor point, xp is called the positive point having the same label with xa and xn is called
the negative point having a different label, the intra-class distance d(xa,xp) will be smaller than the
inter-class distance d(xa,xn) in the learned embedding space. All the data contained in a dataset D
are used to create triplets, which are constructed from each batch, resulting in a new dataset Dtriplet.

The triplet loss is designed to ensure that the anchor point xa is closer to the positive point xp than
to the negative point xn by a margin m. When using a batch of triplets, the overall loss is the mean
of the individual triplet losses:

L(xa,xp,xn)batch=
1

N

N∑
i=1

max(0,d(xai,xpi)−d(xai,xni
)+m) (63)

where N is the number of triplets in the batch, d(xi,xj) represents the Euclidean distance between the
embeddings of points xi and xj and f(x;θ) is the embedding function that maps input samples into
a high-dimensional space.

Given two DNNs, a teacher DNN fT and a student DNN fS, their representations at the penultimate
layer for an input image x are denoted as fT (x;θT ) and fS(x;θS) respectively. For a basic KD scheme,
the representations fT (x;θ) and fS(x;θ) should be pushed closer. Hence the student is trained with the
KL-divergence based KD loss LKD [384] where KL denotes the Kullback Leibler (KL) divergence.

To facilitate the transfer of structural knowledge from the teacher to the student and achieve optimal
representations, our method organizes the data into triplets (xa,xp,xn). This strategy leverages the
advantages of triplet loss and representation learning, thereby enabling effective structural KD. The
distillation loss for triplet-arranged data is defined as follows:

LKDtriplet=α
∑

i∈{a,p,n}

KL
(
fS(xi;θ

S)

T
,
fT (xi;θ

T )

T

)
·(T2), (64)

where T is the temperature, and α is the distillation hyperparameter. For the combined triplet-based
knowledge distillation loss, we incorporate both the distillation loss and the triplet loss. The final TBKD
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loss is defined as:
L=LKDtriplet+λLTriplet, (65)

where LKD is the distillation loss with temperature scaling defined in Equation 64, LTriplet the triplet
loss defined in Equation 63 and λ is a hyperparameter that controls the relative influence of the triplet
loss in comparison to the distillation loss. In practice, the combined loss ensures that the student network
learns from both the triplet relationships and the teacher’s guidance as illustrated in Figure 41.

Figure 41. Our method achieves knowledge distillation by minimizing the discrepancy between the feature representations
of the teacher and the student, while simultaneously learning a representation (ea,ep,en) that brings “positive” samples
closer to an anchor point and pushes “negative” samples further away in the metric space. To facilitate the transfer of
structural knowledge and obtain optimal representations, our method uses a triplet-based knowledge distillation loss
(TBKD) that combines both the distillation and the triplet loss.

To evaluate the performance of the DNN teacher and student models, a metric referred to as triplet
accuracy, which indicates the DNN capability to derive optimal representations is employed. The triplet
accuracy measures how well the DNN can distinguish between positive and negative samples in a triplet.
During training, the Euclidean distances in the embedding space produced by the DNN, d(f(xa;θ),f(xp;θ))
- the distance between the anchor and the positive sample and d(f(xa;θ),f(xn;θ))- the distance between
the anchor and the negative sample, are calculated for each triplet. The triplet accuracy is defined as
the ratio of triplets for which the anchor-positive distance is less than the anchor-negative distance:

Triplet Accuracy=
Number of correct triplets
Total number of triplets

(66)

where the triplet is considered correct if:

d(f(xa;θ),f(xp;θ))<d(f(xa;θ),f(xn;θ)) (67)

5.9.3. Experimental Results

We evaluate our method by training the DNN model in three different scenarios: (a) model training
with triplet loss, (b) model training with KL-divergence based KD loss [384], and (c) model training
with our proposed triplet-based knowledge distillation loss. In the first scenario, we do not employ a KD
method; instead, we leverage the benefits of triplet loss to train the architecture of the model that will
be used as the student in the distillation scenarios. In the second scenario, we employ the KL-divergence
based KD loss. In the third scenario, we use our proposed TBKD objective to train the student model.

The overall aim of KD algorithms is to enable the student DNN to mimic the teacher DNN output,
thereby achieving similar performance. To evaluate how well the student mimics the teacher, we measure
the student’s ability to create triplets using triplet accuracy as the evaluation metric. The key findings of
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our study are presented in Tables 46 and 47, which show the experimental results for multiple datasets
and two different combinations of DNN architectures for the teacher and student DNN models: ResNet
101- ResNet 50 and ResNet 34- ResNet 18. Our experiments demonstrate that our approach consistently
improves the training of the student model across all scenarios and datasets examined.

Table 46. Comparison between the teacher model (ResNet 101) and the student model (ResNet 50) trained under the
examined scenarios for different datasets.

Dataset Triplet accuracy

MNIST [376]

Teacher 96.22%
Student

Triplet loss 95.80%
KD loss 93.64%

TBKD loss 96.96%

FMNIST [10]

Teacher 87.76%
Student

Triplet loss 87.38%
KD loss 86.77%

TBKD loss 88.48%

Flowers102 [385]

Teacher 69.83%
Student

Triplet loss 68.26%
KD loss 65.50%

TBKD loss 71.43%

Table 47. Comparison between the teacher model (ResNet 34) and the student model (ResNet 18) trained under the
examined scenarios for different datasets.

Dataset Triplet accuracy

MNIST [376]

Teacher 99.07%
Student

Triplet loss 99.34%
KD loss 94.11%

TBKD loss 99.49%

FMNIST [10]

Teacher 92.97%
Student

Triplet loss 91.99%
KD loss 90.87%

TBKD loss 94.01%

Flowers102 [385]

Teacher 67.91%
Student

Triplet loss 66.67%
KD loss 65.09%

TBKD loss 69.94%

Final report on Multimedia Summarisation, Analysis and Production 151 of 322



Table 48. Comparison of different datasets with their respective teacher (T) and student (S) models in the image retrieval
task.

Dataset mAP
1 neighbor 25 neighbors

MNIST [376]

T : ResNet 101 0.9472 0.9433
S : ResNet 50

Triplet loss 0.9068 0.9069
KD loss 0.8932 0.8997

TBKD loss 0.9481 0.9468

FMNIST [10]

T :ResNet 101 0.7763 0.7369
S : ResNet 50

Triplet loss 0.7683 0.7264
KD loss 0.7476 0.7189

TBKD loss 0.7898 0.7475

MNIST [376]

T : ResNet 34 0.9871 0.9846
S : ResNet 18

Triplet loss 0.9793 0.9821
KD loss 0.8959 0.8871

TBKD loss 0.9882 0.9905

FMNIST [10]

T :ResNet 34 0.8459 0.8167
S : ResNet 18

Triplet loss 0.8402 0.8131
KD loss 0.7705 0.7740

TBKD loss 0.8590 0.8287

To assess the representations learned by the DNNs, image retrieval experiments are performed using
the teacher and student models trained under various scenarios. A Faiss index [386] is utilized for efficient
similarity searches. The retrieval performance is measured using the mean Average Precision (mAP)
metric, which evaluates the DNN ability to identify and retrieve relevant images (specifically 1 or 25
nearest neighbors) based on learned embeddings. This evaluation method provides a robust indication of
the student model’s capability to extract meaningful and discriminative features from the images. The
key findings are presented in Table 48, which displays the experimental results across different datasets
and combinations of DNN architectures. Our experiments show that our approach consistently enhances
the student DNN model’s retrieval performance across all examined scenarios and datasets.

5.9.4. Relevance to AI4Media use cases and media industry applications

This method matches with UC7 (AI for Content Organization and Content Moderation) as it proposes
a Triplet-Based Knowledge Distillation (TBKD) method that can be incorporated into advanced deep
learning techniques for content analysis. For instance, a media organization may implement the proposed
methodology to enhance visual content retrieval efficiency by employing smaller, less computationally
demanding models
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5.9.5. Relevant Publications

• I. Valsamara, C. Papaioannidis, and I. Pitas, "Distilling Structural Knowledge: teaching repre-
sentations for model compression", Under review
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5.10. Self-Supervised Facial Representation Learning with Facial Region
Awareness

Contributing partner: QMUL

5.10.1. Introduction

Human face understanding is an important and challenging topic in computer vision [387, 388]. Self-
supervised pre-training has been proved to be effective in learning transferable representations that
benefit various visual tasks. This leads to the question: can self-supervised pre-training learn general
facial representations for various facial analysis tasks? Recent efforts toward this goal are limited to
treating each face image as a whole, i.e., learning consistent facial representations at the image-level,
which overlooks the “consistency of local facial representations” (i.e., facial regions like eyes, nose,
etc). In this work, we make a first attempt to propose a novel self-supervised facial representation
learning framework, Facial Region Awareness (FRA) that learns consistent global and local facial
representations. Specifically, we use learnable positional embeddings as facial queries to look up the facial
image for facial regions. The facial queries are learned by solving a pixel-level deep clustering problem.

5.10.2. Methodology
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Figure 42. Overview of the proposed FRA framework. ⊙ denotes cosine similarity. For each input image x, its
augmented views x1 and x2 are passed into two network branches to produce the global embeddings z1 and z2. In addition,
we produce a set of heatmaps M1 and M2 indicating the local facial regions, via the correlation between the pixel features
and “facial mask embeddings” computed from a set of learnable positional embeddings. Then we aggregate the feature map
to obtain the local facial embeddings {zm1 } and {zm2 }. The semantic consistency loss is applied to global embeddings and
facial embeddings to maximize the similarity across augmented views. To learn such heatmaps, i.e., facial mask
embeddings, we treat the facial mask embeddings as facial region clusters and propose a semantic relation loss to align the
cluster assignments of each pixel feature over the facial region clusters between the online and momentum network.

The overview of the proposed FRA is shown in Figure 42. We propose two objectives: pixel-level
semantic relation and image/region-level semantic consistency. Semantic relation aligns the
per-pixel cluster assignments of each pixel feature over the facial mask embeddings between the online
and momentum network to learn heatmaps for facial regions while semantic consistency directly matches
the global and local facial representations across augmented views with the learned heatmaps.

Given an input image x, two random augmentations are applied to generate two augmented views
x1=T1(x) and x2=T2(x), following BYOL [389]. Each augmented view xi ∈{x1,x2} is fed into an
encoder E to obtain a feature map Fi∈RC×H×W (before global average pooling), where C, H, W are the
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number of channels, height and width of Fi and a latent representation hi∈{h1,h2} (after global average
pooling), i.e., h1=Eθ(x1) and h2=Eξ(x2). Then each latent representation hi is transformed by a global
projector Hg to produce a global embedding zi∈{z1,z2} of dimension zi∈RD, i.e., z1=H

g
θ (h1) and

z2=H
g
ξ (h2). Then we obtain a set of heatmaps Mi∈{M1,M2} highlighting the facial regions from the

feature map Fi for each view. Take view x1 as an example, the projected feature map can be expressed as:

Fdense
1 [∗,u,v]=Hl

θ(F1[∗,u,v]), (68)

where F1[∗,u,v]∈RC is the pixel feature at the (u,v)-th grid of F1. Then inspired by supervised segmenta-
tion [390], we use a Transformer decoder followed by a MLP, which takes as input the feature map Fi and
N learnable positional embeddings (i.e., facial queries for looking up the facial image globally for facial re-
gions) to predictN “facial mask embeddings” Qi∈RN×D of dimensionD, where each row associated with a
facial region. Next, we compute the cosine similarity between facial mask embeddingsQi and dense feature
map Fdense

i along the channel dimension, yielding per-pixel cluster assignments Si∈RN×H×W , where
Si[∗,u,v] denotes the relation between the dense pixel feature Fdense

1 [∗,u,v] and facial mask embeddings Qi.
For both augmented views, we define the symmetrized semantic relation objective as:

Lr=
1

HW

∑
u,v

(CE(su,v1 ,̂su,v1 )+CE(su,v2 ,̂su,v2 )), (69)

where CE(su,v2 ,̂su,v2 ) is the cross-entropy loss for view x2.
For semantic consistency, we enforce the consistency of global embeddings and local facial embeddings.

With the learned heatmaps Mi, we generate the latent representations for the local facial regions through
weighted average pooling. We then match the global embeddings and local facial embeddings across
views using the negative cosine similarity in BYOL [389]:

Lsim(z1,z2)=−(λc×fs(Ggθ(z1),z2)+

+(1−λc)×
1

N

N∑
m=1

fs(G
l
θ(z

m
1 ),zm2 )), (70)

where fs(u,v)= u⊤v
∥u∥2∥v∥2

denotes the cosine similarity between the vectors u and v, λc is the loss weight,
Ggθ and Glθ are the predictors on top of the projectors Hg

θ and Hl
θ, respectively. Following BYOL [389],

we symmetrize the loss Lsim(z1,z2) defined in eq. 70 by passing x1 through the momentum network
ξ and x2 through the online network θ to compute Lsim(z2,z1). The semantic consistency objective can
be expressed as follows:

Lc=Lsim(z1,z2)+Lsim(z2,z1). (71)
We jointly optimize the semantic relation objective (eq. 69) and the semantic consistency objective

(eq. 71), leading to the following overall objective:

L=Lc+λrLr, (72)

where λr is the loss weight for balancing Lc and Lr.

5.10.3. Experimental results

Following the common practice in previous works [387, 388], we evaluate the transfer performance of
the self-supervised pre-trained facial representations on several popular downstream facial analysis tasks:
facial expression recognition (FER) [407, 408], and face alignment (FA) [409, 410, 411, 412].

We report the FER and FA results in Table 49 and 50, respectively. The results on classification
(e.g., facial expression recognition) and regression tasks (e.g., face alignment) show that our FRA
achieves SOTA results using vanilla ResNet [400] as the unified backbone for various facial
analysis tasks.
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Table 49. Comparisons on facial expression recognition. We report the Top-1 accuracy on test set. Text denotes
text supervision. †: our reproduction using the official codes.

Method Text FERPlus RAF-DB AffectNet

Supervised
KTN [391] ✕ 90.49 88.07 63.97
RUL [392] ✕ 88.75 88.98 61.43
EAC [393] ✕ 90.05 90.35 65.32

Weakly-Supervised
FaRL [387]† ✓ 88.62 88.31 64.85
CLEF [394] ✓ 89.74 90.09 65.66

Self-supervised
MCF [395]† ✕ 88.17 86.86 60.98
Bulat et al. [396, 397] ✕ - - 60.20
BYOL [389] ✕ 89.25 89.53 65.65
LEWEL [398] ✕ 85.61 81.85 61.20
PCL [388] ✕ 85.87 85.92 60.77
FRA (LP) ✕ 78.13 73.89 57.38
FRA (FT) ✕ 89.78 89.95 66.16
FRA (EAC) ✕ 90.62 90.76 65.85

5.10.4. Conclusion

In this work, we propose a novel self-supervised facial representation learning framework to learn
consistent global and local facial representations, Facial Region Awareness (FRA). We learn a set of
heatmaps indicating facial regions from learnable positional embeddings, which leverages the attention
mechanism to look up facial image globally for facial regions. We show that our FRA outperforms
previous pre-trained models on several facial classification and regression tasks. More importantly, using
ResNet as the unified backbone, our FRA achieves comparable or even better performance compared
with SOTA methods in facial analysis tasks.

5.10.5. Relevance to AI4Media use cases and media industry applications

FRA represents a novel method for self-supervised pre-training with a focus on facial analysis. It can
be relevant in tasks such as visual indexing and search and visual concepts classification.

5.10.6. Relevant publications

• Zheng Gao, Ioannis Patras. “Self-Supervised Facial Representation Learning with Facial Region
Awareness”, In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2024. Zenodo record: https://zenodo.org/records/13592955

5.10.7. Relevant software/datasets/other outcomes

• The Pytorch implementation can be found in
https://github.com/zaczgao/Facial_Region_Awareness
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Table 50. Comparisons on face alignment. †: our reproduction using the official codes.

Method Arch.
WFLW 300W (NME ↓)

NME ↓ FR10% ↓ AUC10% ↑ Full Comm. Chal.

Supervised
SLPT [399] ResNet [400] 4.20 3.04 0.588 3.20 2.78 4.93
DTLD [401] ResNet [400] 4.08 2.76 - 2.96 2.59 4.50
RePFormer [402] ResNet [400] 4.11 - - 3.01 - -
ADNet [403] Hourglass [404] 4.14 2.72 0.602 2.93 2.53 4.58
STAR [405] Hourglass [404] 4.02 2.32 0.605 2.87 2.52 4.32

Self-supervised
MCF [395] ViT [406] 3.96 1.40 0.609 2.98 2.60 4.51
Bulat et al. [396, 397] ResNet [400] 4.57 - - 3.20 - -
BYOL [389] ResNet [400] 4.29 2.96 0.579 3.03 2.66 4.55
LEWEL [398] ResNet [400] 4.52 4.50 0.563 3.09 2.70 4.71
PCL [388]† ResNet [400] 4.84 6.18 0.535 3.35 2.77 5.12
FRA ResNet [400] 4.11 2.53 0.591 2.91 2.60 4.46

5.11. Self-Supervised Representation Learning with Cross-Context Learning
between Global and Hypercolumn Features

Contributing partner: QMUL

5.11.1. Introduction and methodology

Whilst contrastive learning yields powerful representations by matching different augmented views of the
same instance, it lacks the ability to capture the similarities between different instances. One popular way
to address this limitation is by learning global features (after the global pooling) to capture inter-instance
relationships based on knowledge distillation, where the global features of the teacher are used to guide the
learning of the global features of the student. Inspired by cross-modality learning, we extend this existing
framework that only learns from global features by encouraging the global features and intermediate
layer features to learn from each other. This leads to our novel self-supervised framework: Cross-context
learning between Global and Hypercolumn features (CGH), that enforces the consistency of instance
relations between low- and high-level semantics. Specifically, we stack the intermediate feature maps to
construct a “hypercolumn” representation so that we can measure instance relations using two contexts
(hypercolumn and global feature) separately, and then use the relations of one context to guide the
learning of the other. This cross-context learning allows the model to learn from the differences between
the two contexts. The experimental results on linear classification and downstream tasks show that our
method outperforms the state-of-the-art methods.

Given an image x, we generate a weakly augmented view x2 through weak augmentation for the teacher
and a heavily augmented view x1 through contrastive augmentation for the student. We then proceed
to generate the contexts of global feature and hypercolumn for the teacher and the student separately, as
shown in Figure 43. First, x2 is passed to the teacher encoder Et to produce the “global feature context”
(after the global average pooling) hg2 =Et(x2). Then hg2 is transformed by a global projector Ht to
produce a low-dimensional global embedding by zg2=Ht(h

g
2). As for the hypercolumn of the teacher, let

Elt(x2)∈Rcl×hl×wl be the intermediate feature maps of the l-th convolutional block, l∈{0,...,L}, where
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Figure 43. Overview of the proposed CGH framework. We adopt a knowledge distillation framework where the
teacher is the exponential moving average of the student. A heavily corrupted view x1 is fed into the student Es to obtain
both a hypercolumn embedding zh1 and a global embedding zg1 while a weakly augmented view x2 is passed to the teacher Et

to obtain a hypercolumn embedding zh2 and a global embedding zg2. The embeddings are used to measure the similarity
relationships between the augmented views x1, x2 and the samples in the memory bank – this leads to a similarity
distribution. We enforce two instance relations alignments: “global-hypercolumn alignment” and “hypercolumn-global
alignment”, which are detailed in the text.

cl denotes the number of channels, hl is the height and wl is the width. The intermediate feature maps
{Elt(x2)}, which are downsampled to the same spatial size as the output of the last convolutional block
ELt (x2) to reduce GPU memory consumption, are concatenated first and then mapped to a d-dimensional
latent space through a 1×1 convolution followed by average pooling to obtain the “hypercolumn
context” hh2 ∈Rd. hh2 is transformed by another projector Hh

t to obtain the hypercolumn embedding by
zh2=H

h
t (h

h
2). Thus the contexts of the global feature hg2 and hypercolumnn hh2 are obtained for the teacher.

Likewise, for the student, we produce the global feature context hg1=Es(x1), hypercolumnn context
hh1 and the corresponding embeddings zg1=Hs(h

g
1) and zh1=H

h
s (h

h
1) for the heavily corrupted view x1.

Next we measure the similarity relationships between the augmented views (x1 and x2) and the
samples in the memory bank. To guide the learning of the global feature context hg1 for the student, we
use the similarity relationships between hh2 and the embeddings ẑhi in the hypercolumn memory bank Qh
as the target. The relationships are measured using the cosine similarity between zh2 and ẑhi . We normalize
the similarities with a softmax operation and produce a target probabilistic distribution yh2 for the teacher:

yh2 [i]=
exp(sim(zh2 ,ẑ

h
i )/τh)∑M

k=1exp(sim(zh2 ,ẑ
h
k)/τh)

, (73)

where yh2 [i] is the i-th element of the target similarity distribution generated by hypercolumn context hh2 ,
ẑhi is the i-th embedding in the hypercolumn memory bankQh, τh is the temperature parameter for the hy-

Final report on Multimedia Summarisation, Analysis and Production 158 of 322



percolumn context,M is the size of the memory bank and sim(u,v)= u⊤v
∥u∥2∥v∥2

denotes the cosine similarity
between the vectors u and v. Similarly, the predicted distribution from the student is expressed as follows:

yg1[i]=
exp(sim(zg1,ẑi/τs))∑M
k=1exp(sim(zg1,ẑk)/τs)

, (74)

where yg1[i] is the i-th element of the predicted similarity distribution generated by global feature context
hg1, ẑi is the i-th embedding in the memory bank Q and τs is the temperature for global feature context
of the student. The global-hypercolumn alignment predicts the hypercolumn based similarity distribution
yh2 from the global feature based distribution yg1 by minimizing the cross-entropy loss:

Lgh=CE(y
g
1,y

h
2), (75)

where CE(y1,y2)=−
∑M
k=1y2[k]logy1[k].

Similarly, the objective for hypercolumn-global alignment is expressed as:

Lhg=CE(y
h
1 ,y

g
2). (76)

Altogether, we enforce the cross-context learning between the global feature context and hypercolumn
context with the following objective:

L=Lgh+Lhg=CE(y
g
1,y

h
2)+CE(y

h
1 ,y

g
2). (77)

Table 51. Linear and KNN evaluation results on IN-1K with ResNet-50 backbone. All methods are evaluated
with the single-crop setting. Top-1 and Top-5 validation accuracy are reported. †: our reproduction using the official codes.
∗: results cited from [6].

Method Backprop Epochs Batch Size Linear
Acc.

KNN
Acc.

Supervised 1x 100 256 76.5 -

Asymmetric loss.
MoCo-v2 [413] 1x 200 256 67.5 55.9
PCL-v2 [414] 1x 200 256 67.6 58.1
HCSC [415] 1x 200 256 69.2 60.7
OBoW [416]† 1x 200 256 69.5 57.2
ReSSL [417]† 1x 200 256 69.3 61.3
ReSSL-pred [418] 1x 200 1024 72.0 -
CGH 1x 200 256 70.5 62.9
CGH-pred 1x 200 256 72.3 65.8

Symmetric loss. 2× FLOPS
SimCLR [353]∗ 2x 200 4096 68.3 -
SwAV [396]∗ 2x 200 4096 69.1 -
SimSiam [6]∗ 2x 200 256 70.0 -
BYOL [389]∗ 2x 200 4096 70.6 -
NNCLR [419] 2x 200 4096 70.7 -
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5.11.2. Experimental results

We perform performance evaluation on ImageNet-1k classification in Table 51. The proposed method
outperforms MoCo-v2/ReSSL by 3.0%/1.2% on linear classification and 7.0%/1.6% on KNN classification,
respectively. The consistent improvement compared with the baselines shows the effectiveness of the
proposed cross-context learning strategy.

5.11.3. Conclusion

In order to solve the class collision problem in contrastive learning, inspired by cross-modality learn-
ing [420, 421], we present a novel framework based on knowledge distillation, cross-context learning
between global and hypercolumn features (CGH) that learns representations by capturing cross-context
information from the context of global features and hypercolumns. The cross-context learning strategy
allows the model to identify more similar samples (true positives) in the memory bank and keep low
false positives. The extensive experiments on classification and downstream tasks demonstrate the
effectiveness and generality of our method.

5.11.4. Relevance to AI4Media use cases and media industry applications

CGH represents a novel method for self-supervised pre-training of visual data. It can be relevant in
tasks such as visual indexing and search and visual concepts classification.

5.11.5. Relevant publications

• Zheng Gao, Chen Feng and Ioannis Patras. “Self-Supervised Representation Learning with Cross-
Context Learning between Global and Hypercolumn Features”, In IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), 2024. Zenodo record: https://zenodo.org/
records/8364210

5.11.6. Relevant software/datasets/other outcomes

• The Pytorch implementation can be found in
https://github.com/zaczgao/CGH-Hypercolumn

5.12. SSR: An Efficient and Robust Framework for Learning with Unknown
Label Noise

Contributing partner: QMUL

5.12.1. Introduction

It is now commonly accepted that supervised learning with deep neural networks can provide ex-
cellent solutions for a wide range of problems, so long as there is sufficient availability of labeled
training data and computational resources. However, these results have been mostly obtained using
well-curated datasets in which the labels are of high quality. In the real world, it is often costly to obtain
high-quality labels, especially for large-scale datasets. A common approach is to use semi-automatic
methods to obtain the labels (e.g. “webly-labeled” images where the images and labels are obtained
by web-crawling). While such methods can greatly reduce the time and cost of manual labelling,
they also lead to low-quality noisy labels. In such settings, noise is one of the following two types:
closed-set noise where the true labels belong to one of the given classes (Set B in Figure 44) and
open-set noise where the true labels do not belong to the set of labels of the classification problem
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Figure 44. Different “tigers”.

(Set C in Figure 44). To deal with different types of noise, two main types of methods have been
proposed, which we name here as probability-consistent methods and probability-approximate meth-
ods.

Probability-consistent methods usually model noise patterns directly and propose corresponding
probabilistic adjustment techniques, e.g., robust loss functions [422, 423, 424] and noise corrections based
on noise transition matrix [425]. However, accurate modelling of noise patterns is non-trivial, and often
cannot even model open-set noise. Also, due to the necessary simplifications of probabilistic modelling,
such methods often perform poorly with heavy and complex noise. More recently, probability-approximate
methods, that is methods that do not model the noise patterns explicitly become perhaps the dominant
paradigm, especially ones that are based on sample selection. Earlier methods often reduce the influence
of noise samples by selecting a clean subset and training only with it [426, 427, 428, 429]. Recent methods
tend to further employ semi-supervised learning methods, such as MixMatch [430], to fully explore the
entire dataset by treating the selected clean subset as labeled samples and the non-selected subset as
unlabeled samples [431, 432]. These methods, generally, do not consider the presence of open-set noise
in the dataset, since most current semi-supervised learning methods can not deal with open-set noise
appropriately. To address this, several methods [433, 434] extend the sample selection idea by further
identifying the open-set noise and excluding it from the semi-supervised training.

In general, the above methods make assumptions about the pattern of the noise, such as the
confidence penalty specifically for asymmetric noise in DivideMix [431]. However, these mechanisms
are often detrimental when the noise pattern does not meet the assumptions – for example, explicitly
filtering open-set noise in the absence of open-set noise may result in clean hard samples being removed.
Furthermore, due to the complexity of combining multiple modules, the above methods usually need
to adjust complex hyperparameters according to the type and degree of noise.

In this work, we consider a novel problem setting — Learning with Unknown Label Noise (LULN),
that is, learning when both the degree and the type of noise are unknown. Striving for simplicity and
robustness, we propose a simple method for LUNL, namely Sample Selection and Relabelling (SSR),
with two components that are clearly decoupled: a selection mechanism that identifies clean samples
with correct labels, and a relabelling mechanism that aims to recover correct labels of wrongly labeled
noisy samples. These two major components are based on the two simple and necessary assumptions
for LULN, namely, that samples with highly-consistent annotations with their neighbours are often
clean, and that very confident model predictions are often trustworthy. Once a well-labeled subset
is constructed this way we use the most basic supervised training scheme with a cross-entropy loss.
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Figure 45. A toy example of SSR with a noisy animal dataset.

Optionally, a feature consistency loss can be used for all data so as to deal better with open-set noise.

5.12.2. Methodology

Let us denote with X ={xi}Ni=1,xi∈Rd, a training set with the corresponding one-hot vector labels
Y = {yi}Ni=1,yi ∈ {0,1}M , where M is the number of classes and N is the number of samples. For
convenience, let us also denote the label of each sample xi corresponding to the one-hot label vector yi as
li=argj[yi(j)=1]∈{1,...,M}. Finally, let us denote the true labels with Y′={y′

i}Ni=1. Clearly, for an open-
set noisy label it is the case that y′

i≠yi,y
′
i /∈{0,1}M , while for closed-set noisy samples y′

i≠yi,y
′
i∈{0,1}M .

We view the classification network as an encoder f that extracts a feature representation and a
parametric model classifier (PMC) gp that deals with the classification problem in question. We
also define a non-parametric KNN classifier (NPK) gq based on the feature representations from
encoder f. For brevity, we define fi≜f(xi) as the feature representation of sample xi, and pi≜gp(fi)
and qi ≜ gq(fi) as the prediction vectors from PMC gp and NPK gq, respectively. Following recent
works [431, 434, 432, 426, 427], we adopt an iterative scheme for our method consisting of two stages:
1) sample selection and relabelling, and 2) model training.

5.12.2.1. Sample selection and relabelling For a better exposition, we first introduce our sample
selection mechanism. Please note, that we actually relabel the samples before each sample selection.
Clean sample selection by balanced neighbouring voting Our sample selection is based on the
consistency, as quantified by a measure ci, between the label yri 18 of sample xi and an (adjusted)
distribution, qi, of the labels in its neighbourhood in the feature space. More specifically, let us denote
the similarity between the representations fi and fj of any two samples xi and xj by sij,i,j=1,...,N.
By default, we used the cosine similarity, that is, sij≜

fT
i fj

∥fi∥2∥fj∥2 . Let us also denote by Ni the index
set of the K nearest neighbours of sample xi in X based on the calculated similarity. Then, for each
sample xi, we can calculate the KNN-voted label distribution q′i=

1
K

∑
n∈Ni

yrn in its neighbourhood,
and a balanced version, qi∈RM , of it that takes into consideration/compensates for the distribution
π=

∑N
i=1y

r
i of the labels in the dataset. More specifically,

qi=π−1q′i, (78)
18Please note, we use the labels Yr (80) that a relabelling mechanism provides as mentioned above.
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where we denote with π−1 the vector whose entries are the inverses of the entries of the vector π — in
this way we alleviate the negative impact of possible class imbalances in sample selection.

The vector qi can be considered as the (soft) prediction of the NPK gq classifier. We then, define a
consistency measure ci between the sample’s label lri =argmaxjy

r
i (j) and the prediction qi of the NPK as

ci=
qi(l

r
i )

maxjqi(j)
, (79)

that is the ratio of the value of the distribution qi at the label lri (eq. 80) divided by the value of its highest
peakmaxjqi(j). Roughly speaking, a high consistency measure ci at a samplexi means that its neighbours
agree with its current label lri — this indicates that lri is likely to be correct. By setting a threshold θs to
ci, a clean subset (Xc, Yrc ) can be extracted. In our method, we set θs=1 by default, that is, we consider
a sample xi to be clean only when its neighbours’ voting qi is consistent with its current label yri .
Noisy sample relabelling by classifier thresholding Our sample relabelling scheme aims at adding
well-labeled samples to the training pool and is based on the PMC classifier gp. Specifically, we "relabel"
all samples for which the classifier is confident, that is all samples i for which the prediction pi of the
classifier PMC gp exceeds a threshold θr. Formally,

lri =


argmax

l
pi(l), max

l
pi(l)>θr

li, max
l

pi(l)≤θr
(80)

Please note, we denote the one-hot label corresponding to lri as yri — this will be used in eq. 78.
By setting a high θr, a highly confident sample xi will be relabeled — this can in turn further enhance
the quality of sample selection. Note, that this scheme typically avoids mis-relabelling open-set noise
samples as those tend not to have highly confident predictions. In this way, our method can deal with
open-set noise datasets effectively even though we do not explicitly propose a mechanism for them.

5.12.2.2. Model training In the training stage, we use the most basic form of supervised learning,
i.e., using the cross-entropy loss on the clean subset selected in the first stage — this updates both
the encoder f and the PMC gp. With our sample relabelling mechanism, the size of the clean subset
grows progressively by including more and more relabeled closed-set noise in training. Optionally, we
use a feature consistency loss that enforces consistency between the feature representations of different
augmentations of the same sample — this updates the encoder f and helps to learn a strong feature
space on which the selection mechanism of the first stage can rely.
Supervised training using the clean subset For each sample (x,yr) in the selected subset (Xc, Yrc ),
we train the encoder f and PMC gp with common cross-entropy loss, that is, Lce=−yrT loggp(f(x)).
Moreover, to deal with the possible class imbalance in the selected subset, we simply over-sample minority
classes. In the ablations study, we report the effect of balancing – the over-sampling and also the balanced
sample selection in eq. 78.
Optional: feature consistency regularization using all samples Although our relabeling method
can progressively relabel and introduce closed-set noise samples into training, open-set samples can also
improve generalization. Motivated by commonly used prediction consistency regularization methods, we
propose a feature consistency loss Lfc [6]. Specifically, with a projector hproj and predictor hpred, we mini-
mize the cosine distance between two different augmented views (x1 and x2) of the same sample x. That is,

Lfc=−
h⊤
1 h2

∥h1∥2∥h2∥2
, (81)
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where h1≜hpred(hproj(f(x1))) and h2≜hproj(f(x2)). In summary, the overall training objective is to
minimize a weighted sum of Lce and Lfc, that is

L=Lce+λLfc. (82)

We set λ=1. For brevity, we name our method as SSR when λ=0, and SSR+ when λ≠0.

5.12.3. Experimental results

We conduct extensive experiments on two standard benchmarks with synthetic label noise, CIFAR-10 and
CIFAR-100, and three real-world datasets, Clothing1M [435], WebVision [436], and ANIMAL-10N [437].
For brevity, we define abbreviated names for the corresponding noise settings, such as "sym50" for 50%
symmetric noise, "asym40" for 40% asymmetric noise and "all30_open50" for 30% total noise with 50%
open-set noise.

Table 52 shows results on CIFAR10 and CIFAR100 — we note again for SSR/SSR+ this is without
the use of model cotraining or pre-training. It is clear that our method far outperforms them (e.g. 66.6%
accuracy on CIFAR100 with 90% symmetric noise), not only in the case of symmetric noise but also
in the more realistic asymmetric synthetic noise settings.

Table 52. Results on CIFAR10/CIFAR100 datasets with synthetic noise.

Dataset CIFAR10 CIFAR100

Noise type Symmetric Assymetric Symmetric

Noise ratio 20% 50% 80% 90% 40% 20% 50% 80% 90%

Cross-Entropy 86.8 79.4 62.9 42.7 85.0 62.0 46.7 19.9 10.1
Co-teaching+ [427] 89.5 85.7 67.4 47.9 - 65.6 51.8 27.9 13.7
F-correction [438] 86.8 79.8 63.3 42.9 87.2 61.5 46.6 19.9 10.2
PENCIL [439] 92.4 89.1 77.5 58.9 88.5 69.4 57.5 31.1 15.3
LossModelling [440] 94.0 92.0 86.8 69.1 87.4 73.9 66.1 48.2 24.3
DivideMix* [431] 96.1 94.6 93.2 76.0 93.4 77.3 74.6 60.2 31.5
ELR+* [441] 95.8 94.8 93.3 78.7 93.0 77.6 73.6 60.8 33.4
RRL [442] 95.8 94.3 92.4 75.0 91.9 79.1 74.8 57.7 29.3
NGC [434] 95.9 94.5 91.6 80.5 90.6 79.3 75.9 62.7 29.8
AugDesc* [443] 96.3 95.4 93.8 91.9 94.6 79.5 77.2 66.4 41.2
C2D* [444] 96.4 95.3 94.4 93.6 93.5 78.7 76.4 67.8 58.7

SSR(ours) 96.3 95.7 95.2 94.6 95.1 79.0 75.9 69.5 61.8
SSR+(ours) 96.7 96.1 95.6 95.2 95.5 79.7 77.2 71.9 66.6

5.12.4. Conclusion

In this work, we propose an efficient Sample Selection and Relabelling (SSR) framework for Learning
with Unknown Label Noise (LULN). Unlike previous methods that try to integrate many different
mechanisms and regularizations, we strive for a concise, simple and robust method. The proposed method
does not utilize complicated mechanisms such as semi-supervised learning, model co-training and model
pre-training, and is shown with extensive experiments and ablation studies to be robust to the values of
its few hyper-parameters, and to consistently and by large surpass the state-of-the-art in various datasets.
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5.12.5. Relevance to AI4Media use cases and media industry applications

SSR represents a novel method for learning with noisy labels. It can be relevant in tasks such as visual
indexing and search and visual concepts classification.

5.12.6. Relevant publications

• Chen Feng, Georgios Tzimiropoulos and Ioannis Patras. "SSR: An Efficient and Robust Framework
for Learning with Unknown Label Noise." In 33rd British Machine Vision Conference, 2022. Zenodo
record: https://zenodo.org/records/8364210

5.12.7. Relevant software/datasets/other outcomes

• The Pytorch implementation can be found in
https://github.com/MrChenFeng/SSR_BMVC2022

5.13. Adaptive Soft Contrastive Learning
Contributing partner: QMUL

5.13.1. Introduction

Self-supervised learning learns meaningful representation information through label-independent tasks,
achieving performance that approaches or even exceeds that of supervised learning models in many tasks.
Early self-supervised learning methods are often based on heuristic tasks, such as the prediction of image
rotation angles, while the current mainstream methods are generally based on instance discrimination
tasks, i.e., treating each individual instance as a separate semantic class. Methods in this category usually
share the same framework, named as contrastive learning. For a specific view of a specific instance, they
define as positives other views of it and negatives views from other instances, and minimize its distance
to positives while maximizing its distance to negatives. Meanwhile, a large number of works have been
done to improve this framework, such as using a momentum encoder and memory bank to increase the
number of negatives [354].

In this work, we focus on an inherent deficiency of contrastive learning, namely “class collision" [445,
446]. The instance discrimination hypothesis violates the natural grouping in visual datasets and induces
false negatives, e.g., the representation of two similar dogs should be close to each other rather than pushed
away. To bridge the gap, we need to introduce meaningful inter-sample relations in contrastive learning.

Debiased contrastive learning [447] proposes a theoretical unbiased approximation of contrastive
loss with the simplified hypothesis of the dataset distribution, however, does not address the issue of
real false negatives. Some works [448, 449] apply a progressive mechanism to identify and remove false
negatives in the training. NNCLR [419] tries to define extra positives for each specific view by ranking
and extracting the top-K neighbors in the learned feature space. Considering soft inter-sample relations,
Co2 [450] introduces a consistency regularization enforcing relative distribution consistency of different
positive views to all negatives. Clustering-based approaches [451, 452] also provide additional positives,
but assuming the entire cluster is positive early in the training is problematic and clustering has an
additional computational cost. In addition, all these methods rely on a manually set threshold or a
predefined number of neighbors, which is often unknown or hard to determine in advance.

In this work, we propose ASCL, an efficient and effective module for current contrastive learning
frameworks. We reformulate the contrastive learning problem and introduce inter-sample relations in an
adaptive style. To make the training more stable and the inter-sample relationships more accurate, we use
weakly augmented views to compute the relative similarity distribution and obtain the sharpened soft label
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Figure 46. Structure of ASCL. When we remove the adpative relabelling step (indicated in light grey), ASCL can be
considered as a general contrastive learning framework such as MoCo.

information. Based on the uncertainty of the similarity distribution, we adaptively adjust the weights of
the soft labels. In the early stages of training, due to the random initialization, the weights of the soft labels
are low and the training of the model will be similar to the original contrastive learning. As the features
mature and the soft labels become more concentrated, the model will learn stronger inter-sample relations.

5.13.2. Methodology

Current self-supervised learning methods focus on the instance discrimination task, more specifically,
learning by considering each image instance as a separate semantic class. In this work, we follow the
representative structure in MoCo [354]. More specifically, given a specific sample x, and two different
transformed views of it, as query xq and target xt, we want to minimize the distance of the corre-
sponding representation projection zq and zt while maximizing the distance of zq and representations
of other samples cached in a memory bank {z1,...,zn}. Here z−=g(f(x−)). The learned representation
f(x−) will be fixed and utilized in subsequent tasks such as image classification with an extra linear
classifier (Figure 46). With the encoders fq,ft and projectors gq,gt, we optimize the infoNCE loss:

L=−log
exp(zTq zt/τ)

exp(zTq zt/τ)+
∑n
i=1exp(z

T
q zi/τ)

(83)

Where τ is a temperature hyperparameter that controls the feature density.
Soft contrastive learning Combining zt and memory bank {z1,...,zn} together as {z′1,z′2,...,z′n+1} ≜
{zt,z1,...,zn}19, we can easily rewrite eq. 83 below:

L=−
n+1∑
j=1

yjlogpj (84)

where

pj=
exp(zTq z

′
j/τ)∑n+1

i=1 exp(z
T
q z

′
i/τ)

(85)

yj=

{
1, j=1

0, otherwise
(86)

19For the convenience, we may use these two notations interchangeably in the following.
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Here y=[y1,...,yn+1] is the one-hot pseudo label while p=[p1,...,pn+1] is the corresponding prediction
probability vector. Recalling normal supervised learning, prediction over-confidence has inspired research
on label smoothing and knowledge distillation. Similarly in self-supervised learning, this problem is
more pronounced due to the fact that the distance between individual samples is smaller compared to
that between categories, especially when there are duplicate samples or extremely similar samples in
the dataset, i.e., the false negatives described earlier. By modifying pseudo label, especially the part
regarding with other samples, we can convert original contrastive learning problem as a soft contrastive
learning problem, with the optimization goal in eq. 84.

Adaptive Relabelling As mentioned above, the pseudo label in infoNCE loss ignores the inter-sample
relations which will result in false negatives. To address this problem, we propose to modify the pseudo
label based on the neighboring relations in the feature space. We first calculate the cosine similarity
d between self positive view z′1 and other representations in memory bank {z′2,z′3,...,z′n+1}:

dj=
z′1
T
z′j

∥z′1∥2∥z′j∥2
, j=2,...,n+1 (87)

• Hard relabelling According to dj,i=2,...,n+1, we define the top-K nearest neighbors set NK in the
memory bank of z′1 as extra positives for zq. The new pseudo label yhard will be defined as below:

yj=

{
1, j=1 or zj∈NK
0, otherwise

(88)

Intuitively speaking, we consider not only z′1 as positive for zq but also the top-K nearest neighbors
of z′1.

• Adaptive hard relabelling However, it is risky to recklessly assume that the top-K nearest neighbors
are positive, and, especially early in the training, some hard samples may have fewer close neighbors
compared to others. To alleviate these problems of yhard, we propose an adaptive mechanism that
automatically modifies the confidence of the pseudo label. More specifically, with cosine similarity
d we build the relative distribution q between self positive view z′1 and other representations in
memory bank {z′2,z′3,...,z′n+1}:

qj=
exp(dj/τ

′)∑n+1
l=2 exp(dl/τ

′)
, j=2,...,n+1 (89)

To quantify the uncertainty of relative distribution, i.e., how confident when we extract the
neighbors, we define a confidence measure as the normalized entropy of the distribution q:

c=1− H(q)

log(n)
(90)

Here H(q) is the Shannon entropy of q. We further use log(n) to normalize c into [0,1]. We then
get the adaptive hard label yahcl by augmenting yhard with c:

yj=


1, j=1

c, j ≠1 and zj∈NK
0, j ≠1 and zj /∈NK

(91)

• Adaptive soft relabelling Moreover, instead of using top-K neighbors for the extra positives, we
also propose using the distribution q itself as soft labels. Intuitively speaking, a more concentrated
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distribution yields a higher degree of confidence, implying a more reliable neighboring relationship
for the sample. We then define the adaptive soft label yascl as:

yj=

{
1, j=1

min(1, c·K·qj), j ≠1
(92)

Here, c is defined in eq. 91 to weight the soft labels, and K is the number of neighbors in NK.
Please note, that we put an upper bound of one – that means that the most confident positive
neighbor is not more confident than a view of the sample itself, i.e., than z′1.
Finally, yascl, yahcl and yhard are then normalized, that is:

yj=
yj∑
−y−

(93)

For simplicity, we use the same notation for the normalized pseudo label as the unnormalized ones. By
default we use yascl for training — this is the ASCL method. We call the training method that uses
yahcl as AHCL, and the one with yhard as Hard. When we set K as zero, the method degenerates
to the original MoCo framework.

5.13.3. Experimental results

We evaluate ASCL on ImageNet-1k in Table 53. With all methods pretrained for 200 epochs, ASCL
outperforms the current state-of-the-art methods. Also, please note that ASCL requires only one
backpropagation pass, which reduces a significant amount of computational cost compared to methods
such as BYOL, SimCLR, etc.

Table 53. Results on ImageNet-1K dataset.

Method Architecture BackProp EMA Batch Size Epochs Top-1 Acc
Supervised ResNet50 1x No 256 120 76.5
InstDisc [453] ResNet50 1x No 256 200 58.5
LocalAgg [454] ResNet50 1x NO 128 200 58.8
MoCo [354] ResNet50 1x Yes 256 200 67.5
CO2 [450] ResNet50 1x No 256 200 68.0
PCL [446] ResNet50 1x Yes 256 200 67.6
ReSSL [417] ResNet50 1x Yes 256 200 69.9
ASCL(Ours) ResNet50 1x Yes 256 200 71.5
SimCLR [353] ResNet50 2x No 4096 200 66.8
NNCLR [419] ResNet50 2x No 4096 200 70.7
CLSA [455] ResNet50 2x Yes 256 200 69.4
SwAV [396] ResNet50 2x No 4096 200 69.1
SimSiam [6] ResNet50 2x No 256 200 70.0
BYOL [389] ResNet50 2x Yes 4096 200 70.6

5.13.4. Conclusion

In this work, we propose ASCL, a reliable and efficient framework based on the current contrastive
learning framework. We utilize a sharpened inter-sample distribution to introduce extra positives and
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adaptively adjust its confidence based on the entropy of the distribution. Our method achieves the state of
the art in various benchmarks, with a negligible extra computational cost. We also show the potential of
our method with self-supervised learning methods requiring no memory bank and explicit negative pairs.

5.13.5. Relevance to AI4Media use cases and media industry applications

ASCL represents a novel method for self-supervised representation learning. It can be relevant in tasks
such as 3visual indexing and search and visual concepts classification.

5.13.6. Relevant publications

• Chen Feng, Ioannis Patras. "Adaptive Soft Contrastive Learning." In 2022 26th International
Conference on Pattern Recognition (ICPR), 2022. Zenodo record: https://zenodo.org/records/
8014131

5.13.7. Relevant software/datasets/other outcomes

• The Pytorch implementation can be found in
https://github.com/MrChenFeng/Adaptive-Soft-Contrastive-Learning_ICPR2022

5.14. DivClust: Controlling Diversity in Deep Clustering
Contributing partner: QMUL

5.14.1. Introduction

Clustering has been a major research subject in the field of machine learning, one to which deep learning
has recently been applied with significant success. However, an aspect of clustering that is not addressed
by existing deep clustering methods, is that of efficiently producing multiple, diverse partitionings for
a given dataset. This is particularly important, as a diverse set of base clusterings are necessary for
consensus clustering, which has been found to produce better and more robust results than relying on a
single clustering. QMUL’s work has focused on this area, and we developed a diversity enforcing clustering
loss component that can be used to train models to produce multiple clusterings of controlled diversity
with each other, and which explore different partitionings of a given dataset. We conduct experiments
with multiple datasets and deep clustering frameworks and show that: a) our method effectively controls
diversity across frameworks and datasets with very small additional computational cost, b) the sets of
clusterings learned by DivClust include solutions that significantly outperform single-clustering baselines,
and c) using an off-the-shelf consensus clustering algorithm, DivClust produces consensus clustering
solutions that consistently outperform single-clustering baselines, effectively improving the performance
of the base deep clustering framework.

5.14.2. Methodology

The architecture of our method can be seen in Figure 47. It consists of a backbone network f , followed by
K projection heads h1,...,hK, each corresponding to a clustering Ck. Assuming a set X of N unlabeled
samples, the backbone network maps those samples x∈X to vector representations f(x), and each
projection head hk maps the representations to C clusters, such that pk(x)=hk(f(x))∈RC represents
the probability assignment vector mapping the sample x∈X to C clusters in clustering k=1,...,K. The
column pk(i), that is the probability assignment vector for the i-th sample, shows to which clusters that
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sample has been assigned. The row vector qk(j), that is the cluster membership vector for a cluster j,
shows which samples are assigned to cluster j.

To quantify the similarity between clusterings A and B we define the inter-clustering similarity matrix
SAB∈RC×C. We define each element SAB(i,j) as the cosine similarity between the cluster membership
vector qA(i) of cluster i∈A and the cluster membership vector qB(j) of cluster j∈B:

SAB(i,j)=
qA(i)·qB(j)

||qA(i)||2||qB(j)||2
(94)

This measure expresses the degree to which samples in the dataset are assigned similarly to clusters
i and j. Specifically, SAB(i,j)=0 if qA(i)⊥qB(j) and SAB(i,j)=1 if qA(i)=qB(j). It is, therefore, a
differentiable measure of the similarity of clusters i and j.

Based on the inter-clustering similarity matrix SAB, we define DivClust’s loss Ldiv to softly enforce
that the aggregate similarity SaggrAB between clusterings A and B does not exceed a similarity upper
bound d. Ldiv regulates the diversity between clusterings A and B by forcing that SaggrAB <d, for d∈ [0,1].

SaggrAB =
1

C

C∑
i=1

max
j

(SAB(i,j)) , Ldiv(A,B)=[SaggrAB −d]+ (95)

The similarity upper bound d is dynamic and updated in regular intervals of T=10 steps as:

ds+1=

{
max(ds(1−m),0), if DR>DT

min(ds(1+m),1), if DR≤DT
, (96)

where DT is a user-defined similarity target DR is the inter-clustering similarity measured over a small
memory bank. Both values measure inter-clustering similarity with the Normalized Mutual Information
metric averaged over the clusterings. Following this update rule, we decrease d when the measured
inter-clustering similarity DR needs to decrease, and increase it otherwise.

Having defined the diversity loss Ldiv between two clusterings, we extend it to multiple clusterings
K and combine it with the base deep clustering framework’s objective for the joint loss Ljoint(k) for
each clustering k, where Lmain(k) depends on cluster assignment matrix Pk, while Ldiv(k,k′) depends
on Pk and Pk′. Accordingly, the model’s training loss Ltotal is the average of Ljoint over all clusterings.

Ljoint(k)=Lmain(k)+
1

K−1

K∑
k′=1,k′≠k

Ldiv(k,k
′) , Ltotal=

1

K

K∑
k=1

Ljoint(k) (97)

Figure 47. Overview of DivClust. Assuming clusterings A and B, the proposed diversity loss Ldiv calculates their
similarity matrix SAB and restricts the similarity between cluster pairs to be lower than a similarity upper bound d. In the
figure, this is represented by the model adjusting the cluster boundaries to produce more diverse clusterings. Best seen in
color.
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Table 54. Results combining DivClust with CC for various diversity targets DT . We underline DivClust results that
outperform the single-clustering baseline CC, and note with bold the best results for each metric across all methods and
diversity levels. We emphasize that the NMI in this table measures the similarity between the single clustering produced by
each method and the ground truth classes.

Dataset DT CIFAR10 CIFAR100 ImageNet-10 ImageNet-Dogs

Metric NMI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

K-means - 0.087 0.229 0.049 0.084 0.130 0.028 0.119 0.241 0.057 0.55 0.105 0.020
DEC - 0.257 0.301 0.161 0.136 0.185 0.050 0.282 0.381 0.203 0.122 0.195 0.079
DAC - 0.396 0.522 0.306 0.185 0.238 0.088 0.394 0.527 0.302 0.219 0.275 0.111
ADC - - 0.325 - - 0.160 - - 0.530 - - - -

DCCM - 0.496 0.623 0.408 0.285 0.327 0.173 0.608 0.710 0.555 0.321 0.383 0.182
IIC - - 0.617 - - 0.257 - - - - - - -

PICA - 0.591 0.696 0.512 0.310 0.337 0.171 0.802 0.870 0.761 0.352 0.352 0.201
CC - 0.705 0.790 0.637 0.431 0.429 0.266 0.859 0.893 0.822 0.445 0.429 0.274

CC-Kmeans - 0.654 0.698 0.523 0.429 0.405 0.235 0.792 0.841 0.669 0.457 0.444 0.284
DeepCluE - 0.727 0.764 0.646 0.472 0.457 0.288 0.882 0.924 0.856 0.448 0.416 0.273

DivClust

1. 0.678 0.763 0.604 0.418 0.424 0.257 0.86 0.895 0.825 0.459 0.451 0.298
0.95 0.677 0.76 0.602 0.431 0.434 0.276 0.891 0.936 0.878 0.461 0.451 0.297
0.9 0.678 0.789 0.641 0.422 0.426 0.258 0.879 0.92 0.859 0.48 0.487 0.332
0.8 0.724 0.819 0.681 0.422 0.414 0.26 0.879 0.918 0.851 0.458 0.448 0.296
0.7 0.71 0.815 0.675 0.44 0.437 0.283 0.85 0.90 0.819 0.516 0.529 0.376

Table 55. Avg. inter-clustering similarity scores DR for clustering sets produced by DivClust combined with CC for
various diversity targets DT . The objective of DivClust is that DR≤DT .

DT DR

CIFAR10 CIFAR100 ImageNet-10 ImageNet-Dogs

1. 0.976 0.939 0.987 0.941
0.95 0.946 0.926 0.948 0.945
0.9 0.9 0.848 0.897 0.87
0.8 0.814 0.806 0.807 0.795
0.7 0.699 0.705 0.696 0.702

5.14.3. Experimental results

We conduct experiments on four datasets (CIFAR10, CIFAR100, Imagenet-10, Imagenet-Dogs) using
the deep clustering method CC as our baseline, aggregate the learned clusterings using the off-the-shelf
consensus clustering method SCCBG [456], and report the Accuracy (ACC), Normalized Mutual In-
formation (NMI) and Adjuster Rand Index (ARI) scores of the resulting clustering solution, relative
to the ground truth labels in Table 54. Furthermore, we report the target and reported similarities DT

and DR for DivClust in Table 55. Our results show that DivClust can effectively control inter-clustering
diversity without reducing the quality of the clusterings. Furthermore, we demonstrate that, with the
use of an off-the-shelf consensus clustering algorithm, the diverse base clusterings learned by DivClust
produce consensus clustering solutions that outperform the base frameworks, effectively improving them
with minimal computational cost.

5.14.4. Conclusion

We introduce DivClust, a method that can be incorporated into existing deep clustering frameworks
to learn multiple clusterings while controlling inter-clustering diversity. To the best of our knowledge,

Final report on Multimedia Summarisation, Analysis and Production 171 of 322



this is the first method that can explicitly control inter-clustering diversity based on user-defined targets,
and that is compatible with deep clustering frameworks that learn features and clusters end-to-end.
Experiments confirm the effectiveness of DivClust in controlling inter-clustering diversity and its adapt-
ability. Furthermore, results demonstrate that DivClust learns high quality clusterings, which, in the
context of consensus clustering, lead to improved performance compared to single clustering baselines
and alternative ensemble clustering methods.

5.14.5. Relevance to AI4Media use cases and media industry applications

DivClust represents a novel method for generating diverse clusterings of visual data. It can be relevant
in tasks such as visual indexing and search and visual concepts classification.

5.14.6. Relevant publications

• Maniadis Metaxas, Ioannis, Georgios Tzimiropoulos, and Ioannis Patras. "Divclust: Controlling
diversity in deep clustering." Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2023. Zenodo record: https://zenodo.org/records/8013831

5.14.7. Relevant software/datasets/other outcomes

• The Pytorch implementation can be found in
https://github.com/ManiadisG/DivClust

5.15. Efficient Unsupervised Visual Representation Learning with Explicit
Cluster Balancing

Contributing partner: QMUL

5.15.1. Introduction

Self-supervised learning has recently emerged as the preeminent pretraining paradigm across and between
modalities, with remarkable results. In the image domain specifically, group (or cluster) discrimination
has been one of the most successful methods. However, such frameworks need to guard against heavily
imbalanced cluster assignments to prevent collapse to trivial solutions. Existing works typically solve
this by reweighing cluster assignments to promote balance, or with offline operations (e.g. regular
re-clustering) that prevent collapse. However, the former typically requires large batch sizes, which
leads to increased resource requirements, and the latter introduces scalability issues with regard to large
datasets. To tackle this challenge, QMUL developed ExCB, a framework that uses a novel online cluster
balancing method that is stable without requiring a large batch size. ExCB estimates the relative size of
the clusters across batches and balances them by adjusting cluster assignments, proportionately to their
relative size and in an online manner. Thereby, it overcomes previous methods’ dependence on large
batch sizes and is fully online, and therefore scalable to any dataset. We conduct extensive experiments to
evaluate our approach and demonstrate that ExCB: a) achieves state-of-the-art results with significantly
reduced resource requirements compared to previous works, b) is fully online, and therefore scalable
to large datasets, and c) is stable and effective even with very small batch sizes.

5.15.2. Methodology

Following previous works, ExCB utilizes a teacher-student framework, where the student is trained to
match the cluster assignments of the teacher, and the teacher’s weights follow the student via momentum
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Figure 48. Illustration of ExCB’s balancing operator B for two clusters c1 (red) and c2 (blue). B(z;s) adjusts
sample-cluster cosine similarities z according the relative cluster sizes, as measured in s. For smaller clusters the
similarities are increased (zB>z), whereas for larger clusters the similarities are decreased (zB<z). The impact, as seen
in the figure, is that the boundary between clusters shifts, undersized (oversized) clusters are assigned more (fewer)
samples, and clusters become more balanced.

update. We define as zhs and zgs the sample-cluster cosine similarities produced by the student’s projector
and predictor MLP heads respectively, and as zt the sample-cluster cosine similarities produced by the
teacher’s projector. In order to balance the target cluster assignments produced by the teacher, we apply
a balancing operator B to zt, resulting in updated sample-cluster similarities zBt , as illustrated in Table
48. We then obtain the probability assignment vectors phs , pgs and pt∈RK, mapping sample x to each
cluster k∈K:

phs (x)
(k)=

exp
(
zhs (x)

(k)/τs
)∑K

i=1exp(z
h
s (x)

(i)/τs)
, pgs(x)

(k)=
exp(zgs(x)

(k)/τs)∑K
i=1exp(z

g
s(x)(i)/τs)

, (98)

pt(x)
(k)=

exp((zBt (x)
(k))/τt)∑K

i=1exp((z
B
t (x)

(i))/τt)
, (99)

where τs, τt are temperature hyperparameters. The student is then trained to minimize the loss L:

L=
1

2

∑
x′∈G

∑
x′′∈G∪L
x′′≠x′

H(pt(x
′),phs (x

′′))+
1

2

∑
x′∈G

∑
x′′∈G∪L

H(pt(x
′),pgs(x

′′))
, (100)

where x′ and x′′ are different views of sample x and G, L represent global and local crops.
To define the balancing operator B, we first define the relative cluster size vector s∈RK. For each

batch ofNB samplesX we obtain the teacher’s cluster assignments Pt(X)=[pt(x1),...,pt(xNB
)]∈RNB×K,

and calculate the in-batch relative cluster size vector sB ∈RK as the proportion of samples assigned
to each cluster:

s
(k)
B =

1

NB

NB∑
n=1

1argmax
k∈K

(pt(xn))=k. (101)

The vector s is then updated for each batch as:

s=sms+sB(1−ms), (102)

where ms is a momentum hyperparameter.
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Method Batch Size Epochs Linear k-NN

Supervised - - 75.6 -
SimCLR 4096 800 71.7 -
BYOL 4096 1000 74.4 64.8
MoCo-v3 4096 1000 74.6 -
DeepCluster v2 4096 800 75.2 -
Barlow Twins 2048 1000 73.2 66.0
SwAV 4096 800 75.3 65.7
DINO 4096 800 75.3 67.5
NNCLR 4096 1000 75.4
TWIST* 2048 800+50 75.5 -
MIRA 4096 800 75.7 68.8
MAST 2048 1000 75.8 -
CoKe 1024 800 76.4 -
SMoG 4096 400 76.4 -
ExCB 1024 400 76.5 71.0

Table 56. Linear & k-NN classification on ImageNet. We report linear and k-NN classification accuracy on
ImageNet, along each method’s pretraining batch size and epochs. *TWIST follows standard pretraining with filtered
self-labeled training.

Essentially, s∈ [0,1] measures the proportion of samples assigned to each cluster over multiple batches
with an exponential moving average whose window length is determined by ms. This approach yields
an accurate estimate of cluster sizes across the dataset, without requiring a large batch size. If samples
are distributed among clusters with absolute uniformity, then s(k)→ 1

K ∀k∈K, whereas s(k)< 1
K for

undersized clusters and s(k)> 1
K for oversized clusters.

We then define B(z;s) as follows:

zB=B(z;s)=


1−[1−z]sK , if s< 1

K

[1+z] 1
sK−1 , if s> 1

K

z , otherwise
(103)

For any cluster k, B increases sample-cluster similarity if k is undersized (zB>z for s< 1
K ), and

decreases it if k is oversized (zB<z for s> 1
K ). In this way, undersized (oversized) clusters are assigned

more (fewer) samples, in an effort to approximate evenly sized clusters (s(k)→1,∀k∈K). This simple
approach softly balances cluster assignments without requiring a large batch size.

5.15.3. Experimental results

We conduct extensive experiments with both CNN and ViT backbones, and demonstrate that ExCB
achieves state-of-the-art performance, while requiring fewer resources (batch size and/or pretraining
epochs) compared to competitive methods. Specifically, we present results for the main classification
downstream task in Table 56 and in Table 57 for ResNet50 and ViT-S/16 backbones, respectively. In both
cases, ExCB outperforms previous works, and we note that, for ResNet50, it does so with fewer epochs
and a smaller batch size, whereas for ViT-S/16 it outperforms DINO without any hyperparameter tuning
(i.e. using DINO’s recommended hyperparameters), which highlights ExCB’s effectiveness and reliability.

5.15.4. Conclusion

We present ExCB, a novel clustering-based framework for self-supervised representation learning. ExCB
relies on a novel cluster balancing method that explicitly measures their sizes across multiple batches, and
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Method Batch Size Epochs
100 300 800

MoCo-v3 4096 - 72.5 -
DINO 1024 73.8 75.9 77.0
TWIST 1024 - 76.3 -
ExCB 1024 73.9 76.4 77.1

Table 57. Linear classification with ViT. We report linear classification accuracy on ImageNet for various epochs.

adjusts their assignments to promote evenly sized clusters. We conduct extensive experiments and find that
ExCB achieves state-of-the-art results across benchmarks and backbone architectures. However, crucially,
our experiments demonstrate that ExCB is also remarkably efficient, as it achieves the strong performance
reported in this work with less training and a much smaller batch size than most other frameworks.
Overall, we believe that the proposed framework is not only significant in terms of its performance, but
also as a step toward decreasing the resources required for self-supervised pretraining with visual data.

5.15.5. Relevance to AI4Media use cases and media industry applications

ExCB represents a novel self-supervised representation learning method for visual data. It can be relevant
in tasks such as visual indexing and search and visual concepts classification.

5.15.6. Relevant publications

• Maniadis Metaxas, Ioannis, Georgios Tzimiropoulos, and Ioannis Patras. "Efficient Unsuper-
vised Visual Representation Learning with Explicit Cluster Balancing." European Conference on
Computer Vision. 2024. Zenodo record: https://zenodo.org/records/13510391

5.15.7. Relevant software/datasets/other outcomes

• The Pytorch implementation can be found in
https://github.com/ManiadisG/ExCB

5.16. Few-shot Object Detection as a Semi-Supervised Learning Problem
Contributing partners: UPB, JR

5.16.1. Introduction

Few-shot object detection is by itself a relatively new topic, being addressed by a modest, albeit growing,
number of works. Due to the difficult nature of the task, results in this field are not spectacular, leaving
much room for improvement. One interesting approach to the problem is to benefit from ensembling
strategies, which combine individual systems into a single setup whose performance exceeds every
individual performance of its components. Ensembling efforts have been mostly made in the image
classification field [457, 458, 459], or for object detection [460, 461, 462], in both cases approaching
techniques such as cooperation, competition or voting schemes. Separately, different groups of researchers
tackled the few-shot object detection problem [463, 464, 465, 297], with focus on meta-learning, weight
sharing or fine-tuning approaches. However, there are no other works related to ensemble learning in
the few-shot object detection scenario.
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(a) Regular ensembling of FSOD systems. (b) Proposed ensembling of FSOD systems.
Figure 49. Comparison between regular and proposed ensembling architectures for FSOD systems.

5.16.2. Methodology

We base our ensembling strategy on a mixture between the works of Wang et al. [297] and Dvornik
et al. [457]. In the former, FSOD is introduced as a fine-tuning step on top of a pre-trained two-stage
object detector. The authors argue that having a pre-trained detector, it is sufficient to freeze the entire
network, except for the last two layers and perform fine-tuning solely on these layers in order to obtain
improved performance. In the latter, the authors tackle the problem of image classification and argue
that having several networks performing the same classification task together yields better results due to
having as little as possible different random weight initialization. The authors study the impact brought
by having several almost identical classifiers perform the same job, with the only difference between
them being the random values used to initialize the weights in the training process.

Two-stage object detectors generally consist of two fundamental sections: the region (or object)
proposal network (RPN) and the feature extractor, together with a classifier, working on top of it.
Ensembling strategies usually deploy several networks and process their set of outcomes, as depicted
in Figure 49a. However, this bears the cost of training N different networks with N usually being greater
than 5. From the resource point of view, this type of processing is very costly, especially GPU-wise.
Furthermore, the ensemble is usually distilled in order to reduce inference time, possibly at the cost of
also reducing the system’s performance.

Our ensemble learning paradigm takes advantage of the fact that the framework presented in [297]
freezes almost the entire two-stage object detection network. This leaves the object classifier part open for
fine-tuning. Following [457], we apply a set of classifiers on top of the features extracted from the RPN’s
proposed boxes and generate N classification decisions for each proposed box, as depicted in Figure 49b,
thus approximately simulating an ensemble of N complete networks. Then, a regular non-maximum
suppression (NMS) algorithm is applied for the resulting proposals. From this point on, the system
approximates a single object detector, with enhanced detection capabilities.

5.16.3. Experimental Results

Performance-wise, our ensembling method adds a slight improvement to the detection performance of
the original system [297]. To the best of our knowledge, this type of approach has not been tried before.
Therefore, we compared our proposed system on the MS COCO dataset with the original work of Wang
et al. [297], while keeping the evaluation protocol unchanged. We obtained an AP@0.5 of 10.1 and 13.6
on 10 and 30 shots, respectively, compared to the original results of 10.0 and 13.4, respectively. Thus,
our method essentially adds a marginal improvement with virtually no additional cost incurred.

5.16.4. Conclusion

The main difference between our method and the usual ensembling strategy is that we reduce the use of
resources N-fold. One could argue that our proposed system’s RPN does not behave in the same manner
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as in the original case, having N times less proposed boxes to work on, but allowing the ensembled
system’s RPN to propose a large amount of possible objects (>2,000) reaches the same performance as a
combination of several RPNs, since the vast majority of the proposed regions are, in fact, not objects, and
are therefore redundant. Another significant advantage of our method is that it is almost free to scale.
Adding another network to the ensemble is reduced to adding another classification head to the architecture,
which has insignificant impact from a memory standpoint. This method adds flexibility in the sense that
it can be applied to a large number of network architectures that follow this working environment. Both
the classifiers and the ensembling algorithm can remain unchanged from the regular ensembling setup.

5.16.5. Relevance to AI4Media use cases and media industry applications

Few-shot object detection is particularly useful in tasks that do not possess sufficient data. This can be
found especially in areas where the user would like to retrieve less common objects from a dataset, objects
for which the detectors did not have enough data to train on. Leveraging the power of several DNNs,
an ensemble of common object detectors improves the performance of the overall decision by intelligently
selecting the best individual predictions so as to gain better results at a negligible computational price.

5.16.6. Relevant Publications

• W. Bailer, M. Dogariu, B. Ionescu, H. Fassold, "Few-shot Object Detection as a Semi-supervised
Learning Problem", Proceedings of the 19th International Conference on Content-based Multimedia
Indexing (CBMI), 2024.
Zenodo record: https://zenodo.org/records/10636415

5.16.7. Relevant software/datasets/other outcomes

The code for the framework is available at https://github.com/wbailer/few-shot-object-detection

5.17. Deep Learning for Image Retrieval: An Overview
Contributing partner: AUTH

5.17.1. Introduction

Over the past few years, Deep Neural Networks (DNNs) have significantly advanced and facilitated
the task of searching in databases for similar data, particularly in the domain of Content-Based Image
Retrieval (CBIR). DNNs have emerged as the most accurate and widely adopted approach for such
tasks. While a few notable studies have explored deep image retrieval methods, these investigations
have primarily concentrated on specific approaches. They often fall short of encapsulating the latest
developments in the rapidly evolving field. Given the evolution of image retrieval, it is challenging
yet crucial to conduct a comprehensive evaluation of the relevant studies. Therefore, the objective of
this survey is to provide a concise summary of the Deep Image Retrieval concept and comprehensively
gather, describe, and interpret various image retrieval methods. By doing so, we aim to enhance the
understanding of the current state-of-the-art research and foster future ideas in this area.

5.17.2. Literature overview

Deep neural networks have emerged as a highly efficient and widely employed artificial intelligence
technique, demonstrating exceptional performance across diverse tasks. One such significant task is
information retrieval, which enables retrieving specific data items that satisfy predefined criteria from a
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designated database [466]. Digital images constitute a substantial portion of multimedia. Their analysis
is crucial for numerous computer vision applications in real-world scenarios. Industries and services
spanning social media to autonomous systems, and remote sensing daily generate an enormous volume
of digital images. Their exponential growth has stimulated profound scientific interest in the field of
image retrieval. Its primary objective is to enable users to browse, search, and retrieve images from
an image database that meet specific user requirements. Consequently, image retrieval has become
a prominent research area within both Information Retrieval and Computer Vision domains. Due to
the ever-increasing volume of image data worldwide, the significance of addressing the challenges and
advancing the methodologies of image retrieval has been amplified in recent years.

Image retrieval applications are practically limitless, extending from medical image search to facial
images and, social media image content search. Typically, digital H×W pixel images can have a huge
dimensionality RHW for large H,W . It is advantageous to reduce high image dimensionality, before
conducting image search. This reduction is typically achieved through image feature extraction [467]. The
image representation vector (also called image feature vector) fi=f(xi,θ) of database images xi,i=1,...,N
is extracted and compared to the fq = f(xq,θ) of the query image xq. In the case of DNN features,
f=f(x,θ) denotes a DNN having a learnable parameter vector θ. By extracting relevant features f∈Rd
from images, such as color histograms, texture descriptors, or deep neural features the image dimensionality
x∈Rm can be significantly reduced i.e, d<<m. The similarity between images xi,xq can be accurately
assessed based on the extracted features. By comparing the extracted image features of the query image
to those of the database images, an image similarity measure S(fq,fi) can be computed, enabling the
retrieval of images that exhibit content-based similarity to the query image. This facilitates efficient image
retrieval by reducing computational complexity and enhancing retrieval accuracy. A similarity metric
is employed to evaluate appropriate image similarity (or dis-similarity) [468]. Numerous image similarity
functions have been proposed e.g the Euclidean distance, the cosine similarity, or the KL divergence.

Content Based Image Retrieval (CBIR) aims to identify and extract database images that exhibit visual
content similarity to a given query image based on their content [469]. Given the feature representations
of the images to be searched and the feature representation of the query image acquired through a feature
extraction approach, the output of the retrieval process is a ranked set of images based on their similarity
measure to the query representation, as illustrated in Figure 50. CBIR techniques can be categorized
into two types, namely at category or instance level. Category-level retrieval aims at extracting images
belonging to the same class as the query image. Instance-level retrieval focuses on finding images depicting
a specific instance of an object or scene with the query image and not just the object class, even if the
images are captured under different imaging conditions. A common framework for deep learning-based
CBIR is described in Figure 51. Typically it operates through several key steps to effectively match and
retrieve images based on their content. Firstly, a DNN model is trained on a large training image dataset.
The model learns to extract discriminative image feature representations from input images. The features
of the query image are also extracted. Subsequently, a similarity metric such as cosine similarity or
Euclidean distance is employed to compute the similarity between the query image and the images in the
database. This framework enables efficient and accurate retrieval of images with similar content, leveraging
the power of deep learning to handle large-scale image databases and diverse visual content [470].

Since its inception, a primary objective of the image retrieval task has been to bridge the semantic
gap, which refers to the disparity between low-level image representations and higher-level conceptual
understanding [471]. Earlier image retrieval approaches have aimed to extract semantically rich and
geometrically invariant image representations to describe the image based on its shape [472], texture
[473] or color [474]. These include techniques such as Fisher Vector descriptors [475] or Scale-Invariant
Feature Transform (SIFT) [476, 477], Histograms of Oriented Gradients (HOG) [478], Oriented FAST
and rotated BRIEF (ORB) [479], Speeded-Up Robust Features (SURF) [480] or Local Binary Pattern
(LBP) [481]. Due to the use of ImageNet [86], deep CNNs have emerged as foundational descriptors
in various computer vision tasks, notably image retrieval.
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Figure 50. An example of image retrieval from an image database (Tiny ImageNet) [11]. Given the query image (left),
the images on the right are retrieved.

Figure 51. A deep CBIR framework.

Two prevalent types of image representations have been extensively explored: global features
[482, 483, 484], which offer high-level semantic image signatures, and local features [485, 486, 487],
which encapsulate discriminative geometry information about specific image regions. Global features are
typically designed to be invariant to viewpoint and illumination, while local features excel in capturing
local geometry and textures. Traditionally, image retrieval relied on image descriptor matching [488].
The advent of CNN-based descriptors revolutionized this approach and there has been a noticeable shift
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in feature representation, transitioning from hand-engineered approaches to learning-based methods
following the emergence of deep learning [489].

Utilizing neural features has been extensively explored as a promising means to bridge the semantic
gap. These techniques leverage the power of machine learning algorithms to extract rich image descriptors
(representations) from raw image data, enabling a more effective and accurate retrieval process. In
image retrieval, representations encode image contents and measure their similarities. Image retrieval
has witnessed the adoption of fully-connected layers after convolutional layers to generate global
descriptors, followed by dimensionality reduction [483]. These deep CNNs global descriptors have
superseded conventional hand-crafted features such as SIFT [477]. Many existing approaches leveraging
deep architectures for image retrieval primarily utilize pre-trained networks as local feature extractors.
Consequently, significant efforts have been directed toward employing image representations suitable for
retrieval tasks atop these features. Different types of loss functions, including classification loss [485, 490] or
contrastive loss [491, 492], have also been thoroughly investigated in the field. Various pooling techniques,
including sum pooling [482], max pooling [484], and average pooling [493], have been employed. Some
studies integrate attention mechanisms [494] to amplify the activations of crucial features on the feature
map. Notably, recent research has focused on extracting representative and distinctive features for global
and local representations using deep learning methods [495, 485, 496, 497, 498]. This poses challenges, as
representations for retrieval must be compact while preserving intricate image details. Innovations have
been made to enable deep architectures to accurately represent images of various sizes and aspect ratios
[482, 484]. More recently, Vision Transformers are predominantly utilized to map images to their compact
representations [15, 16, 499, 492, 500, 501]. Typically the similarity between features can be computed
using distance metrics or assessed using re-ranking methodologies [502, 495]. There has been a growing
research focus on approximate nearest neighbor search methods aiming at accelerating the search process
[503]. For faster distance computation, hashing techniques have been employed in the past years [504, 505].

This work endeavors to present a thorough examination of the recent advancements in deep image
retrieval methods. Throughout our survey, we categorize the most utilized and successful methods into
six categories. Over the years, researchers have proposed several methods for similarity comparison,
and thus image retrieval, using machine learning techniques, such as metric learning and representation
learning. The objective of representation and metric learning is to build new spaces of representations to
improve performance. Metric learning focuses on learning a distance to measure the similarity between
different instances [506], while representation learning aims at learning meaningful representations from
data that can be used later for comparison [507]. Representation learning aims at learning a projection
function that can transform the data points in the original space to a discriminative space where points
from the same class will be gathered together, and points from different classes will be pushed far apart.
In feature aggregation, aggregated features are utilized for training the DNNs [508], [509]. These methods
involve embedding convolutional features into a high-dimensional space to generate more compact and
discriminative feature representations [510]. Attention mechanisms, enable the DNN to focus on the
most relevant image parts during feature extraction by computing an attention map, thus enhancing the
discriminative power of the extracted features. Hashing algorithms have been proposed as a solution for
large-scale image search and retrieval due to their computational and storage efficiency. These algorithms
map images to compact binary codes while preserving the underlying data structure. By employing
hashing, computational requirements are reduced, leading to faster retrieval times in various information
retrieval-based applications. In the context of image retrieval, DNN fine-tuning involves taking a
pre-trained DNN that has been trained on a source dataset and retraining it on a new target dataset
specifically for image retrieval tasks. This fine-tuning process helps adapt the DNNs to the characteristics
and requirements of the new datasets, hence improving their performance in image retrieval.
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5.17.3. Relevance to AI4Media use cases and media industry applications

This work is relevant to UC3 (AI in Vision - High quality Video Production and Content Automation)
and UC7 (AI for Content Organization and Content Moderation) since it provides an overview of
advanced deep learning image retrieval methods and thus, offers information regarding novel solutions
to analyze visual content.

5.17.4. Relevant Publications

• I. Valsamara, and I. Pitas, "Deep Learning for Image Retrieval: An Overview", Under review

5.18. Solutions to large scale Video Browsing and Retrieval
Contributing partner: CNR

5.18.1. Introduction

With the pervasive use of digital cameras and social media platforms, we witness a massive daily produc-
tion of multimedia content, especially videos and photos. This phenomenon poses several challenges for
the management and retrieval of visual archives. On one hand, the use of content-based retrieval systems
and automatic data analysis is crucial to deal with visual data that typically are poorly-annotated (think
for instance of user-generated content). On the other hand, there is an increasing need for scalable
systems and algorithms to handle ever-larger collections of data.

We developed a video search system, named VISIONE, which provides users with various function-
alities to easily search for targeted videos. It relies on artificial intelligence techniques to automatically
analyze and annotate visual content and employs an efficient and scalable search engine to index and
search for videos.

5.18.2. Methodology

VISIONE integrates several search functionalities that allow a user to search for a target video segment by
formulating textual and visual queries, which can be also combined with a temporal search. In particular
it supports free text search, spatial color and object search, visual similarity search, and semantic similarity
search. The system architecture is summarized in Figure 52, while a screenshot of the user interface
is shown in Figure 53. We already reported about first versions of VISIONE in D5.1. Here we report
the features of latest versions.

To support the free text search and the semantic similarity search, we employ two cross-modal feature
extractors based on, respectively, CLIP2Video [511] and ALADIN [512] pre-trained models. For the
object detection, we use three models: VfNet[513] (trained on COCO dataset), Mask R-CNN [514]
(trained on LVIS dataset), and a Faster R-CNN+Inception ResNet V220 (trained on the Open Images
V4). The color annotation process relies on two chip-based color naming techniques [515, 516]. Finally,
the visual similarity search is based on comparing GEM [517] features. We employ two indexes: the first
to store the CLIP2Video features (searched using the Facebook FAISS library21), and the second to store
all the other descriptors (searched using Apache Lucene22). Note that to index the extracted descriptors
with Lucene, we designed special text encodings, based on the Surrogate Text Representations (STRs)
approach [518, 519, 520].

20http://tfhub.dev/google/faster_rcnn/openimages_v4/inception_resnet_v2/1
21https://github.com/facebookresearch/faiss
22https://lucene.apache.org/
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Figure 52. VISIONE System Architecture

VISIONE has improved over the years, during the project lifetime and now it includes, among the
others, the following advanced features:

• ALADIN for text-to-image retrieval. We developed a new cross-modal retrieval deep neural
network, called ALADIN (ALign And DIstill Network) [512]. ALADIN first produces high-effective
scores by aligning at fine-grained level images and texts. Then, it learns a shared embedding space
– where an efficient kNN search can be performed – by distilling the relevance scores obtained
from the fine-grained alignments. We empirically found that this network is able to compete with
state-of-the-art vision-language Transformers while being almost 90 times faster at inference time.

• CLIP2Video for text-to-video retrieval. In order to deeply understand videos, in particular
temporal correlations and actions among multiple frames of a shot, we use CLIP2Video [511],
which is one of the state-of-the-art networks for text-to-video retrieval. We re-engineered the
code for easily extracting fixed-sized descriptors for texts and images that can be compared
with cosine similarity. We found some problems in post-processing these features using our STR
representation for textual-based indexing [519]. In particular, looking at Figure 54, we noticed that
the distribution of the cosine similarities of the CLIP2Video features has a very low mean value in
the text-to-video cross-modal setup. This may happen if element-wise products underlying the
dot-product computation have a negative sign, which in turn implies that there could be a lot
of mixed-sign factors. This is a bad scenario for the STR representation, given that the CReLU
operation at the core of the STR method zeroes out the contribution from mixed-sign factors.
Therefore, for the CLIP2Video features, the approximated cosine similarity computed in the STR
representation badly approximates the original one. For these reasons, we indexed and searched
these cross-modal features with FAISS, using an exact search and an 8-bit scalar quantization
for reducing the index size in memory. The visual features extracted using CLIP2Video are also
employed for a semantic reverse video search, where a video segment displayed in the results can
be used as a query to search other video clips semantically similar to it.

• Browsing Interface. To improve the user’s browsing experience, we included the possibility of
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Figure 53. VISIONE User Interface
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Figure 54. Distribution of cosine similarities between text-video and video-video CLIP2Video features.

displaying a short preview of a video clip by right-clicking on one of the results displayed in the
user interface. We also introduced multiple selections of frames to submit during Ad-Hoc Video
Search (AVS) tasks and the ability to submit a given instant of a video directly from the video
player.

• Object search. We used three object detectors trained on three different datasets (COCO, LVIS,
and Open Images V4), which have different classes. We built a mapping of these classes using a
semi-automatic procedure in order to have a unique final list of 1,460 classes 23. We also generated
a hierarchy for each class, using wordnet24, which is used for query expansion both at index time
and at runtime.

VISIONE was integrated by CNR and RAI within use case UC3 (3A3) to index a dataset of videos
provided by RAI (http://visione.isti.cnr.it/). VISIONE, specifically its reverse image search
functionality, was also integrated by CNR and ATC within use case UC1, to search for images that
might lead to misinformation.

23https://doi.org/10.5281/zenodo.7194300
24https://wordnet.princeton.edu/
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5.18.3. Experimental Results

CNR has participated in the Video Browser Showdown (VBS) 2024 with VISIONE version 5.0, and VI-
SIONE was the Overall Winner of the competition (Best AVS/Experts, AVS/Novices, Visual KIS/Novices,
QA/Experts) as can be seen in https://videobrowsershowdown.org/hall-of-fame/.

5.18.4. Relevance to AI4Media use cases and media industry applications

This activity is related to UC3 (AI in Vision - High quality Video Production and Content Automation),
where it can be used to manage large audio-visual archives offering advanced retrieval functionalities.
It is also related to UC1 (AI against Disinformation), where it can be used to build a reverse image
retrieval system to verify if query images are contained in databases of images known to be used to
spread disinformation. Also UC7 (AI for (re-)organization and content moderation) can benefit from
this solution, to organize and manage content.

5.18.5. Relevant Publications

• Jakub Lokoč, Stelios Andreadis, Werner Bailer, Aaron Duane, Cathal Gurrin, Zhixin Ma, Nicola
Messina, Thao-Nhu Nguyen, Ladislav Peška, Luca Rossetto, Loris Sauter, Konstantin Schall,
Klaus Schoeffmann, Omar Shahbaz Khan, Florian Spiess, Lucia Vadicamo, Stefanos Vrochidis,
""Interactive Video Retrieval in the Age of Effective Joint Embedding Deep Models: Lessons from
the 11th VBS,"" Springer Multimedia Systems, 2023

• Giuseppe Amato, Paolo Bolettieri, Fabio Carrara, Fabrizio Falchi, Claudio Gennaro, Nicola Messina,
Lucia Vadicamo, Claudio Vairo, VISIONE: A Large-Scale Video Retrieval System with Advanced
Search Functionalities, ICMR ’23: Proceedings of the 2023 ACM International Conference on
Multimedia Retrieval, June 2023, Pages 649–653, https://doi.org/10.1145/3591106.3592226

• Lucia Vadicamo, Claudio Gennaro, & Giuseppe Amato. (2021). "On Generalizing Permutation-
Based Representations for Approximate Search". International Conference on Similarity Search
and Applications (SISAP), https://doi.org/10.1007/978-3-030-89657-7_6

• Silvan Heller, Viktor Gsteiger, Werner Bailer, Cathal Gurrin, Björn Þór Jónsson, Jakub Lokoc,
Andreas Leibetseder, Frantisek Mejzlík, Ladislav Peska, Luca Rossetto, Konstantin Schall, Klaus
Schoeffmann, Heiko Schuldt, Florian Spiess, Ly-Duyen Tran, Lucia Vadicamo, Patrik Veselý,
Stefanos Vrochidis, Jiaxin Wu: "Interactive Video Retrieval Evaluation at a Distance: Compar-
ing Sixteen Interactive Video Search Systems in a Remote Setting" at the 10th Video Browser
Showdown, International Journal of Multimedia Information Retrieval, 2022

• Carrara, F., Vadicamo, L., Gennaro, C., Amato, G. (2022). Approximate Nearest Neighbor Search
on Standard Search Engines. In: Skopal, T., Falchi, F., Lokoč, J., Sapino, M.L., Bartolini, I.,
Patella, M. (eds) Similarity Search and Applications. SISAP 2022. Lecture Notes in Computer
Science, vol 13590. Springer, Cham.

• J. Lokoc, L. Rossetto, W. Bailer, K. Schoeffmann, S. Vrochidis, C. Gurrin, S. Heller, L. Vadicamo,
K.U. Barthel, L. Peška, J. Wu, B.Þ. Jonsson. "A Task Category Space for User-Centric Comparative
Multimedia Search Evaluations", MMM 2022

• Amato, G., Bolettieri, P., Falchi, F., ...Vadicamo, L., Vairo, C, "VISIONE at Video Browser Show-
down 2021", 27th International Conference on MultiMedia Modeling, MMM 2021; Prague;Czech Re-
public; 22 June 2021 through 24 June 2021; Code 254419, Volume 12573 LNCS, 2021, Pages 473-478

• Giuseppe Amato, Paolo Bolettieri, Fabio Carrara, Fabrizio Falchi, Claudio Gennaro, Nicola
Messina, Lucia Vadicamo, and Claudio Vairo. 2023. VISIONE for newbies: an easier-to-use
video retrieval system. In Proceedings of the 20th International Conference on Content-based
Multimedia Indexing (CBMI ’23). Association for Computing Machinery, New York, NY, USA,
158–162. https://doi.org/10.1145/3617233.3617261
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• Carrara, F., Gennaro, C., Vadicamo, L., Amato, G. (2023). Vec2Doc: Transforming Dense Vectors
into Sparse Representations for Efficient Information Retrieval. In: Pedreira, O., Estivill-Castro,
V. (eds) Similarity Search and Applications. SISAP 2023. Lecture Notes in Computer Science,
vol 14289. Springer, Cham. https://doi.org/10.1007/978-3-031-46994-7_18

• Lucia Vadicamo, Giuseppe Amato, Claudio Gennaro, Induced permutations for approximate
metric search, Information Systems, Volume 119, 2023, 102286, ISSN 0306-4379, https://doi.
org/10.1016/j.is.2023.102286

• L. Vadicamo, R. Arnold, W. Bailer, F. Carrara, C. Gurrin, N. Hezel, X. Li, J. Lokoc, S. Lubos, Z.
Ma, N. Messina, T.-N. Nguyen, L. Peska, L. Rossetto, L. Sauter, K. Schöffmann, F. Spiess, M.-T.
Tran, S. Vrochidis, "Evaluating Performance and Trends in Interactive Video Retrieval: Insights
from the 12th VBS Competition," IEEE Access, May 2024.

• Nicola Messina, Giuseppe Amato, Andrea Esuli, Fabrizio Falchi, Claudio Gennaro, Stéphane
Marchand-Maillet, "Fine-grained visual textual alignment for cross-modal retrieval using trans-
former encoders", ACM Transactions on Multimedia Computing, Communications, and Applica-
tions, Volume 17, Issue 4, November 2021 Article No.: 128 pp 1–23, https://doi.org/10.1145/
3451390

• Messina, N., Falchi, F., Esuli, A., Amato, G.,"Transformer reasoning network for image-text
matching and retrieval", 25th International Conference on Pattern Recognition (ICPR)

• Nicola Messina, Fabrizio Falchi, Claudio Gennaro, Giuseppe Amato, "AIMH at SemEval-2021
Task 6: Multimodal Classification Using an Ensemble of Transformer Models", Proceedings of
the 15th International Workshop on Semantic Evaluation (SemEval-2021)

• Nicola Messina, Matteo Stefanini, Marcella Cornia, Lorenzo Baraldi, Fabrizio Falchi, Giuseppe
Amato, Rita Cucchiara, ALADIN: Distilling Fine-grained Alignment Scores for Efficient Image-
Text Matching and Retrieval, Proceedings of the 19th International Conference on Content-based
Multimedia Indexing, September 14–16, 2022, Graz, Austria

• W. Bailer, R. Arnold, V. Benz, D. A. Coccomini, A. Gkagkas, G. Þ. Guomundsson, S. Heller, B. Þ.
Jonsson, J. Lokoc, N. Messina, N. Pantelidis, J. Wu, "Improving Query and Assessment Quality in
Text-Based Video Retrieval Evaluation," ACM International Conference on Multimedia Retrieval
(ICMR), Thessaloniki, GR, June 2023.

• Messina, N., Amato, G., Carrara, F., Gennaro, C., Falchi, F. (2022). Recurrent Vision Transformer
for Solving Visual Reasoning Problems. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M.,
Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Com-
puter Science, vol 13233. Springer, Cham. https://doi.org/10.1007/978-3-031-06433-3_5

5.18.6. Relevant software/datasets/other outcomes

• VISIONE demo: http://visione.isti.cnr.it/
• VISIONE integrated with RAI videos: http://visione.isti.cnr.it/
• GitHub repository of the VISIONE project: https://github.com/aimh-lab/visione

5.19. DnS: Distill-and-Select for Efficient and Accurate Video Indexing and
Retrieval

Contributing partners: QMUL, CERTH

5.19.1. Introduction and methodology

Due to the popularity of Internet-based video sharing services, the volume of video content on the Web
has reached unprecedented scales. For instance, YouTube reports that more than 500 hours of content
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are uploaded every minute25. This puts considerable challenges for all video analysis problems, such
as video classification, action recognition, and video retrieval, that need to achieve high performance
at low computational and storage requirements in order to deal with the large scale of the data. The
problem is particularly hard in the case of content-based video retrieval, where, given a query video, one
needs to calculate its similarity with all videos in a database to retrieve and rank the videos based on
relevance. In such scenario, this requires efficient indexing, i.e., storage of the representations extracted
from the videos in the dataset, and fast calculations of the similarity between pairs of them.

In this work, we propose to address the problem of high retrieval performance and computationally
efficient content-based video retrieval in large-scale datasets. The proposed method builds on the
framework of Knowledge Distillation, and starting from a well-performing, high-accuracy-high-complexity
teacher, namely a fine-grained video similarity learning method (ViSiL), trains a) both fine-grained
and coarse-grained student networks on a large-scale unlabeled dataset and b) a selection mechanism,
i.e., a learnable re-ranking module, that decides whether the similarity estimated by the coarse-grained
student is accurate enough, or whether the fine-grained student needs to be invoked. By contrast to
other re-ranking methods that use a threshold on the similarity estimated by the fast network (the
coarse-grained student in our case), our selection mechanism is a trainable, lightweight neural network.
All networks are trained so as to extract representations that are stored/indexed, so that each video
in the database is indexed by the fine-grained spatio-temporal representation (3D tensor), its global,
vector-based representation (1D vector), and a scalar self-similarity measure that is extracted by the
feature extractor of the selector network, and can be seen as a measure of the complexity of the videos
in question. The latter is expected to be informative of how accurate the coarse-grained, video-level
similarity is, and together with the similarity rapidly estimated by the coarse-grained representations,
is used as input to the selector. We note that, by contrast to other Knowledge Distillation methods in
videos that address classification problems and typically perform distillation at intermediate features, the
students are trained on a similarity measure provided by the teacher – this allows training on large scale
datasets as intermediate features of the networks do not need to be stored, or estimated multiple times.
Due to the ability to train on large unlabeled datasets, more complex models, i.e., with more trainable
parameters, can be employed leading to even better performance than the original teacher network.

Figure 55 depicts the DnS framework. It consists of three networks: (i) a coarse-grained student (Sc)
that provides very fast retrieval speed but with low retrieval performance, (ii) a fine-grained student (Sf)
that has high retrieval performance but with high computational cost, and (iii) a selector network (SN)
that routes the similarity calculation of the video pairs and provides a balance between performance
and time efficiency.

Each video in the dataset is stored/indexed using three representations: (i) a spatio-temporal 3D
tensor fSf

that is extracted (and then used at retrieval time) by the fine-grained student Sf , (ii) a 1D
global vector fSc

that is extracted (and then used at retrieval time) by the coarse-grained student Sc,
and (iii) a scalar fSN that summarises the similarity between different frames of the video in question
that is extracted (and then used at retrieval time) by the selector network SN. The indexing process
that includes the feature extraction is illustrated within the blue box in Figure 55 and is denoted as
fX(·) for each network X. At retrieval-time, given an input query-target video pair, the selector network
sends to the coarse-grained student Sc the global 1D vectors so that their similarity is rapidly estimated
(i.e., as the dot product of the representations) gS

c

. This coarse similarity and the self-similarity scalars
for the videos in question are then given as input to the selector SN, which takes a binary decision gSN
on whether the calculated coarse similarity needs to be refined by the fine-grained student. For the small
percentage of videos that this is needed, the fine-grained network calculates the similarity gS

f

based
on the spatio-temporal representations. The retrieval process that includes the similarity calculation
is illustrated within the red box in Figure 55 and is denoted as gX(·,·) for each network X.

25https://www.youtube.com/yt/about/press/, accessed June 2021
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Figure 55. Overview of the proposed framework. It consists of three networks: a coarse-grained student Sc, a fine-grained
student Sf , and a selector network SN. Processing is split into two phases, Indexing and Retrieval. During indexing (blue
box), given a video database, three representations needed by our networks are extracted and stored in a video index, i.e.,
for each video, we extract a 3D tensor, a 1D vector, and a scalar that captures video self-similarity. During retrieval (red
box), given a query video, we extract its features, which, along with the indexed ones, are processed by the SN. It first
sends all the 1D vectors of query-target pairs to Sc for an initial similarity calculation. Then, based on the calculated
similarity and the self-similarity of the videos, the selector network judges which query-target pairs have to be re-ranked
with the Sf , using the 3D video tensors. Straight lines indicate continuous flow, i.e., all videos/video pairs are processed,
whereas dashed lines indicate conditional flow, i.e., only a number of selected videos/video pairs are processed. Our
students are trained with Knowledge Distillation based on a fine-grained teacher network, and the selector network is
trained based on the similarity difference between the two students.

In practice, we apply the above process on every query-target video pair derived from a database,
and a predefined percentage of videos with the largest confidence score calculated by the selector is sent
to the fine-grained student for re-ranking. With this scheme, we achieve very fast retrieval with very
competitive retrieval performance.

5.19.2. Experimental results

In Table 58, the mAP of the proposed method in comparison to the video retrieval methods from
the literature is reported. The proposed students achieve very competitive performance achieving
state-of-the-art results in several cases. First, the fine-grained attention student achieves the best results
on the two large-scale datasets, i.e., FIVR-200K and SVD, outperforming ViSiL (our teacher network) by
a large margin, i.e., 0.022 and 0.021 mAP, respectively. It reports almost the same performance as ViSiL
on the CC_WEB_VIDEO dataset, and it is slightly outperformed on the EVVE dataset. Additionally,
it is noteworthy that the fine-grained binarization student demonstrates very competitive performance
on all datasets. It achieves similar performance with ViSiL and the fine-grained attention student on
the CC_WEB_VIDEO, the second-best results on all three tasks of FIVR-200K, and the third-best
on SVD with a small margin from the second-best. However, its performance is lower than the teacher’s
on the EVVE dataset, highlighting that feature reduction and hashing have considerable impact on the
student’s retrieval performance on this dataset. Also, another possible explanation for this performance
difference could be that the training dataset does not cover the included events sufficiently.

Second, the coarse-grained student exhibits very competitive performance among coarse-grained
approaches on all datasets. It achieves the best mAP on two out of four evaluation datasets, i.e., on SVD
and EVVE, reporting performance close or even better than several fine-grained methods. On FIVR-200K
and CC_WEB_VIDEO, it is outperformed by the BoW-based approaches, which are trained with
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samples from the evaluation sets. However, when they are built with video corpora other than the
evaluation (which simulates more realistic scenarios), their performance drops considerably [371, 361].
Also, their performance on the SVD and EVVE datasets is considerably lower.

Third, our DnS runs maintain competitive performance. It improves the performance of the coarse-
grained student by more than 0.2 on FIVR-200K and 0.02 on SVD by re-ranking only 5% of the
dataset with the fine-grained students. However, on the other two datasets, i.e., CC_WEB_VIDEO
and EVVE, the re-ranking has negative effects on performance. A possible explanation for this might
be that the performance of the coarse- and fine-grained students is very close, especially on the EVVE
dataset. Also, this dataset consists of longer videos than the rest, which may impact the selection process.
Nevertheless, the performance drop on these two datasets is mitigated when 30% of the dataset is sent
to the fine-grained students for re-ranking; while on the FIVR-200K and SVD, the DnS method reaches
the performance of the corresponding fine-grained students, or it even outperforms them, i.e., DnS30%

B
outperforms SfB on SVD dataset.

Additionally, Table 59 displays the storage and time requirements and the reference performance
of the proposed method on each dataset. In comparison, we include the video retrieval methods that
are implemented with the same features and run on GPU. For FIVR-200K and CC_WEB_VIDEO
datasets, we display the DSVR and cc_web∗

c runs, respectively. We have excluded the TN and DP
methods, as they have been implemented on CPU and their transfer to GPU is non-trivial. Also, the
requirements of the TCA runs from [372] are approximated based on features of the same dimensionality.
All times are measured on a Linux machine with the Intel i9-7900X CPU and an Nvidia 2080Ti GPU.

Approach FIVR-200K CC_WEB_VIDEO SVD EVVE
DSVR CSVR ISVR cc_web cc_web∗ cc_webc cc_web∗

c

C
o
a
rs

e-
g
ra

in
ed

ITQ† [521] 0.491 0.472 0.402 0.967 0.941 0.976 0.954 0.842 0.606
MFH† [522] 0.525 0.507 0.424 0.972 0.950 0.981 0.967 0.849 0.604
CSQ [523] 0.267 0.252 0.219 0.948 0.899 0.954 0.909 0.364 0.400
BoW† [524] 0.699 0.674 0.581 0.975 0.958 0.985 0.977 0.568 0.539
LBoW [525] 0.700 0.666 0.566 0.976 0.960 0.984 0.975 0.756 0.500
DML [371] 0.411 0.392 0.321 0.971 0.941 0.979 0.959 0.785 0.531
DML† [371] 0.503 0.487 0.410 0.971 0.951 0.979 0.965 0.850 0.611
R-UTS-GV[526] 0.509 0.498 0.432 - - - - - -
TCAc

† [372] 0.570 0.553 0.473 0.973 0.947 0.983 0.965 - 0.598∗

Sc (Ours) 0.574 0.558 0.476 0.972 0.952 0.980 0.967 0.868 0.636

F
in

e-
g
ra

in
ed

TMK† [527] 0.524 0.507 0.425 0.977 0.959 0.986 0.975 0.863 0.618
LAMV [364] 0.496 0.466 0.371 0.975 0.956 0.986 0.975 0.781 0.531
LAMV† [364] 0.619 0.587 0.479 0.978 0.964 0.988 0.982 0.880 0.620
TN† [528] 0.844 0.804 0.660 0.982 0.970 0.993 0.989 0.894 0.471
DP† [529] 0.827 0.783 0.642 0.980 0.966 0.991 0.987 0.880 0.580
R-UTS-FRP [526] 0.769 0.724 0.611 - - - - - -
A-DML [530] 0.627 - - 0.964 0.949 - - 0.885∗ -
TCAf

† [372] 0.877 0.830 0.703 0.983 0.969 0.994 0.990 - 0.603∗

ViSiL [358] 0.899 0.854 0.723 0.985 0.973 0.995 0.992 0.881 0.658
Sf
A (Ours) 0.921 0.875 0.741 0.984 0.973 0.995 0.992 0.902 0.651

Sf
B (Ours) 0.909 0.863 0.729 0.984 0.974 0.995 0.991 0.891 0.640

R
e -

ra
n
k
in

g

PPT [529] - - - 0.959 - - - - -
HM [531] - - - 0.977 - - - - -
TMK†+QE [527] 0.580 0.564 0.480 0.977 0.960 0.986 0.976 0.774 0.648
LAMV†+QE [364] 0.659 0.629 0.520 0.979 0.964 0.990 0.984 0.786 0.653
DnS5%

A (Ours) 0.874 0.829 0.699 0.972 0.951 0.983 0.969 0.895 0.594

DnS5%
B (Ours) 0.862 0.817 0.687 0.970 0.948 0.981 0.967 0.884 0.584

DnS30%
A (Ours) 0.913 0.868 0.733 0.978 0.958 0.990 0.977 0.902 0.646

DnS30%
B (Ours) 0.900 0.854 0.720 0.977 0.954 0.988 0.974 0.894 0.634

Table 58. mAP comparison of our proposed students and re-ranking method against several video retrieval methods on four
evaluation datasets. † indicates that the runs are implemented with the same features extracted with the same process as
ours. ∗ indicates that the corresponding results are on different dataset split.

5.19.3. Conclusion

In this work, we proposed a video retrieval framework based on Knowledge Distillation that addresses
the problem of performance-efficiency trade-off focused on large-scale datasets. In contrast to typical
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Approach FIVR-200K CC_WEB_VIDEO SVD EVVE
mAP KB Sec mAP KB Sec mAP KB Sec mAP KB Sec

C
o
a
rs

e-
g
ra

in
ed ITQ [521] 0.491 0.1 0.733 0.954 0.1 0.045 0.842 0.1 1.793 0.606 0.1 0.005

MFH [522] 0.525 0.1 0.733 0.967 0.1 0.045 0.849 0.1 1.793 0.604 0.1 0.005
BoW [524] 0.699 0.3 1.540 0.977 0.3 0.053 0.568 0.1 3.308 0.539 0.2 0.005
DML [371] 0.503 2 0.769 0.965 2 0.047 0.850 2 1.915 0.611 2 0.006
TCAc [372] 0.570 4 0.812 0.965 4 0.047 - - - 0.598∗ 4 0.006
Sc (Ours) 0.574 4 0.812 0.967 4 0.047 0.868 4 1.920 0.636 4 0.006

F
in

e-
g
ra

in
ed

TMK [527] 0.524 256 119.8 0.975 256 6.949 0.863 256 282.5 0.618 256 1.010
LAMV [364] 0.619 256 167.2 0.975 256 9.703 0.880 256 394.5 0.620 256 1.410
TCAf [372] 0.877 438 36.15 0.990 596 2.097 - - - 0.603∗ 932 0.228
ViSiL [358] 0.899 15124 451.9 0.992 20111 24.26 0.881 2308 319.8 0.658 31457 5.718

Sf
A (Ours) 0.921 2016 149.1 0.992 2682 8.260 0.902 308 271.8 0.651 4194 1.506

Sf
B (Ours) 0.909 63 146.9 0.991 84 8.129 0.891 10 266.5 0.640 131 1.487

R
e-

ra
n
k
in

g TMK+QE [527] 0.580 256 239.6 0.976 256 13.90 0.774 256 576.0 0.648 256 2.020
LAMV+QE [364] 0.659 256 334.4 0.984 256 19.41 0.786 256 766.0 0.653 256 2.820
DnS5%

A (Ours) 0.874 2020 8.267 0.969 2686 0.463 0.895 312 15.41 0.594 4198 0.081

DnS5%
B (Ours) 0.862 67 8.154 0.967 88 0.456 0.884 14 15.14 0.584 135 0.080

DnS30%
A (Ours) 0.913 2020 45.55 0.974 2686 2.528 0.902 312 83.36 0.646 4198 0.458

DnS30%
B (Ours) 0.900 67 44.87 0.974 88 2.489 0.894 14 81.76 0.634 135 0.452

Table 59. Performance in mAP, storage in KiloBytes (KB) and time in Seconds (Sec) requirements of our proposed
students and re-ranking method and several video retrieval implemented with the same features. ∗ indicates that the
corresponding results are on different dataset split.

video retrieval methods that rely on either a high-performance but resource demanding fine-grained
approach or a computationally efficient but low-performance coarse-grained one, we introduced a Distill-
and-Select approach. Several student networks were trained via a Teacher-Student setup at different
performance-efficiency trade-offs. We experimented with two fine-grained students, one with a more
elaborate attention mechanism that achieves better performance and one using a binarization layer
offering very high performance with significantly lower storage requirements. Additionally, we trained
a coarse-grained student that provides very fast retrieval with low storage requirements but at a high
cost in performance. Once the students were trained, we combined them using a selector network that
directs samples to the appropriate student in order to achieve high performance with high efficiency.
It was trained based on the similarity difference between a coarse-grained and a fine-grained student
so as to decide at query-time whether the similarity calculated by the coarse-grained one is reliable or
the fine-grained one needs to be applied. The proposed method has been benchmarked to a number
of content-based video retrieval datasets, where it improved the state-of-art in several cases and achieved
very competitive performance with a remarkable reduction of the computational requirements.

5.19.4. Relevance to AI4Media use cases and media industry applications

We propose a knowledge distillation based video retrieval framework that can be relevant in tasks such
as visual indexing and search and visual concepts classification.

5.19.5. Relevant publications

• Kordopatis-Zilos, G., Tzelepis, C., Papadopoulos, S., Kompatsiaris, I., & Patras, I. (2022).
Dns: Distill-and-select for efficient and accurate video indexing and retrieval. International
Journal of Computer Vision, 130(10), 2385-2407, https://dl.acm.org/doi/10.1007/s11263-022-01651-3.

5.19.6. Relevant software/datasets/other outcomes

Code is available at https://github.com/mever-team/distill-and-select.
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6. Language analysis in Media

6.1. Overview
Pre-trained word embeddings (WE) have been the standard way of initializing Natural Language
Processing (NLP) neural models. Task 5.4 (T5.4) “Language analysis in Media” focuses on automatic
language analysis in the media sector and develops methods to improve Natural Language Processing
performance and adapt language models to specialized domains that can be directly useful in media
organizations and consumers. Some of the main challenges in this field are: (1) the ever-growing number
of new topics and public personalities that emerge in the news and that need to be detected by the
algorithms; (2) the fine-grained opinions expressed in those documents that need to be accounted for
when performing document retrieval.

6.2. MAD-TSC: A Multilingual Aligned News Dataset for Target-dependent
Sentiment Classification

Contributing partner: CEA

6.2.1. Introduction

Text analysis needs to address both objective aspects, such as topic extraction, and subjective aspects,
such as sentiment and opinion classification. In spite of recent progress brought by the introduction of
large language models [532, 533, 534], sentiment classification remains a challenging task. Expression of
sentiments varies according to the data sources, languages, and domain of the texts. These challenges are
particularly important in target-dependent sentiment classification (TSC), which focuses on determining
the sentiment expressed toward a given entity in a given context. The bulk of TSC-related research efforts
are focused on major languages. This focus is an effect of the availability of generic and task-specific
resources in these languages [535, 536]. A majority of datasets are monolingual, and when they are
multilingual [537, 538, 539, 540, 541], the examples are not aligned across languages. Equally, a majority
of existing datasets and methods are devised for texts such as tweets, reviews, or comments [542, 540, 541]
in which sentiment is most often expressed explicitly. Somewhat surprisingly, less attention is given to
TSC in the news, despite the usefulness of automatic analysis of their content for the understanding
of societally impactful processes such as disinformation or polarization [543].

6.2.2. Methodology

Our main contribution is the introduction of MAD-TSC, the first large multilingual aligned dataset for
TSC in news articles. It includes 5,110 annotated entities mentioned in 4,714 unique sentences. Each
sentence has professionally translated and aligned versions in eight languages (English, Spanish, German,
Italian, French, Portuguese, Dutch, and Romanian). Sentences originate from 286 news sources published
in over 30 countries. These characteristics differentiate the proposed dataset from existing resources,
and in particular from NewsMTSC [543], a monolingual dataset focused on American politics, which
is the closest to MAD-TSC. We discuss the main steps of the dataset creation methodology below.

Data Sources. Voxeurop26 is a multilingual news website that aims to offer interesting and high-
quality news to European audiences. The content is translated by professional translators, thus ensuring
high-quality texts in all available languages. The content is published using a Creative Commons
BY-NC-ND, an open license that facilitates its redistribution and reuse for non-commercial purposes,
which will also be used to distribute MAD-TSC. We have collected 7,370 news articles with translations

26https://voxeurop.eu
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in all eight languages, amounting to 122,263 sentences in English and comparable numbers in other
languages. Most of the entities mentioned in the articles refer to prominent political figures from different
European countries at the time of publication (2009–2013).

Sample Selection. Named entity detection was performed using the Flair model for English [544],
which led to an initial pool of 30,303 sentences with at least one mention of a person. We combine entity
linking with Blink [545] and coreference resolution with neuralcoref27 to obtain reliable entity counts
in articles. Entities mentioned only once in an article are not kept for annotation because they are not
considered in focus. This filtering led to 19,223 candidate sentences. The alignment of sentences for
the eight languages is inspired by lingtrain28, and uses a similarity threshold. Automatic alignment was
manually checked for three languages (EN, FR, RO), with a sample of 1,000 examples. It was correct
in 98.1% of cases. Following sentence alignment, entity mentions across languages must also be aligned,
and we used a rule-based approach for this task. Normalization form compatibility decomposition is first
applied to examples in all languages. Then we computed a normalized Levenshtein distance between
the English mention of the entity and the words from the target sentence. A similarity threshold of 80%
between the English and the target mention in any of the other languages was used. To add flexibility
to the matching process, we also considered nearly contiguous sequences as valid matches. We have
checked this matching and it is correct in over 99% of cases on a subset of 1,000 mentions.

The sentiment classes are not evenly distributed in the news, and we followed an initial selection
procedure inspired by the one introduced in [543]. It involves an undersampling of potentially neutral
mentions as predicted by a simple binary classifier. This led to a pool of 11,000 examples which were
selected and proposed to annotators.

Sample Annotation and Aggregation. Annotations were crowdsourced using a custom web
interface. The annotation guide made the annotators aware of the complexity of the task and were
asked to annotate from the author’s point of view. They were presented with examples of sentences
that include intricate and/or implicit sentiment expressions, as well as irony. We used a Likert scale
with five labels: negative, weakly negative, neutral, weakly positive, and positive. Annotators also had
the possibility to label examples as unknown whenever they could not determine the label of an example.
Annotations were provided by a total of 21 volunteers. They were recruited via a call for participation,
which was circulated via group and personal e-mails. Participants provided explicit consent to use their
annotations and demographic data at the beginning of the experiment. Samples were presented randomly
in order to avoid any ordering effect, and users were free to stop at any point. Each sample was labeled
by three annotators in order to allow annotation consolidation.

Following [543], we reduced the five initial labels to three classes (negative, neutral, and positive)
by aggregating the two possible labels for the negative and positive sentiments. Finally, we kept only
samples for which there was a unanimous voting or majority agreement with a third vote in a neighboring
class. The inter-rater reliability, measured using Fleiss’ kappa [546], reaches KF =0.58 and KF =0.67,
before and after consolidation, respectively.

6.2.3. Experimental Results

We run experiments with MAD-TSC in monolingual and multilingual settings, and we also use NewsMTSC
for English experiments. The training/validation/test subsets are sampled randomly and include
3,810/300/1,000 labeled mentions, respectively. Results for NewsMTSC are reported with the official
splits from [543]. We use the usual macro F1 (F1m) on all classes as primary metric [543, 542, 540].

Experiments with Individual Languages. Results for the eight MAD-TSC languages are pre-
sented in Table 60. They are reported using SPC, a commonly used TSC method [547, 543, 548, 549].
The best F1m scores are obtained for English and French, and the lowest scores are reported for Dutch

27https://github.com/huggingface/neuralcoref
28https://github.com/averkij/lingtrain-aligner
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Pretrain EN ES DE IT FR PT NL RO
TG 72.3 63.9 66.1 65.8 70.8 68.2 62.1 66.9
ML 67.8 67.2 64.8 65.1 67.2 66.2 66.4 68.5

Table 60. F1m results for the eight languages included in MAD-TSC. SPC is applied on top of models pretrained
specifically for each target language (TG) or with a multilingual corpus (ML) using SPC.

Train Test ES DE IT FR PT NL RO
EN ENM2M 73.3 70.8 71.4 70.6 71.9 71.1 73.0
EN ENDL 73.9 73.2 72.5 73.5 73.1 72.1 73.8
TG TG 63.9 66.1 65.8 70.8 68.2 62.1 66.9
TGM2M TG 64.7 65.0 66.0 70.6 66.9 64.2 65.7
TGDL TG 63.7 65.2 65.8 71.3 68.3 62.0 67.5

Table 61. F1m results for machine translation languages included in MAD-TSC, compared to the results obtained when
without machine translation for English-only (72.3) and monolingual models (fourth row copied from Table 60). Notations:
EN - English, TG - target language. The original train/test sets were used if no subscripts are present. DL (DeepL) and
M2M [7] subscripts give the machine translation model used. All results are reported with language-specific pretrained
models. TSC models are trained with SPC.

and Spanish. When using monolingual pretraining (TG), the difference between the best and worst
scores is over 10 points. In contrast, the results obtained with multilingual pretraining (ML) are much
more similar across all languages. Performance variability is explained by the quality of pretrained
models, and in particular by the size of the datasets and that of the subsets relevant for politics. The
results from Table 60 indicate that strong monolingual pretraining is preferable in TSC, but it can be
successfully replaced by multilingual pretraining when the dataset for a particular language is insufficient.

Experiments with Machine Translation. Machine translation (MT) has strongly progressed in
recent years, notably due to the introduction of neural architectures [550]. A successful deployment of MT
for sentiment classification would greatly facilitate the task in the multilingual setting because it would
reduce, or even remove, the need for specific annotations in each language. Building on previous works
that apply MT to TSC [537, 551], we report results with English as the pivot language. Test and/or train
subsets of the other languages are translated to English. The translation is performed with two methods:
(1) M2M100 [7], a recent massively multilingual translation model, by using the largest available model
(12B parameters); (2) the API of DeepL29, a well-known commercial machine translation service.

The F1m scores obtained with different MT configurations are reported in Table 61. The results
are very interesting, particularly when translating the test set to English with DeepL (row with EN
train and ENDL test). F1m scores are globally better than 72.3, the performance of SPC obtained
with manual translations for English. The maximum gain is 1.6 points for Spanish, and Dutch is the
only language for which DeepL translations are slightly worse (-0.2 points). F1m is also interesting with
M2M100, albeit lower than that of ENDL.

Results are also interesting when the English training set is translated toward the target languages
using DeepL and M2M100 (rows with TGDL / TGM2M train and TG test). The associated F1m scores
are on par with those obtained with the manual translations. However, the translation of training sets
is less effective than that of test sets. This happens because TSC training is done in languages other
than English and is based on weaker pretrained language models.

6.2.4. Conclusion

We introduce MAD-TSC, a dataset for multilingual target-dependent sentiment classification. The
proposed dataset is aligned across languages and includes examples of geographically diversified entities.

29https://www.deepl.com/en/docs-api
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Examples are longer and more complex because sentiment is often expressed in an implicit way. Given its
aligned character, MAD-TSC dataset enables a comparison of sentiment classification between languages.
Performance varies significantly, and this variation is to a large extent explained by the quality of
pretrained models available for each language.

Importantly, the MT experiments show that human translations can be replaced by automatic ones.
The automatic translation of test sets from target languages to English is particularly interesting since
it brings target-dependent sentiment classification in different languages to the same quality level as that
of English. This allows TSC to be scaled for the languages included in this study without the need to
develop language-specific training sets.

6.2.5. Relevance to AI4Media use cases and media industry applications

MAD-TSC enables a fine-grained analysis of sentiments expressed in political texts in eight European
languages. Initial experiments showed that automatic translation toward a language having strong
pretrained models followed by sentiment classification is preferable to direct classification in the original
languages. This result is usable by media organizations to optimize their opinion mining pipelines. The
dataset was used in a secondment between CEA and VRT, as part of UC2, to analyze the political
positioning of Belgian news sources. This work is described in detail in deliverable D6.4.

6.2.6. Relevant Publications

• Evan Dufraisse, Adrian Popescu, Julien Tourille, Armelle Brun, Jerome Deshayes. "MAD-TSC:
A Multilingual Aligned News Dataset for Target-dependent Sentiment Classification." Proc. of
the 61st Annual Meeting of the Association for Computational Linguistics. 2023.

6.2.7. Relevant software/datasets/other outcomes

• The data and associated Pytorch code are available at https://github.com/EvanDufraisse/
MAD_TSC

6.3. Same or Different? Diff-Vectors for Authorship Analysis
Contributing partners: CNR

6.3.1. Introduction

Automated authorship analysis is concerned with inferring characteristics such as the gender [552], the
age group [553], or the native language [554] of the author, among others; these subtasks usually go
under the name of author profiling [555]. Alternatively, authorship analysis may be concerned with
inferring the identity of the author; tasks in which this is the goal are collectively referred to as authorship
identification tasks, and include authorship verification (AV – the task of predicting whether a given
author is or not the author of a given anonymous text [556]), authorship attribution (AA – the task of
predicting who among a given set of candidates is the most likely author of a given anonymous text
[557, 558]), and same-author verification (SAV – the task of predicting whether two given documents are
by the same, possibly unknown, author or not [559]). Authorship analysis has several applications, e.g.,
in supporting the work of philologists who try to identify the authors of texts of literary or historical value
[560, 561], or in aiding linguistic forensics experts in crime prevention or criminal investigation [562, 563].

All of these tasks are usually approached as text classification tasks, whereby a supervised machine
learning algorithm, using a set of labeled documents, is used to train a classifier to perform the required
prediction task. As in many supervised learning endeavors, each training example is usually represented
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as a vector of features, where the value of a feature in a vector usually corresponds to the relative
frequency with which a certain linguistic phenomenon (say, an exclamation mark, or a POS-gram) occurs
within the document.

[559] describes an alternative method for generating vectorial representations of texts for authorship
identification. Specifically, while in the standard representation methodology a vector represents a
document, in this alternative method a vector represents an unordered pair of different documents.
While in the standard methodology the value of a feature is (an increasing function of) the relative
frequency of occurrence of a given linguistic phenomenon in the document, in this alternative method
it is the absolute value of the difference between the relative frequencies (or increasing functions thereof)
of this phenomenon in the two documents. Since these vectors represent differences, we call these
representations Diff-Vectors (DVs). While in the standard methodology, the class label is the author of
the document, in this DV-based methodology, the class label is one of the two classes Same or Different
(standing for “same author” or “different authors”, respectively).

However, the goal of [559] was actually to propose a different method (the “impostors” method
for SAV), and not to propose the DV-based methodology, which they dismiss as a “simplistic baseline
method” [559, p. 179]. Since then, the use of DVs has never been studied systematically; to carry out
such a systematic study is the goal of the present work, documented in [564].

The contributions of this work are thus as follows.
First, we study the consequences of the fact that, given n labeled documents, while the standard

methodology gives rise to n training vectors, the DV-based methodology gives rise to O(n2) training
vectors, which seems, at first sight, advantageous. Is this advantage for real? Does this quadratic number
of training vectors pose computational problems? The present study answers this question.

Second, we carry out extensive experiments on a number of publicly available datasets (including one
that we here make available for the first time) representative of different textual genres, lengths, and styles,
with the goal of determining whether using DVs in place of “standard” vectors brings about higher accuracy
in authorship identification tasks. In these experiments we tackle different authorship identification tasks,
including SAV (for which DVs are naturally geared), AA, and AV; for these two latter tasks we propose
two new methods, Lazy AA and Stacked AA (two AA methods that can also be used for AV) that solve
AA by using a DV-based SAV classifier as a building block. Our experiments show that the DV-based
representation is advantageous, since it brings about substantially increased effectiveness at the price of
a tolerable increase in computational cost. The experiments also show that DVs bring about substantial
improvements especially in low-resource authorship analysis tasks, i.e., in tasks characterised by small
quantities of training data (which is the case in many real-life authorship analysis scenarios, such as those
dealing with ancient texts). Like the standard representation, the DV-based representation is learner-
independent, i.e., it can be used in connection with any (supervised or unsupervised) learning method.

Third, we carry out an extensive comparative analysis of the efficiency of the two methodologies,
both by studying the computational complexity of authorship analysis tasks and by clocking actual
experiments. This study confirms that, as expected, the DV-based methodology is computationally more
expensive; however, as we argue in detail, the additional computational cost is tolerable, especially in
the light of the fact that, in authorship analysis, practical application scenarios often involve a single
document of uncertain paternity, which means that classification efficiency is not a primary concern.

6.3.2. Methodology

In “standard” authorship identification, each document xi is represented via a labeled vector xi of features,
where each feature usually represents a linguistic phenomenon that may occur (possibly several times) in
a document of D, the label yi∈A represents the true author of xi, and the value xki of the k-th feature
in vector xi represents a non-decreasing function (e.g., tfidf) of the relative frequency of the linguistic
phenomenon in xi. For instance, if the k-th feature stands for character 3-gram “car”, then the value
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of xki may be the number of occurrences of character 3-gram “car” in xi divided by the number of all
character 3-grams that xi contains.

We here study an alternative type of vectorial representation for authorship identification tasks. Here,
a labeled vector xij represents an unordered pair (xi,xj) of documents in D such that i≠j, each feature
represents a linguistic phenomenon that may occur (possibly several times) in a document of D, the
label yij ∈P={Same,Different} indicates whether the true authors of xi and xj are the same person
or not, and the value xkij of the k-th feature in vector xij represents the absolute difference between
non-decreasing functions of the relative frequencies of the linguistic phenomenon in xi and xj. (In this
section we provisionally assume this function to be the identity function f(x)=x, while in the sections
to come this function will be some well-established feature weighting function.) Since the difference
between relative frequencies is central to the definition of these vectors, we call them Diff-Vectors (DVs).

Any set of labeled documents L={(x1,y1), . . . , (xn,yn)} can be represented either in the standard
way or via DVs. One of the main differences between the two representations is that the “standard”
representation gives rise to n labeled vectors, while the alternative representation gives rise to n(n−1)/2
labeled vectors. The other main difference is that a classifier using the “standard” representation attempts
to predict, given an unlabeled document, its true author, while a classifier using the DV-based repre-
sentation attempts to predict, given two unlabeled documents, whether the two documents are or not
by the same author. In other words, the standard representation is geared towards AV or AA, while the
DV-based representation is geared towards SAV. However, AV and AA can (as discussed below) be recast
in terms of SAV, and vice-versa; as a result, we will consider the two representations as general-purpose
alternatives, and we will study them as such.

6.3.2.1. Solving SAV, AA, and AV, by means of Diff-Vectors One difference between the stan-
dard representation, in which class labels represent authors, and the representation based on DVs, in which
class labels are in {Same,Different}, is that the tasks that can be solved “directly” are AV and AA for the
former, and SAV for the latter. That is, by using the standard representation, AV and AA can be solved di-
rectly by setting up a classifier that, for a given document, returns a class label inA (for AA) or in {A∗,A

∗}
(for AV); SAV is instead to be solved as a derivative, “downstream” task, e.g., by first determining the true
authors of documents xi and xj by means of two calls to an AA engine, and then checking whether the
two returned class labels are the same or not.30 On the contrary, when using the DV-based representation,
SAV is solved directly; AV and AA are instead to be solved as derivative tasks, using SAV as the building
block of any algorithm for solving them. In [564] we first formally define our method for performing SAV,
and then devise two alternative solutions for solving both AV and AA that build on top of the former.

6.3.3. Experimental results

In [564], in order to test whether a representation based on DVs is advantageous with respect to a
representation based on standard vectors, we compare these two different design choices in experiments
that we run on four publicly available datasets (among which one that we here make available for the first
time) and for all three authorship analysis tasks (AA, AV, SAV). The code to reproduce our experiments
is available online at https://github.com/AlexMoreo/diff-vectors .

We run experiments on four datasets (IMDB62, PAN2011, Victorian, arXiv) consisting of textual
documents annotated by author; our datasets are representative of different textual genres, lengths, and
styles, are publicly available, and all consist of English texts. We use logistic regression (LR) as the
learning method.

As for the choice of features, we stick to ones well-known and broadly adopted in the field of authorship
analysis, i.e., features of a frequentistic nature that can be extracted automatically and that are believed to

30This is possible only for closed-set SAV, though, since open-set SAV cannot be recast in terms of AA.
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mean std ttest
DV-Bin .756 0.017
DV-2xAA .803 0.025
STD-CosDist .629 0.022
STD-2xAA .646 0.014

Table 62. Intrinsic evaluation of DVs: results on closed-set SAV, using vanilla accuracy as the evaluation measure on
dataset arXiv. Boldface indicates the best method. The first two methods are DV-based, while the last 2 methods are
based on standard representations. Symbols * and ** denote the method (if any) whose score is not statistically
significantly different from the best one at α=0.05 (*) or at α=0.001 (**) according to a paired sample, two-tailed t-test.
No symbols * and ** appear in this particular table since all differences are statistically significant.

convey stylistic information; see for example [565, 566, 558] for an overview, and [567, 568] for a discussion
of the most frequently used features in recent shared tasks focused on authorship analysis. These features
are considered a standard in the authorship analysis field because they represent linguistic traits that are be-
lieved to remain more or less constant in an author’s production and, conversely, to vary in noticeable fash-
ion across different authors [566, p. 241]; as such, they tend to be identifiers of the idiosyncratic style of an
author. Note that other sets of features could have been equally plausible; however, this is not an important
concern for our work, since it is completely agnostic with respect to the specific features that should be used.

We run two types of experiments:
• An “intrinsic” evaluation of DVs, which consists of SAV experiments, since SAV is the task that

a classifier using DVs can solve directly. We perform experiments in both closed-set SAV and
open-set SAV settings.

• An “extrinsic” evaluation of DVs, which consists of closed-set AA experiments. We do not run
experiments for AV since each of our AA experiments is also a set of m AV experiments, and can
be evaluated as such.

For reasons of brevity (a) we do not report AA and AV results, and only concentrate on SAV results;
(b) we only report the results for one dataset only (the arXiv dataset).

Across all four datasets, results clearly indicate that the DV-based variants perform well; of the two
methods that achieve SAV by running AA on both documents (i.e., the DV-2xAA and STD-2xAA
methods), the DV-based method is always better or much better than the standard vector-based method,
and the same happens of the two non-AA-based methods. The top-performing method is unquestionably
DV-2xAA, which outperforms (often by a very large margin) all others, for all numbers m of authors
and for all numbers q of training examples per author.

The entire set of experiments run for this work is described in detail in [564], to which we refer the
interested reader.

6.3.4. Conclusion

DVs are naturally geared towards solving the “same-author verification” (SAV) task, i.e., the binary task of
deciding whether two documents have been written by the Same (possibly unknown) author or by Different
authors. However, we have shown that both (i) (closed-set) authorship attribution (the task of predicting
who among a given set of candidates is the true author of a given text), and (ii) authorship verification (the
task of predicting whether a given author is or not the author of a given text), can be recast in terms of SAV;
we have presented two original algorithms (Lazy AA and Stacked AA) that do this for both AA and AV.

In order to compare DV-based authorship identification methods with their counterparts based on
“standard” vectors, we have carried out experiments on four datasets of texts labeled by author (one of
which we have created ourselves and we here make publicly available for the first time) and representative
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of different textual genres, lengths, and styles, and on three authorship identification tasks (SAV, AA,
AV). Our experiments have shown that DV-based methods are particularly suited to some authorship
identification tasks and are not suited to others. For instance, the results indicate that neither standard
methods nor DV-based methods clearly outperform each other on open-set SAV. Instead, DV-based
methods vastly outperform the competition on three important tasks, i.e., (a) on closed-set SAV, (b)
on closed-set AA, and (c) on AV. As we have argued, these benefits derive from the fact that, in many
cases, DV-based methods may exploit more training data than methods based on standard vectors, and
that DVs may make training more robust also when the above is not the case.

6.3.5. Relevance to AI4Media use cases and media industry applications

While the experiments we have carried out concern authorship analysis, which is not featured in WP8
use cases, the methods we have discussed are obviously applicable to other text classification tasks. In
the near future, we plan to test them on the task of classification by topic (e.g., classifying news articles
according to classes such as Home News, Sports, Lifestyles, etc.), so as to check whether the advantages
that DV-based methods have shown in authorship analysis tasks can also be enjoyed in contexts in
which the dimension according to which texts are classified is not authorship.

6.3.6. Relevant publications

Silvia Corbara, Alejandro Moreo, and Fabrizio Sebastiani. “Same or different? Diff-Vectors for authorship
analysis”. ACM Transactions on Knowledge Discovery from Data 18(1): Article 12, 2023. Available at
https://zenodo.org/records/10019527

6.3.7. Relevant software/datasets/other outcomes

• The code to reproduce our experiments is open-source and available online at https://github.
com/AlexMoreo/diff-vectors
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7. Computationally Demanding Learning

7.1. Overview
Current state-of-the-art AI applications and training methods in most domains require an amount of
computational resources that is not effectively obtainable by a majority of practitioners or interested
industry members. Some of the most common bottlenecks in these trainings include the need for copious
amounts of data, often requiring several terabytes of free space; or large training times due to the
constantly growing scale of the models, only alleviated by the use of very big quantities of GPUs. In
addition, in image-based domains, like medical imaging, autonomous driving or media content managing,
most current approaches downsample the images to sizes that produce undesirable information losses.
Handling this latter limitation is of special importance for media outlets, as high (≈4K) resolution media
is becoming the current standard. In Task 5.5, “Computationally Demanding Learning”, of AI4Media,
we explore ways of efficiently handling the scaling of neural networks to larger larger image resolutions
while simultaneously studying methods for efficient DNN training and math.

7.2. Orthogonal SVD Covariance Conditioning and Latent Disentanglement
Contributing partner: UNITN

7.2.1. Introduction and methodology

The Singular Value Decomposition (SVD) can factorize a matrix into orthogonal eigenbases and non-
negative singular values, serving as an essential step for many matrix operations. Recently in computer
vision and deep learning, many approaches integrated the SVD as a meta-layer in the neural networks to
perform some differentiable spectral transformations, such as the matrix square root and inverse square
root. The applications arise in a wide range of methods, including Global Covariance Pooling (GCP) [569,
570, 571], decorrelated Batch Normalization (BN) [572, 573, 574], Whitening and Coloring Transform
(WCT) for universal style transfer [575, 576, 577], and Perspective-n-Point (PnP) problems [578, 579, 580].

For the input feature map X passed to the SVD meta-layer, one often first computes the covariance
of the feature as XXT . This can ensure that the covariance matrix is both symmetric and positive semi-
definite, which does not involve any negative eigenvalues and leads to the identical left and right eigenvector
matrices. However, it is observed that inserting the SVD layer into deep models would typically make the
covariance very ill-conditioned [570], resulting in deleterious consequences on the stability and optimization
of the training process. For a given covariance A, its conditioning is measured by the condition number:

κ(A)=σmax(A)σ−1
min(A) (104)

where σ(·) denotes the eigenvalue of the matrix. Mathematically speaking, the condition number measures
how sensitive the SVD is to the errors of the input. Matrices with low condition numbers are considered
well-conditioned, while matrices with high condition numbers are said to be ill-conditioned. Specific
to neural networks, the ill-conditioned covariance matrices are harmful to the training process in several
aspects, which we will analyze in detail later.

This phenomenon was first observed in the GCP methods by [570], and we found that it generally
extrapolates to other SVD-related tasks, such as decorrelated BN. Figure 56 depicts the covariance
conditioning of these two tasks throughout the training. As can be seen, the integration of the SVD layer
makes the generated covariance very ill-conditioned (≈1e12 for decorrelated BN and ≈1e16 for GCP). By
contrast, the conditioning of the approximate solver, i.e., Newton-Schulz iteration (NS iteration) [581], is
about 1e5 for decorrelated BN and is around 1e15 for GCP, while the standard BN only has a condition
number of 1e3.

Final report on Multimedia Summarisation, Analysis and Production 198 of 322



Figure 56. The covariance conditioning of the SVD meta-layer during the training process in the tasks of decorrelated BN
( left) and GCP (Right). The decorrelated BN is based on ResNet-50 and CIFAR100, while ImageNet and ResNet-18 are
used for the GCP.

Ill-conditioned covariance matrices can harm the training of the network in both the forward pass
(FP) and the backward pass (BP). For the FP, mainly the SVD solver is influenced in terms of stability
and accuracy. Since the ill-conditioned covariance has many trivially-small eigenvalues, it is difficult
for an SVD solver to accurately estimate them and large round-off errors are likely to be triggered,
which might hurt the network performances. Moreover, the very imbalanced eigenvalue distribution can
easily make the SVD solver fail to converge and cause the training failure [582, 570]. For the BP, as
pointed out in [583, 584, 572], the feature covariance is closely related to the Hessian matrix during the
backpropagation. As the error curvature is given by the eigenvalues of the Hessian matrix [585], for the
ill-conditioned Hessian, the Gradient Descent (GD) step would bounce back and forth in high curvature
directions (large eigenvalues) and make slow progress in low curvature directions (small eigenvalues).
As a consequence, the ill-conditioned covariance could cause slow convergence and oscillations in the
optimization landscape. The generalization abilities of a deep model are thus harmed.

Due to the data-driven learning nature and the highly non-linear transform of deep neural networks,
directly giving the analytical form of the covariance conditioning is intractable. Some simplifications have
to be performed to ease the investigation. Since the covariance is generated and passed from the previous
layer, the previous layer is likely to be the most relevant to the conditioning. Therefore, we naturally
limit our focus to the Pre-SVD layer, i.e., the layer before the SVD layer. To further simplify the analysis,
we study the Pre-SVD layer in two consecutive training steps, which can be considered as a mimic of the
whole training process. Throughout our research, we mainly investigate some meaningful manipulations
on the weight, the gradient, and the learning rate of the Pre-SVD layer in two sequential training steps.
Under our Pre-SVD layer simplifications, one promising direction to improve the conditioning is enforcing
orthogonality on the weights. Orthogonal weights have the norm-preserving property, which could improve
the conditioning of the feature matrix. This technique has been widely studied in the literature of stable
training and Lipschitz networks [586, 587, 588]. We select some representative methods and validate their
effectiveness in the task of decorrelated BN. Our experiment reveals that these orthogonal techniques can
greatly improve the covariance conditioning, but could only bring marginal performance improvements
and even slight degradation. This indicates that when the representation power of weight is limited, the
improved conditioning does not necessarily lead to better performance. Orthogonalizing only the weight
is thus insufficient to improve the generalization. Instead of seeking orthogonality constraints on the
weights, we propose our Nearest Orthogonal Gradient (NOG) and Optimal Learning Rate (OLR). These
two techniques explore the orthogonality possibilities about the learning rate and the gradient. More
specifically, our NOG modifies the gradient of the Pre-SVD layer into its nearest-orthogonal form and
keeps the GD direction unchanged. On the other hand, the proposed OLR dynamically changes the

Final report on Multimedia Summarisation, Analysis and Production 199 of 322



learning rate of the Pre-SVD layer at each training step such that the updated weight is as close to an
orthogonal matrix as possible. The experimental results demonstrate that the proposed two techniques
not only significantly improve the covariance conditioning but also bring obvious improvements in the
validation accuracy of both GCP and decorrelated BN. Moreover, when combined with the orthogonal
weight treatments, the performance can have further improvements.

Besides the application on differentiable SVD, we propose that our orthogonality techniques can be
also used for unsupervised latent disentanglement of Generative Adversarial Networks (GANs) [330].
Recent works [13, 12] revealed that the latent disentanglement of GANs is closely related to the gradient or
weight of the first projector after the latent code. In particular, the eigenvectors of the gradient or weight
can be viewed as closed-formed solutions of interpretable directions [12]. This raises the need for enforcing
orthogonal constraints on the projector. As shown in Figure 57, compared with non-orthogonal matrices,
orthogonal matrices can lead to more disentangled representations and more precise attributes due to the
property of equally-important eigenvectors. Motivated by this observation, we propose to enforce our NOG
and OLR as orthogonality constraints in generative models. Extensive experiments on various architectures
and datasets demonstrate that our methods indeed improve the disentanglement ability of identifying
semantic attributes and achieve state-of-the-art performance against other disentanglement approaches.

Figure 57. Illustration of the benefit of orthogonality in latent disentanglement. As revealed in [12, 13], the interpretable
directions of latent codes are the eigenvectors of weight or gradient matrices. For non-orthogonal matrices, the principle
eigenvector is of the most importance, which would make this direction correspond to many semantic attributes. The other
eigenvectors might fail to capture any semantic information. By contrast, the eigenvectors of orthogonal matrices are
equally important. The network with the orthogonal weight/gradient is likely to learn more disentangled representations.

This work is an extension of [589]. In [589], we proposed two orthogonality techniques and demon-
strate that these methods can simultaneously improve the covariance conditioning and generalization
abilities of the SVD meta-layer. The extension motivates and proposes that these techniques can be
also applied in generative models for better latent disentanglement. This point is validated through
extensive experiments on various generative architectures and datasets. Moreover, we also investigate
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Figure 58. Overview of the EigenGAN architecture.

Figure 59. Latent traversal on AnimeFace [14]. The EigenGAN has entangled attributes in the identified interpretable
directions, while our methods achieve better disentanglement and each direction corresponds to a unique attribute.

the probability of occurrence of our OLR throughout the training and show that the evaluation results
agree well with our theoretical analysis.

7.2.2. Experiments on Latent Disentanglement

We validate the proposed approaches in two applications: GCP and decorrelated BN. These two tasks
are very representative because they have different usages of the SVD meta-layer. The GCP uses the
matrix square root, while the decorrelated BN applies the inverse square root. In addition, the models
of decorrelated BN often insert the SVD meta-layer at the beginning of the network, whereas the GCP
models integrate the layer before the FC layer. Due to space limitation, we refer the reader to the
original publication. Instead, we present here the results on latent disentanglement.

7.2.2.1. Experimental Setup We show the evaluation of our methods on EigenGAN [590]. Eigen-
GAN [590] is a particular GAN architecture dedicated to latent disentanglement. It progressively injects
orthogonal subspaces into each layer of the generator, which can mine controllable semantic attributes
in an unsupervised manner.
Datasets. For EigenGAN, we use AnimeFace [14] and FFHQ [591] datasets. AnimeFace [14] is comprised
of 63,632 aligned anime faces with resolution varying from 90×90 to 120×120. FFHQ [591] consists of
70,000 high-quality face images that have considerable variations in identifies and have good coverage
in common accessories. We present results here on AnimeFace.
Metrics. We use Frechet Inception Distance (FID) [592] to quantitatively evaluate the quality of generate
images. For the performance of latent disentanglement, we use Variational Predictability (VP) [593] as
the quantitative metric. The VP metric adopts the few-shot learning setting to measure the generalization
abilities of a simple neural network in classifying the discovered latent directions.
Baselines. For the EigenGAN model that already has inherent orthogonality constraints and good
disentanglement abilities, we compare the ordinary EignGAN with the modified version augmented by
our proposed orthogonal techniques (NOG and OLR).

7.2.2.2. EigenGAN Architecture and Modifications Figure 58 displays the overview of the
EigenGAN. At each layer, the latent code zi is multiplied with the orthogonal basis Ui and the diagonal
importance matrix Li to inject weighted orthogonal subspace for disentangled representation learning.
The original EigenGAN [590] adopts the OL loss ||UiU

T
i −I||F to enforce relaxed orthogonality to each
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Figure 60. Subtle semantic attributes mined by our method.

subspace Ui. Instead, we apply our NOG and OLR to achieve the weight and gradient orthogonality,
respectively. Notice that when our NOG and OLR are applied, we do not use the OL loss of EigenGAN.

7.2.2.3. Qualitative Evaluation Results on EigenGAN Figure 59 compares the latent traversal
results of the ordinary EigenGAN and our methods on AnimeFace. The interpretable direction of
EigenGAN has many entangled attributes; the identity is poorly preserved during the latent traversal.
By contrast, moving along with the discovered direction of our method would only introduce changes
of a single semantic attribute. This demonstrates that our interpretable directions have more precisely-
controlled semantics and our orthogonality techniques indeed help the model to learn more disentangled
representations. Moreover, thanks to the power of orthogonality, our methods can mine many subtle and
fine-grained attributes. Figure 60 displays such attributes that are precisely captured by our method
but are not learned by EigenGAN. These attributes include very subtle local details of the image, such
as facial blush, facial shadow, and mouth openness.

7.2.3. Conclusion

The main contributions of this work are as follows:
• We systematically study the problem of how to improve the covariance conditioning of the SVD

meta-layer. We propose our Pre-SVD layer simplification to investigate this problem from the
perspective of orthogonal constraints.

• We explore different techniques of orthogonal weights to improve the covariance conditioning. Our
experiments reveal that these techniques could improve the conditioning but would harm the
generalization abilities due to the limitation on the representation power of weight.

• We propose the nearest orthogonal gradient and optimal learning rate. The experiments on GCP
and decorrelated BN demonstrate that these methods can attain better covariance conditioning
and improved generalization. Their combinations with weight treatments can further boost the
performance.
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• We show that our proposed orthogonality approaches can be applied on the GANs projector for
improved latent disentanglement ability of discovering precise semantic attributes, which opens
the way for new applications of orthogonality techniques.

7.2.4. Relevant publications

• Y. Song, N. Sebe, and W. Wang, Orthogonal SVD Covariance Conditioning and Latent Disen-
tanglement, IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(7): 8773-8786,
July 2023. [594]
Zenodo record: https://zenodo.org/record/8335410

7.2.5. Relevant software/datasets/other outcomes

• The Pytorch implementation can be found in
https://github.com/KingJamesSong/OrthoImproveCond

7.2.6. Relevance to AI4Media use cases and media industry applications

The tools presented in this section are generic and can be applied to a large variety of applications.
Evidence of the use of the tools in visual transformers and style transfer have been provided but their
applicability is very large as SVD is used practically always when matrices are involved.

7.3. Masked Jigsaw Puzzle: A Versatile Position Embedding for Vision
Transformers

Contributing partner: UNITN

7.3.1. Introduction

Transformers [595] demonstrated their overwhelming power on a broad range of language tasks (e.g., text
classification, machine translation, or question answering [595, 596]), and the vision community follows
it closely and extends it for vision tasks, such as image classification [16, 15], object detection [597, 598],
segmentation [599], and image generation [600, 601]. Most of the previous Vision Transformer(ViT)-based
methods focus on designing different pre-training objectives [602, 603, 604] or variants of self-attention
mechanisms [605, 606, 607]. By contrast, Position embeddings (PEs) receive less attention from the
research community and have not been well studied yet. In fact, apart from the attention mechanism,
how to embed the position information into the self-attention mechanism is also one indispensable
research topic in Transformers. It has been demonstrated that without the PEs, the pure language
Transformer encoders (e.g., BERT [532] and RoBERTa [533]) may not well capture the meaning of
positions [608]. As a consequence, the meaning of a sentence can not be well represented [609]. A
similar phenomenon of PEs could also be observed in the computer vision community. Dosovitskiy et
al. [16] reveals that removing PEs causes performance degradation. Moreover, Lu et al. [8] analyzed
this issue from the perspective of user privacy and demonstrated that the PEs place the model at severe
privacy risk since it leaks the clues of reconstructing sequential patches back to images. Hence, it is very
interesting and necessary to understand how the PEs affect the accuracy, privacy, and consistency in
computer vision tasks. Here the consistency means whether the predictions of the transformed/shuffled
image are consistent with the ones of the original image.
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(a) UMAP (b) PCA
Figure 61. Low-dimensional projection of position embeddings from DeiT-S [15]. (a) The 2D UMAP projection, it shows
that reverse diagonal indices have the same order as the input patch positions. (b) The 3D PCA projection, it also shows
that the position information is well captured with PEs. Note that the embedding of index 1 (highlighted in red)
corresponds to the [CLS] embedding that does not embed any positional information.

(a)  (b) (c) (d) Overview of our MJP  
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Figure 62. (a) The original input patches; (b) Totally random shuffled input patches; (c) Partially random shuffled input
patches; (d) An overview of the proposed MJP. Note that we show the random shuffled patches and its corresponding
unknown position embedding in green and the rest part in blue. DAL means the self-supervised dense absolute localization
regression constraint.

7.3.2. Methodology

To study the aforementioned effects of PEs, the key is to figure out what explicitly PEs learn about
positions from input patches. To answer this question, we project the high-dimensional PEs into the 2D
and 3D spaces using Uniform Manifold Approximation & Projection (UMAP) [610] and PCA, respectively.
Then for the first time, we visually demonstrate that the PEs can learn the 2D spatial relationship very
well from the input image patches (the relation is visualized in Figure 61). We can see that the PEs are
distributed in the same order as the input patch positions. Therefore, we can easily obtain the actual
spatial position of the input patches by analyzing the PEs. Now it explains why PEs can bring the
performance gain for ViTs [16]. This is because the spatial relation in ViTs works similar as the inherent
intrinsic inductive bias in CNNs (i.e., it models the local visual structure) [611]. However, these correctly
learned spatial relations are unfortunately the exact key factor resulting in the privacy leakage [8].

Based on these observations, one straightforward idea to protect the user privacy is to provide ViTs
with the randomly transformed (i.e., shuffled) input data. The underlying intuition is that the original
correct spatial relation within input patches will be violated via such a transformation. Therefore,
we transform the previous visually recognizable input image patches x shown in Figure 62(a) to its
unrecognizable counterpart x̃ depicted in Figure 62(b) during training. The experimental results show
that such a strategy can effectively alleviate the privacy leakage problem. This is reasonable since the
reconstruction of the original input data during the attack is misled by the incorrect spatial relation.
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However, the side-effect is that this leads to a severe accuracy drop.
Meanwhile, we noticed that such a naive transformation strategy actually boosts the consistency [612,

613, 614] albeit the accuracy drops. Note that here the consistency represents if the predictions of the
original and transformed (i.e., shuffled) images are consistent. Given the original input patches x and
its corresponding transformed (i.e., shuffled) counterpart, we say that the predictions are consistent if
argmaxP(F(x))=argmaxP(F(x̃)), where F refers to the ViT models, and P denotes the predicted logits.

These observations hint that there might be a trade-off solution that makes ViTs take the best
from both worlds (i.e., both the accuracy and the consistency). Hence, we propose the Masked Jigsaw
Puzzle (MJP) position embedding method. Specifically, there are four core procedures in the MJP: (1)
We first utilize a block-wise masking method [615] to randomly select a partial of the input sequential
patches; (2) Next, we apply jigsaw puzzle to the selected patches (i.e., shuffle the orders); (3) After that,
we use a shared unknown position embedding for the shuffled patches instead of using their original
PEs; (4) To well maintain the position prior of the unshuffled patches, we introduce a dense absolute
localization (DAL) regressor to strengthen their spatial relationship in a self-supervised manner. We
simply demonstrate the idea of the first two procedures in Figure 62(c), and an overview of the proposed
MJP method is available in Figure 62(d).

7.3.3. Experimenal results

7.3.3.1. Privacy Preservation Experiments The fundamental principle of the gradient attack
methods in federated learning is that each sample activates only a portion of content-related neurons
in the deep neural networks, leading to one specific backward gradients for one related samples (i.e.,
1-to-1 mapping). Based on such an observation, we argue that feeding ViTs with input patches with
permuted sequences may intuitively mislead the attack. This is because now both the original and the
transformed inputs may be matched to the same backward gradients (i.e., n-to-1 mapping).

To validate such an assumption, we utilize the public protocols31 to recover image with gradient
updates in the privacy attack. In this privacy attack, we apply the Analytic Attack proposed in APRIL [8],
which is designed for attacking the ViTs. We randomly sample 1K images from the validation set
of ImageNet-1K (i.e., one image per category). To evaluate the anti-attack performance of a model,
we introduce image similarity metrics to account for pixel-wise mismatch, including Mean Square
Error (MSE), Peak Signal-to-Noise Ratio (PSNR), cosine similarity in the Fourier space (FFT2D), and
Learned Perceptual Image Patch Similarity (LPIPS) [261]. Different from the evaluation in gradient
attacks [8, 616, 617], we suppose a model is with better capacity of privacy preservation when the recovered
images from its gradient updates are less similar to the ground truth images.

Given an image x and its transformed (i.e., patch shuffled) version x̃, a ViT modelM, and automatic
evaluation metrics ϕ, we conduct three different settings for fair comparisons: (a) ϕ(∇M(x),x), (b)
ϕ(∇M(x̃),x̃), and (c) ϕ(∇M(x̃),x), where ∇ refers to recovering input image through gradient attacks.
Table 63 shows the quantitative comparisons between our method and the original ViTs for batch gradient
inversion on ImageNet-1K. APRIL [8] enables a viable, complete recovery of original images from the
gradient updates of the original ViTs. However, it performs worse in recovering from “DeiT-S+MJP”,
leading to best performances on all evaluation metrics and outperform others by a large margin.

More surprisingly, our proposed method makes APRIL yield unrecognizable images and fail in
recovering the details in the original images (i.e., noisy patches in the outputs), as shown in Figure 63.
The left four columns in Figure 63 are tested on original images, where all PEs are standard and correspond
to their patch embeddings. Meanwhile, the right four columns are tested with transformed ones, where the
shuffled patches are with the shared unknown PEs. Both the visual and quantitative comparisons verify
that our MJP alleviates the gradient leakage problem. We also notice that DeiT-S without using PEs is

31https://github.com/JonasGeiping/breaching
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Table 63. Comparisons on gradient leakage by analytic attack [8] with ImageNet-1K validation set, where we test (1)
ViT-S, DeiT-S and our model in the setting (a); (2) ViT-S, DeiT-S and our model in the setting (b) ( i.e., MJP with
γ=0.27); (3) ablation on without (w/o) using Eunk in setting (a); and (4) Our model in setting (c).

Model Set. Acc. ↑MSE ↑ FFT2D ↑ PSNR ↓ SSIM ↓ LPIPS ↑

(1)

ViT-S [16]

a

78.1 .0278 .0039 19.27 .5203 .3623
DeiT-S [15] 79.8 .0350 .0057 18.94 .5182 .3767
DeiT-S (w/o PEs) 77.5 .0379 .0082 20.22 .5912 .2692
DeiT-S+MJP 80.5 .1055 .0166 11.52 .4053 .6545

(2)

ViT-S [16]

b

18.7 .0327 .0016 18.44 .6065 .2836
DeiT-S [15] 36.0 .0391 .0024 17.60 .5991 .3355
DeiT-S (w/o PEs) 77.5 .0379 .0025 20.25 .6655 .2370
DeiT-S+MJP 62.9 .1043 .0059 11.66 .4493 .6519

(3) DeiT-S+MJP (w/o) a 40.6 .1043 .0059 11.66 .4493 .6519

(4) DeiT-S+MJP c 62.9 .1706 .0338 8.07 .0875 .8945

Figure 63. Visual comparisons on image recovery with gradient updates [8]. Our proposed DeiT-S+MJP model
significantly outperforms the original ViT-S [16] and DeiT-S [15] models.

Table 64. Explained variance versus PCA projected dimensionality.

Projected Dimension 3 4 5 6 7

Deit-S EV (%) 54.61 68.55 77.95 85.54 90.74
DeiT-S+MJP EV (%) 46.74 58.36 69.10 78.13 84.55

inclined to be at higher risk of privacy leakage (i.e., easier to be attacked by gradients). These promising
results indicate that our MJP is a promising strategy to protect user privacy in federated learning.

7.3.3.2. PCA Projected Dimensionality. Table 64 presents the explained variance (EV) of our
DeiT-S+MJP and Deit-S versus different projection dimension. A low dimensionality can explain a
large amount of information, which proves that the embedding matrix is sparse in nature. Moreover,
to achieve the same explained variance ratio, our DeiT-S+MJP needs a large dimensionality than Deit-S.
This indicates that the positional embedding matrix of DeiT-S+MJP is less sparse but more informative.

7.3.4. Conclusion

The main contributions of this work are as follows:
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• We demonstrate that although PEs can boost the accuracy, the consistency against image patch
shuffling is harmed. Therefore, we argue that studying PEs is a valuable research topic for the
community.

• We propose a simple yet efficient Masked Jigsaw Puzzle (MJP) position embedding method which
is able to find a balance among accuracy, privacy, and consistency.

• Extensive experimental results show that MJP boosts the accuracy on regular large-scale datasets
(e.g., ImageNet-1K [341]) and the robustness largely on ImageNet-C [618], -A/O [619]. One
additional bonus of MJP is that it can improve the privacy preservation ability under typical
gradient attacks by a large margin.

7.3.5. Relevance to AI4media use cases and media industry applications

The presented approach for efficient training of visual transformers can be applied in all use cases where
visual transformers could be applied. This can be the case of user stories in 3A3 (archive exploration),
specifically 3A3-11 (Visual indexing and search), and 7A3 ((Re)organisation of visual content) by
supporting the efficient training of image and video collections.

7.3.6. Relevant publications

• B. Ren, Y. Liu, Y. Song, W. Bi, R. Cucchiara, N. Sebe, and W. Wang, Masked Jigsaw Puzzle:
A Versatile Position Embedding for Vision Transformers, CVPR 2023. [620]
Zenodo record: https://zenodo.org/record/8337058

7.3.7. Relevant software/datasets/other outcomes

• The Pytorch implementation can be found in https://zenodo.org/record/8337058

7.4. 4K Video Super-Resolution Detection
Contributing partners: BSC, RAI

7.4.1. Introduction

Digital content manipulation techniques, such as deepfakes, automatic colorization, or generative models,
have garnered substantial attention in recent years. They have notably improved in quality and found
numerous practical applications across diverse industries. Among these techniques is Super-Resolution
(SR). Image enhancing applications are successfully applied in medical imaging [621] [622], security
camera image footage [623] [624], remote sensing tasks [625] [626], gaming [627], and the entertainment
industry [628] [629].

Modern SR models, particularly those focused on Video Super-Resolution (VSR), generally require
high computational resources. This requirement is further amplified by the increasing tendency towards
high-resolution 4K content. According to the Visual Networking Index by Cisco [630], it is estimated
that, by 2023, two-thirds of the installed flat-panel TV sets will be UHD. As a result, many on-demand
and streaming platforms have turned to SR techniques to upscale their content to 4K.

This tendency has led to an interest in the field of SR detection and also created a new set of
challenges that threaten the authenticity of visual media, especially after the recent and socially impactful
development of generative models. Digital forgeries, ranging from elementary manipulations like object
cloning or removal to complex alterations involving deepfakes and SR pose substantial issues across
different sectors, including digital forensics, cybersecurity, the legal system, media veracity, and privacy.
Therefore, developing effective and reliable forgery detection mechanisms has become paramount.
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Following this line of research, our contribution consists of two main components:
• We analyze the performance of diverse SR methods with objective and subjective metrics.
• We design, train, and evaluate a system that can accurately distinguish SR methods present within

the training dataset.

7.4.2. Methodology

7.4.2.1. Data We have created two new datasets for the development of this work.
BVI-DVC-SR: Based on the existing BVI-DVC [631], published to train CNN-based video compression
systems. It contains 200 original 4K videos from different sources. We extend the base database by
upscaling the 200 1080p (downscaled from the original 4K counterparts) videos with different methods
to create the BVI-DVC-SR dataset. The selected upscaling methods include one traditional technique
and three DL-based video SR models: bicubic interpolation, Bilinear interpolation, Nearest-Neighbor
Interpolation, BasicVSR [632], RealBasicVSR [633], RVRT [634], SwinIR-Classical [601], SwinIR-Real
[601], and Real-ESRGAN [635]. This dataset is used to train the SR detection model.
BSC-4K: We present a dataset with paired video sequences at 1080p and 4K resolution recorded
simultaneously. The dataset provides a valuable tool for analyzing the degradation nuances in the SR
process by utilizing a unique camera setup to record the videos. It contains 33 4K and 33 1080p videos,
cut to 64 frames each, recorded indoors and outdoors with a single DSLR camera. The dataset is used
to evaluate the performance of current algorithms.

Lastly, we employ a set of videos recorded by RAI to perform a human quality assessment.

7.4.2.2. Performance Comparison We evaluate the effectiveness of various upscaling methods
by measuring Full-Reference (FR) and No-Reference (NR) metrics across two separate datasets. The
quantitative analysis across the BVI-DVC-SR and BSC-4K datasets reveals consistent trends among
the evaluated methods (Table 65). RVRT and BasicVSR consistently exhibit high PSNR and SSIM
values, indicating superior image quality and structural fidelity. RealBasicVSR stands out for its lower
NIQE and BRISQUE scores, despite comparatively lower PSNR and SSIM. Bicubic interpolation shows
moderate performance, maintaining good SSIM but lagging in PSNR and perceptual quality metrics.

In addition, we add the results from a subjective evaluation conducted by RAI (Table 66). Subjective
evaluations were conducted at RAI’s laboratories following ITU BT500 recommendation with the collab-
oration of 10 experts. Surprisingly, Bicubic interpolation achieves the highest MOS for both urban and
nature scenes, despite typically lower objective metrics. RealBasicVSR excels in urban scenes but under-
performs in nature scenes. RVRT and SwinIR Real show consistently high performance across both scene
types. BasicVSR, despite strong objective metrics in the previous table, receives lower subjective scores.

Dataset Method PSNR↑ SSIM↑ LPIPS↓ NIQE↓ BRISQUE↓

BVI-DVC-SR RVRT 47.76 0.99 0.02 5.94 49.23
BVI-DVC-SR BasicVSR 47.52 0.99 0.03 5.91 48.88
BVI-DVC-SR Bicubic 47.24 0.99 0.04 6.68 54.62
BVI-DVC-SR RealBasicVSR 30.49 0.89 0.33 4.14 25.00

BSC-4K RVRT 33.14 0.96 0.07 5.76 45.77
BSC-4K BasicVSR 33.46 0.96 0.06 5.93 46.43
BSC-4K Bicubic 33.11 0.96 0.11 6.33 52.26
BSC-4K RealBasicVSR 29.74 0.86 0.29 4.27 13.11

Table 65. Quantitative metrics for BVI-DVC-SR and BSC-4K datasets
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SR Method Urban MOS↑ Nature MOS↑

SwinIR Real 7.58 7.97
SwinIR Classical 5.1 6.57
BasicVSR 4.57 6.05
RealBasicVSR 8.53 5.95
RVRT 7.25 8.03
Bicubic 8.73 8.55

Table 66. Subjective Comparison with RAI’s dataset. Mean Opinion Score (MOS) is used, a subjective quality metric
rated by human observers.

7.4.2.3. SR Detection We propose a network inspired by Lu et al.’s work [636] (BTURA). Our
network’s architecture is based on the feature extractor, which processes the small patches in the training
dataset. It consists of a ResNet-18 (pre-trained on ImageNet), where intermediate features are extracted
from each block, grouped by a Global Average Pooling operation, and concatenated (Figure 64).

We incorporate two main new modules: First, the staircase structure, proposed in [637], attempts to
fully utilize the visual information from low-level to high-level and learn the better feature representations
for quality evaluation. The second module integrates a technique to combine local features from the
patches and global features from the videos. We save the Discrete Cosine Transforms (DCT) features
for each video in the dataset. Those features are concatenated with the local features from the feature
extractor or staircase architecture.

We compare our results with three existing detection models, SRDM [638], TSARA [639], and [640]
(Table 67).

Model DCT TSARA SRDM-Patches SUDDS (ours)

Original 0 0.72 0.88 0.94
SwinIR-Real 0.4 0 0.2 0.9
SwinIR-Classical 1 0.3 0.65 1
Real-ESRGAN 0 0 0.68 0.94
Nearest Neighbor. 1 0.05 0.4 0.9
BasicVSR 1 0.44 0.4 0.9*
Real-BasicVSR 0.06 0 0.59 1*
RVRT 1 0.36 0.42 0.8*
Bicubic 1 1 0.85 1*

Table 67. Accuracy Metrics for all studied SR and detection methods. * denotes SR methods that are in the training set

7.4.3. Conclusion

The subjective analysis (66) reveals a preference for Bicubic interpolation, especially above 720p, contrast-
ing with previous Full-Reference metric assessments. Selected SR methods struggled with high-frequency
artifacts and temporal consistency at higher resolutions, varying performance by video texture and
domain. Evaluators generally preferred "Real" SR methods for video upscaling. Additionally, we present
a super-resolution detection model for upscaling detection and recognition that outperforms existing
methods, enhancing our understanding and evaluation of SR techniques. These findings highlight the
importance of human perception in SR evaluation and offer new tools for analyzing upscaled content.
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Figure 64. Proposed architecture of SR detection module for upscaling detection and recognition.

7.4.4. Relevance to AI4media use cases and media industry applications

This work leverages deep learning techniques to accurately detect upscaled 4K videos, ensuring that
only genuine high-resolution content is delivered to audiences. By implementing this technology, media
companies can maintain high-quality standards, enhance viewer trust, and protect their brand integrity.
Furthermore, it allows for more efficient content management and quality control processes, ultimately
contributing to a more reliable and satisfying viewing experience.

7.4.5. Relevant software/datasets/other outcomes

The detection model and the BVI-DVC-SR datasets are available at https://github.com/Cuena/
4k-vsr-detection
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8. Music Annotation and Audio Provenance Analysis

8.1. Overview
AI-enabled music analysis is a topic of high industrial relevance that requires special attention. Task 5.6
(T5.6) “Music Annotation and Audio Provenance Analysis” of AI4Media dealt with automated music
annotation and music similarity analysis, as well as with audio partial matching/reuse detection and audio
phylogeny analysis, mainly using novel DNN-based methods. Music similarity analysis refers to the task
of quantifying similarity between different music tracks and is particularly significant for the music replace-
ment problem, i.e., when we search for a song as similar as possible to the query track. On the other hand,
automated music annotation refers to methods that permit automatic production/extraction of annotation
metadata for music tracks (e.g., for training DNNs in a supervised manner). Audio phylogeny implies the
automatic detection of processing history relationships between audio items, while partial audio matching
involves the detection and temporal localization of arbitrary partial matches between different audio items.

8.2. How reliable are posterior class probabilities in automatic music clas-
sification?

Contributing partners: FhG-IDMT

8.2.1. Introduction

Music genre and instrument classification are key tasks within Music Information Retrieval (MIR), both
challenged by the ambiguity of categories and the similarities within them. Genre classification aims to
label songs with a style (e.g., Rock, Pop, Jazz), while instrument classification identifies specific instru-
ments in recordings. Both tasks suffer from overconfident predictions when using deep learning-based
classifiers, which are the current standard [641, 642, 643, 644, 645]. This overconfidence complicates
output interpretation and can reduce classification effectiveness [646, 647, 648]. Thus, establishing
realistic confidence values is crucial for both genre and instrument classification tasks.

8.2.2. Methodology

The uncertainty of the classification decision can be quantified using a confidence measure which is a
score that accompanies the decision and signifies its trustworthiness. A higher confidence corresponds
to a more reliable decision.

The importance of confidence arises when it is necessary (i) to compare or merge classification
decisions from different classifiers, (ii) to implement a reject option based on the confidence, or (iii) to
interpret classification outcomes.

In this work, we define confidence as a value ranging from 0 to 1 that is associated with a classification
decision and meets the criteria set forth by Duin and Tax [649]:

1. On average, a proportion c of all objects with a confidence of c should be classified accurately.

2. Objects that are classified reliably should possess higher confidences than objects near the decision
boundary.

Confidences of this nature are simple to understand. For example, if we obtain 100 decisions with
confidences around 0.7, we can anticipate approximately 70 of them to be accurate.
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8.2.2.1. Deterministic Overconfidence For multi-class single-label tasks, the softmax activation
function’s output in the last layer is often misinterpreted as model confidence in class decisions, leading
to deterministic overconfidence [646]. This overconfidence results from using point estimates rather than
distributions, often causing inflated probabilities for both correct and incorrect classes. This phenomenon
is exacerbated when data is far from the decision boundary or when ReLU activations are employed [648].

To mitigate deterministic overconfidence, Temperature scaling adjusts softmax outputs post-hoc by di-
viding the neural network logits by a temperature value T before the softmax function, effectively softening
output probabilities for in-distribution data [647]. Another method, Monte Carlo (MC)-Dropout, intro-
duces dropout during inference to model uncertainty and approximate Bayesian inference, varying outputs
with each pass of the same input [646]. Additionally, deep ensembles, which utilize multiple independently
trained networks, have proven effective in reducing overconfidence by leveraging diverse collective knowl-
edge, particularly excelling in out-of-distribution scenarios [650, 651]. This approach has been shown to
outperform MC-Dropout in uncertainty quantification and generalization across various tasks and datasets.

8.2.2.2. Datasets This work focuses on music genre classification using the FMA dataset [652] and
instrument family classification with the NSynth dataset [653]. The FMA small dataset, a subset of
the larger FMA, includes 8,000 tracks across eight genres, each 30 seconds long, with balanced training,
validation, and evaluation splits. Zhao et al. [645] achieved a 56.4% accuracy using a Swin Transformer
and self-supervised pre-training. Kostrzewa et al. [643] explored various architectures, achieving up to
56.39% accuracy with CNN ensembles.

The NSynth dataset comprises 300k musical notes from over 1k instruments, categorized into 10
families, recorded at 16 kHz over four seconds [654]. Advanced methods achieved up to 77.1% accuracy
using a ResNet-based CNN with random image augmentations of log mel spectrograms [644].

8.2.3. Experimental Results

In this study, we focus on evaluating posterior class probabilities in automatic music genre and instrument
family classification, utilizing temperature scaling and deep ensembles to achieve realistic confidence
outputs. We employ two network architectures: a ResNet with 420k parameters [644] and a shallow Multi-
Layer Perceptron (MLP) using OpenL3 embeddings [655], referred to as ResNet and OpenL3, respectively.

Both models are trained using the Adam optimizer at a learning rate of 10−3 for 100 epochs, with
the ResNet applying random image augmentations to the mel spectrogram. For FMA, ResNet processes
3-second log mel spectrogram patches, while for NSynth, 4-second patches are used. OpenL3 utilizes
audio embeddings trained with music data.

The models are trained and tested on subsets of the FMA small and NSynth datasets. During inference,
softmax outputs are averaged over all patches to estimate class probabilities, assuming uniformity within
each recording. Additionally, we implement deep ensembles by training the networks five times with
random initialization, and calculate ensemble probabilities as the mean output across the models.
Temperature scaling adjusts the logits before softmax activation to refine the class probabilities [650].

We investigated the calibration of single models and ensembles in music genre and instrument family
classification, using the FMA and NSynth datasets. Table 68 summarizes the classification accuracies.
Ensembles consistently improved accuracy across both datasets and architectures. For instance, ensemble
accuracy for FMA using ResNet increased from 47.22% to 50.74%.

We also explored the discrepancy between softmax outputs (commonly interpreted as confidence)
and estimated class probabilities. By analyzing reliability across confidence intervals, from high to low,
we aimed to validate whether higher softmax outputs correlate with higher actual accuracies.

In Figure 65, reliability diagrams for each dataset and model combination display actual accuracies
against expected accuracies for defined confidence intervals. The discrepancies observed prompt further
investigation into refining model confidence assessments to align more closely with actual outcomes.
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Dataset Architecture Accuracies in %
Single models FMA ResNet 47.22 (0.78)

Ensemble FMA ResNet 50.74

Single models FMA OpenL3 45.57 (0.18)

Ensemble FMA OpenL3 46.70

Single models NSynth ResNet 79.96 (0.61)

Ensemble NSynth ResNet 81.49

Single models NSynth OpenL3 63.99 (0.17)

Ensemble NSynth OpenL3 65.32
Table 68. Accuracy values for both datasets and network architectures in %. The accuracy values for single models are
provided as mean over all single models with the standard deviation in parentheses.

Figure 65. Reliability diagrams for all datasets and models

Figure 65 shows that single models, represented by grey lines, often display deterministic overconfidence.
In contrast, ensembles (black lines) generally align closer to the ideal calibration (green dashed lines),
especially noticeable in the “FMA–ResNet” and “NSynth–OpenL3” configurations.

Despite advancements, ensembles do not entirely resolve the issue of unreliable confidence outputs,
prompting the exploration of temperature scaling as an additional calibration method. To enhance
confidence calibration, we applied temperature scaling, which adjusts the logits before softmax activation.
Reliability diagrams with optimal temperature settings for ensembles are depicted as blue lines in Fig-
ure 65, demonstrating improved alignment with expected accuracy. Please, refer to our publication [656]
for detailed results.

8.2.4. Conclusion

This study examines the reliability of confidence values in automatic music classification tasks: music
genre and instrument family classification, using a ResNet and a model with OpenL3 embeddings.
We found that even advanced deep learning methods struggle with estimating realistic posterior class
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probabilities. To address this, we implemented deep ensembles and temperature scaling, which improved
reliability but required careful tuning specific to each dataset and model.

Our findings emphasize the importance of reliable classifier outputs in enhancing the accuracy and
utility of music classification systems, guiding future advancements in the field.

8.2.5. Relevance to AI4media use cases and media industry applications

The approach is related to use case 5 (AI for Games), aiming at helping game audio designers to choose
suitable music tracks for games.

8.2.6. Relevant Publications

• Hanna Lukashevich, Sascha Grollmisch, Jakob Abeßer, Sebastian Stober, and Joachim Bös. How
reliable are posterior class probabilities in automatic music classification? In Proceedings of the
Audio Mostly Conference, 2023 [656]

8.2.7. Relevant software/datasets/other outcomes

None

8.3. Free-form Text to Music Search Retrieval and Music Tagging
Contributing partner: FhG-IDMT

8.3.1. Introduction

Text-to-music retrieval involves retrieving music files in large repertoires that are most similar to the
natural language query. This task is multi-modal, as it involves learning representations of the two
modalities text and audio jointly in a common embedding space. This learned representation is then
used to encode the text query and music recordings. Cosine similarity is used to identify the most similar
music files related to a text query.

Audio classification and retrieval tasks typically require large data sets, whose annotation is labor
intensive. Implementing training approaches with less supervision, such as based on self-supervised or un-
supervised learning, remains a challenge. Training of such a multi-modal model is different from the state-
of-the-art classification models that are typically trained with fixed categories and limited generality to new
audio concepts. Contrastive learning offers a useful paradigm for training a model on large-scale noisy data
collected from the Internet. This paradigm involves learning a low-dimension embedding representation of
a particular entity (be it text or audio) by contrasting between similar and dissimilar pairs of entities such
that similar pairs have a low distance and dissimilar pairs have a high distance in the embedding space.

LIAON-CLAP [657] is a pre-trained model that uses contrastive learning on a large collection of
audio-text pairs of environmental, speech, and music data with a total number of 633,526 audio-text
pairs. In our research, we fine-tuned this model with specific data for the music captioning task, which
we obtained from two different sources.

Music tagging is the task of assigning a set of text tags to music clips. The most common tag cat-
egories are genres, instruments, and moods. We use the same fine-tuned models based on LIAON-CLAP
for the music tagging task. Here, a prediction score is computed as the cosine similarity between the
encoded representation of a music clip and the text embedding of the corresponding tags. Finally, tags
with a high prediction score are assigned to music clips.
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8.3.2. Methodology

We fine-tuned the LIAON-CLAP model on multiple datasets such as the MusiCaps dataset [291] and
the LP-MusiCaps dataset [658], which are both open source. The MusicCaps dataset contains 5,521
music examples, each of which is labeled with an English aspect list and a free text caption written by
musicians. An aspect list is a free text list of musical tags such as “pop, tinny wide hi-hats, mellow piano
melody, high pitched female vocal melody, sustained pulsating synth lead”. The LP-MusiCaps dataset is
a modified version of the Magnatagatune dataset [659] where multi-label tags related to each audio clip
were converted to text captions using the GPT-3.5 Turbo Large Language Model. The Magnatagtune
dataset consists of 26k music clips from 5,223 unique songs including genre, instrument, vocal, mood,
perceptual tempo, origin, and sonority features. The LP-MusiCaps dataset utilizes 188 unique original
tags from the Magnatagtune dataset to perform tag-to-caption generation.

To fine-tune the LIAON-CLAP model, we use the huggingface transformers [660] library. Trans-
formers provides APIs and tools to easily download and train state-of-the-art pre-trained models. These
models support common tasks from different modalities such as Natural Language Processing, Computer
Vision, and Audio and Multi-modal Analysis. The tasks include optical character recognition, information
extraction from scanned documents, video classification, and visual question answering.

Fine-tuned models were evaluated for both text-to-music retrieval and music tagging tasks. In order
to evaluate text-to-music retrieval, we use the Song Describer dataset [661], which is another manually
annotated dataset consisting of 706 music clips and their corresponding captions. This dataset is a crowd-
sourced corpus of high-quality audio-caption pairs, which is designed for evaluation of music-language
models. As evaluation metrics, we use the recall score and the retrieval rank, i. e., the median value of
the rank for the retrieved results shown in the section 8.3.3.

We employ the model that performed best in the text-to-music retrieval experiment, to the music
tagging task, which it was not originally trained for, effectively making this a zero-shot problem. This
approach is similar to the method described in [662]. We used all available tags from the ground truth labels
of the MagnaTagaTune dataset [659], which cover three broad categories genre, mood, and instrumentation.
In order to streamline the tagging task, we manually divide the task into three separate tagging operations
for each of the categories. The audio clips in the MagnaTagaTune dataset are 29 seconds long. We passed
the entire audio clip through the audio encoder, and each category tag through the text encoder part of the
model. For each audio clip, the cosine similarity score is computed between the audio clip and the category
tags, and the tags with the higher similarity score are taken as a prediction. The number of tags to predict
is arbitrarily chosen based on a threshold value of the maximum similarity score, and evaluation metrics
like precision and recall are computed to assess the performance and are currently part of the ongoing work.

8.3.3. Experimental Results

Table 69 shows the results of the model evaluation metrics in the Song Describer dataset after fine-tuning.
The first result is the huggingface baseline model that was trained on music and speech data, for which
the recall@10 score is 0.247. After model fine-tuning, we observe an improved Recall@10 score of 0.362,
which increased by 10 %, although the MusiCaps dataset is relatively small with only 5k+ samples. On
the other hand, the LP-MusiCaps dataset with pseudo-labels generated by the GPT3.5 Turbo model
did not improve the metrics as much even with a significantly larger dataset with 20k+ audio-text pairs.

8.3.4. Conclusion

This task overall encompasses using audio-language pre-trained models to perform two downstream
tasks that are relevant in the music information retrieval domain. The first is the text-to-music retrieval
task and the second is the music tagging task. Both tasks utilize the pre-trained joint embeddings of
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Recall@10 MRR (Median Retrieval Rank)
LAION-CLAP-music-and-speech
(baseline)

0.247 34.999

LAION-CLAP-music-and-speech
(fine-tuned on MusicCaps)

0.362 23.999

LAION-CLAP-music-and-speech
(fine-tuned on -LPMusicCaps)

0.281 33.999

Table 69. Performance Metrics for Different Models

audio and text in order to achieve a task the model was not originally trained on. Our results show
that further fine-tuning on relevant datasets can improve the results in downstream tasks.

8.3.5. Relevance to AI4media use cases and media industry applications

The approach is related to use case 5 (AI for Games), aiming at helping game audio designers to choose
suitable music tracks for games.

8.4. Audio Provenance Analysis in Heterogeneous Media Content Sets
Contributing partners: FhG-IDMT

8.4.1. Introduction and methodology

Verifying the reliability and origin, or provenance, of audio files is crucial in combating disinformation
and ensuring the integrity of media content. This is especially important in fields such as journalism and
law enforcement, where validating audio material can be pivotal for investigations or fact-checking efforts.

Journalists and law enforcement agencies often need to examine media files to trace their distribution
and identify the earliest or least altered versions. This process is essential for verifying content authenticity,
identifying information sources, and unraveling distribution patterns. The complexity increases with exten-
sive sets of audio files, where manipulated or decontextualized materials may incorporate segments from
genuine sources, and identical content may spread across multiple platforms. Thus, distinguishing between
derived and original or first-published versions and detecting the transformations applied is essential.

Detecting content similarity and transformations remains a challenge in the current SOTA, especially
within heterogeneous sets of media content from various internet sources or devices, and lacking detailed
content information. In our latest work [17], we introduced Audio Provenance Analysis to address these
challenges by mapping the directed relationships among media files focusing on reused audio segments.
The goal is to identify near-duplicate audio sets, reconstruct their lineage in directed acyclic graphs, and
highlight partial content reuses contributing to new compositions (see Figure 66).

Our analysis of this complex problem led us to identify two critical tasks essential for an effective
audio provenance framework: Provenance Clustering and Provenance Graph Building.

The goal of the Provenance Clustering task, illustrated in Figure 66, involves initially applying
Partial Audio Matching to determine which audio items are related, followed by a Near Duplicate
Clustering process. This process aims to group near-duplicate items in clusters and identify connections
between non-near-duplicates.

The Partial Audio Matching, illustrated in Figure 67, utilizes an audio matching approach we
proposed in [663, 664]. This method introduces an advanced retrieval algorithm tailored to detect and
localize reused audio segments as short as 3 seconds, meeting our requirements for precision and reliability
in segment localization, making it ideal for provenance clustering.
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Figure 66. Audio Provenance Analysis workflow proposed in [17]

Figure 67. Partial audio matching focuses on identifying reused or recurring segments, sometimes just a few seconds long,
within datasets or streams without any prior knowledge of the segments’ existence, duration, or frequency of reuse. The
image illustrates a dataset containing six audio items, where partial matching successfully detected three different recurring
segments, despite having no prior knowledge of the quantity or length of the recurring content.

As part of Task 5.6 related to Provenance Clustering, we have improved the existing tool for partial
audio matching and, together with our AI4Media partners, implemented it directly in applications for
asset management in the media research domain.

The goal of the Provenance Graph Building task is depicted in Figure 66. First, we transform
the clusters of near-duplicates into sets of phylogeny trees, i.e., directed graphs indicating provenance.
Next, we process the cross-tree partial connections, i.e., the partial matching between disjoint phylogeny
trees, to pinpoint specific files acting as donors in creating derived content. The key component for
successful provenance graph building is the Audio Phylogeny Analysis.

Audio Phylogeny Analysis aims to detect relationships and transformations within a set of near-
duplicate audio items. This involves computing a dissimilarity matrix between each pair of near-duplicates,
which is then transformed into a directed phylogeny tree using the Oriented Kruskal algorithm [665]. While
several methods for audio phylogeny exist, they detect only a limited set of transformations [19, 18, 666].
Extending this set significantly increases complexity. Hence, our main focus within Task 5.6 was devel-
oping a method for Audio Phylogeny analysis as a fundamental part of the Audio Provenance Analysis
Framework. This novel method uses a neural network to detect the most probable transformation
between each input pair of near-duplicates, presented in [667]. This approach offers high computational
efficiency, enabling detection of specific transformations between pairs of files and allowing for the
expansion of the set of potentially detected transformations with relative ease.
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Efficient phylogeny analysis involves determining the most likely transformation τb between each pair
of files (a,b) in the analysis set A. The seminal work by Nucci et al. [19] realized this step through an
exhaustive search, which is highly demanding and nearly unfeasible for large datasets. This issue was
partially addressed by Maksimovic et al. [18], who proposed a two-step procedure based on a first coarse
search followed by refinement to reduce the required computation.

In our latest work [667], we address transformation estimation in a single step. Given a pair of input
audio files (a,b), we interpret transformation estimation as a closed-set classification problem, where each
class represents one possible transformation τb. The probability of each transformation is computed by
reading the b-th output of a neural network DNN(·) trained ad-hoc.

More in detail, Figure 68 shows the phylogeny analysis process for one pair of audio files: potential
parent a and potential child audio file b. Mel-spectrograms of these two audio files are given as input
to the network, which extracts ResNet50 embeddings that are then fed to a feed-forward classification
network to compute class probabilities. The output layer is interpreted as class probabilities, using
one-hot encoding for each transformation in the set and training the network with Binary Cross Entropy
(BCE) loss. This network outputs the best suitable transformation that should be applied to potential
parent a to get the closest version possible to b.

After applying the top two transformations selected by the network on audio file a, three dissimilarity
values are calculated between the original and transformed versions of a against the potential child b. The
lowest of these three values is saved in the dissimilarity matrix, which holds dissimilarity values between
every pair of files in the analyzed set. The Oriented Kruskal algorithm is then used to reconstruct a
phylogeny tree from the given dissimilarity matrix.

Figure 68. Complete audio phylogeny analysis system with transformation prediction via DNN classifier, dissimilarity
calculation, and tree reconstruction

8.4.2. Experimental Results

Here we detail the experiment with a focus on our audio phylogeny approach from [667] as the most
prominent part of our audio provenance analysis framework developed within Task 5.6. These experiments
were done in two phases: In the first phase, we compared the performance and scalability of the proposed
approach against state-of-the-art methods, using a base set of transformations the pre-existing algorithms
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have been designed for. In the second phase, we tested the adaptability of the proposed approach to new
demands by extending the set of considered transformations and evaluating the resulting performance.

To evaluate our method against the existing SOTA, we considered the following base set of trans-
formations:

Tb={none, mp3320, mp3192, mp3128, aac320, aac192, aac128, fade, trim}, (105)

Using this set of transformations, we created an evaluation dataset containing 60 audio phylogeny
trees with 20 nodes each which has been made available in [668].

The evaluation metrics used are the ones originally proposed in [665] and then adopted as standard
for evaluating a reconstruction of phylogeny trees. The amount of correctly reconstructed roots R, edges
E (parent-child links), leaves L (nodes with no children), and ancestry A (lists of all children derived from
every node) have been compared between ground truth Audio Phylogeny Tree APTgr and reconstructed
one APTr.

Figures 69 to 71 show the results on this evaluation set for the proposed approach and for the
state-of-the-art methods by Maksimovic et al. [18], and Nucci ei al. [19].

Figure 69. Reconstructed phylogeny
trees results for own approach.

Figure 70. Reconstructed phylogeny
trees results for method from [18].

Figure 71. Reconstructed phylogeny
trees results for method from [19].

Unlike the existing state-of-the-art methods, our algorithm was able to identify correctly the root
of all phylogeny trees in the evaluation set independently from the amount of nodes which were pruned.
The amount of edges and leaves which were identified correctly is systematically higher than in [18], and
decrease at a slower pace than in [19], even though the pre-existing proposal is based on an exhaustive
search. Lastly, our method retrieves the highest amount of parent-child relations across generations, as
reflected by the ancestry measure being the highest.

The experiments we conducted with the extended set of transformations including in addition pitch
shift and time stretch, proved the extensibility of our network for a minimal cost of retraining the network
while the performances stay stable, see Figure 72.

8.4.3. Conclusion

The presented approach to audio phylogeny outperformed the current SOTA while maintaining com-
putational efficiency, and retained its performance after expanding the initial set of transformations,
showing that it can be extended at a minimal cost. Thanks to its transformation detection performance,
we believe that it can support many applications. Hence, it is an ideal choice for the provenance graph
building task of the overall audio provenance analysis framework, providing a robust tool for verifying
the authenticity and lineage of audio files.

8.4.4. Relevance to AI4media use cases and media industry applications

The proposed Audio Provenance Analysis method contributes to use case 1 by providing tools for audio
verification, and to use case 4 by providing tools for comparison of audio objects in archives.
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Figure 72. Reconstructed phylogeny trees results for own approach with extended set of transformations

8.4.5. Relevant Publications

• M. Gerhardt, L. Cuccovillo and P. Aichroth, "Advancing Audio Phylogeny: A Neural Network
Approach for Transformation Detection," 2023 IEEE International Workshop on Information
Forensics and Security (WIFS), Nürnberg, Germany, 2023. [667]
Zenodo record: https://zenodo.org/records/10124333

8.4.6. Relevant software/datasets/other outcomes

• IDMT Audio Phylogeny Dataset [668]
Zenodo record: https://zenodo.org/records/8135331
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9. Research on Large Language Models for the media industry

9.1. Overview
There has been an explosion of Large Language Models (LLMs) recently. Following this trend, Task
5.7 (T5.7) “Research on Large Language Models for the media industry” is focused on new research
exploring different aspects of LLM use in the media industry. An internal open call was organized
where AI4Media beneficiaries were able to submit proposals for LLM-focused mini-projects. An internal
evaluation committee evaluated the submitted proposals and selected three of them for funding. The
rest of this section is a detailed description of the challenge that each project tried to tackle and an
extensive report about methodology and results.

9.2. LLMs for media content editorial segmentation
Contributing partner: RAI

9.2.1. Challenge

The advent of Large Language Models and their wide availability both as proprietary solutions and as
openly available models has represented a revolution for many business fields. The media sector is no
exception as the large and ever-growing amount of media content produced and distributed every day
poses serious challenges for ensuring their findability and accessibility. One of the key unsolved problems
in this context is the ability to find relevant parts, e.g. short clips or larger segments (for example the
individual news stories of a newscast or sub-clips at different points in a programme where the same
topic is addressed) that can have an independently exploitable nature on publication platforms and that
can be identified following multiple segmentation criteria (e.g. topic-, event- or editorial-based).

Approaches to automated multimedia segmentation vary according to the content genre, e.g., news-
casts, movies, fiction, documentary, and are often based on genre-local heuristics or on some axiomatic
definition of the atomic unit of which content is composed of (e.g., steps of a recipe). The main criticism
is that most of the efforts focused on a mono-modal analysis (mainly visual shots), as if the underlying as-
sumption was that segments are distinguishable by visual features only and address the segmentation prob-
lem using predefined static criteria (e.g. movie scenes). Though research on this specific task using existing
and emerging multi-modal LLMs (like GPT4V or LLaVA) is still lacking to fully assess their performance,
these seem overly complex and resource consuming, as well as mostly proprietary and difficult to refine.

Differently from existing mono-modal mono-criteria approaches, in this work we will firstly merge
information coming from different channels (visual, aural, textual) in a unified textual domain and
then use the LLMs to extract/abstract information from this merged domain under several dynamic
criteria. We call this approach trans-modal, since the idea is that of transforming/translating different
media channels into the textual domain where to exploit LLMs’ power to process both structured and
non-structured text. In other words, while recent more advanced approaches are multimodal (performed
e.g. through Llava, GPT4o, Gemini), i.e. they rely on independent processing pipelines to extract
information from multiple channels (e.g., texual, acoustic, visual) and then elaborate the resulting data
in a common hybrid token space normally providing a final textual output, transmodal analysis is an
alternative approach that operates by generating textual descriptions conveying contributions from all
available channels and making LLMs process them towards different objectives (see Figure 73).

The outcomes of this work are a set of novel methods aimed at integrating and utilizing LLMs for
the multi-criteria content segmentation task. This is substantiated by a set of AI models made available
to the community (see table 80), produced through zero-shot, few-shot or finetuning approaches.
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Figure 73. The concept of transmodality.

9.2.2. Related Work

The research work on multimedia content segmentation has a long history. The work presented in [669]
offers a good survey of the “pre” deep learning efforts until 2013 by grouping onto seven categories the
approaches based on the combination of three classes of low-level features – visual, audio and textual.
For the sake of relevance and compactness, we will focus our related work search to the most significant
latest developments, all exploiting the power of deep-learning techniques. We also exclude works that
employ content recognition techniques (e.g., video or audio instance recognition) to identify predefined
audio-visual patterns since - although useful in many practical cases - they do not generalise and need
continuous integration of the reference data.

In general terms, the approaches vary according to the content genre, e.g., newscasts, movies, fiction,
documentary and are often based on genre-local heuristics or on some axiomatic definition of a scene, i.e.
the atomic unit of which longer content is composed of. In many works, once a scene is defined by some
agreed characterisation, the technical approach translates this characterisation into some algorithmic form
detecting the corresponding pattern. The work in [670] uses a siamese network to learn a discriminating
metrics between consecutive shots. In [671] authors use an automated image captioning tracking approach
to group keyframes in scenes, thus considering only the visual channel as carrier of the segmentation
cues. This is philosophically similar to the work in [672], where authors use detected objects in the visual
channel to perform matching among shots. Authors of [673] define a scene as "a plot-based semantic unit,
where a certain activity takes place among a certain group of characters" and use a combination of local
and global visual shot analysis to optimise scene boundary detection. Although the work shows a good
generalisation performance towards other genres, the development is heavily grounded on assumptions
derived from working on a movie-only dataset. Authors of [674] propose a self-supervised shot contrastive
learning approach (ShotCoL) to learn a shot representation that maximizes the similarity between nearby
shots compared to randomly selected shots. The very recent work in [675] uses a two-stage approach
in which a video shot representational stage is followed by a scene segmentation stage. In both these last
two cases, training and optimisation are performed on a movie dataset. In [676], authors achieve good
cross-domain generalisation approaching the problem of long video segmentation through a combination
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of short-range and long-range analysis using state-space transformers, but only considering the visual
channel as information input for the segmentation task.

Other works like [677] focus more on a topic based segmentation of media content, aiming to obtain
a segmentation in which each segment is semantically homogeneous and different from the previous
and the upcoming. The idea behind these works is to use the same approaches used to detect topic in
texts in order to segment transcript coming from media content according to the topic treated. The
aforementioned types of text segmentations were first done via “simple” statistical methods like [678].
Then approaches based on probabilistic topic models like Latent Dirichlet Allocation [679] were used to
analyse the changing of topic within a text, see [680] for an example. Currently these methods have been
improved using textual embeddings; indeed, in works like [681, 677] the text (transcription of content)
is divided in groups of sentences and then, after an analysis of the similarity between adjacent groups,
changes of topic are detected providing a topic based segmentation.

Approaches departing from mono-modality are few, like for example [682], in which they rely on
a combination of visual and textual features augmented with temporal information to improve shot
clustering. A similar approach is that presented in [683], which is based on audio-visual deep features for
shot genre prediction and successive aggregation. Authors of [684] apply learnable Optimal Sequential
Grouping downstream of a video and audio embedding extraction scheme. Still, the evaluation is done
on a limited-size movie only dataset.

9.2.3. Objectives

Editorial segmentation of media content is a complex process in which together with operational purposes
and specific criteria, cultural and societal aspects are involved as well, which are difficult to isolate
and rigorously define. The initial part of the project was dedicated to understanding the many aspects
related to the target research and formulating a consistent research problem showing – at the same time
– a promise for concrete and useful outcomes. The issue of editorial segmentation has been addressed by
research literature across many decades, although not being one of the fields with major breakthroughs.
In fact, most of the efforts have been spent into defining and testing specific, mostly heuristic-based,
algorithms able to tackle the issue in particular domains (e.g., news, movies, online instructional videos)
but no general approach has proven successful so far. The clear drawback of such heuristic approaches
at segmentation is that they cannot generalise out of the original domain in which are crafted, therefore
every system based on such approaches is inherently non-scalable. The segmentation process is performed
by documentalists until now. Turning the project solely into a method to emulate this process was
readily identified as an uninteresting direction to pursue in favour of a more general one, namely that
of constructing a segmentation framework rather than a single tool. With this goal in mind, the overall
research objective has been formulated as follows: study of research and experimental methods aimed at
building an AI-supported framework for media editorial segmentation, taking into account purposes and
subsequent segmentation criteria. The main requirements of this framework can be summarised as follows:

• media genre independence: the framework shall be able to operate across several content genres
without specific or explicit configuration by the user;

• heuristics-free operation: the framework shall not depend on external or aprioristic rulesets dictating
what observable features are direct hints for segmentation points;

• segmentation purpose adaptability: the framework shall flexibly adapt segmentation criteria to
adhere to a user-defined segmentation purpose.

The following sections are organised as follows: Section 9.2.4 describes the adopted methodology, including
several fundamental definitions useful to understand the theoretical formulation. Section 9.2.5 introduces
and discusses the metrics used to evaluate the various segmentation methods. Section 9.2.6 briefly
describes some initial approaches at introducing learning in the envisaged framework. Finally, Section
9.2.7 reports experimental results.
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9.2.4. Methodology

In this work we opted to experiment what we call a transmodal approach. Let’s start with some
fundamental definitions and terminology.

Definition 9.1 (Edit Unit). An edit unit is an arbitrary atomic piece of media content rendered in
time. For example, the rendered sound and pictures from second 00:01 to second 00:02, or from frame
115 to frame 125.

Definition 9.2 (Timeline). A timeline t is the ordered sequence of edit units of a piece of media content
C. For example the entire play of all frames of a media item. An edit unit ti is adjacent to tj when
it follows tj in the timeline.

Definition 9.3 (Segmentation). A segmentation σ is a proper partition of a timeline t. Each element
s of σ is an ordered set containing only adjacent edit units. By construction, each element s∈σ is a
subset of the timeline t.

Definition 9.4 (Segment Description). Each segment s ∈ σ can be associated to a generic set of
descriptive features fs∈Φ, so that for each element of σ there is a corresponding element in Φ. We call
this relation Description, D :σ→Φ.

Definition 9.5 (Segmentation Inclusion). A segmentation σi is included in σj, and we write σi◁σj,
if ∃sa∈σi :∃sb∈σj :sa⊂sb and ∄sc∈σj :∃sd∈σi :sc⊂sd.

Definition 9.6 (Transmodal Trail). A Transmodal Trail is any segmentation σT for which ∀s∈σT :
D(s)=fs is a descriptive feature that combines information coming from one or more content tracks.
We call scenelets the elements of a Transmodal Trail.

In general terms, the developed approach can be seen as a system which provides a succession of
segmentations Σ={σ0,σ1,...,σN ,...} of a content C following a purpose π:

σ0=S0(C,π) (106)
σ1=S1(σ0,C,π) (107)

...

σN=SN(σN−1,C,π) (108)
...

where σ0 is the fundamental segmentation and σ1,...,σN are aggregative segmentations, defined through
a hierarchical segmentation scheme as illustrated in Algorithm 1.

The purpose π, expressed in generic natural language, conveys the intention for which the segmen-
tation is being performed. In fact, depending on the target application domain, the most appropriate
segmentation can vary considerably to the extent that a reference segmentation valid for a wide range of
possibilities is not really conceivable. The purpose π is exactly intended to model this situation, acting
as a global parameter governing the automated segmentation process.

The key idea is that an optimal implementation of functions Si can be achieved through the integration
of LLMs due to their flexibility in processing textual inputs of various nature and structure. In the following
paragraphs, we introduce the key definitions and the fundamental functional relations of the process.

Definition 9.7 (Genre Extraction Function). We define a genre extraction function γ(C) as a function
associating genre information to a media content C. Genre information can be expressed in any textual
format as long as it conveys the key descriptive information that defines a media genre.
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Algorithm 1 Hierarchical segmentation algorithm
Input: C,π
Output: Σ
i←0
Σ=∅
σi←S0(C,π)
while i=0 OR (σi−1◁σi) do

Σ←Σ
⋃
{σi}

i←i+1
σi←Si(σi−1,C,π)

end while

SegmentXX , audio type: reading , main image content: zodiac signs , speaker YY says :
Relazioni che devono essere sempre gestite con prudenza, perché ricordate che l’acquario detesta la
morbosità, le persone troppo appiccicose. Si avvicina anche un weekend importante e poi il sagittario.
Cielo molto valido, chissà che già la prossima settimana non ci sia stato un qualcosa di più. Innovazioni
e devo dire anche amore, amore positivo, incontri che valgono, idee vincenti. Vi abbraccio e vi aspetto.

Table 70. Example of a scenelet. The orange text is the segment label (corresponding to an edit unit in the programme’s
timeline). The green and cyan text represent the audio and video classification as detected by two state-of-the-art zero-shot
audio and image classifiers, respectively. The yellow text labels the speaker as per the output of speaker diarization. The
plain text is the audio transcription.

Definition 9.8 (Topics Extraction Function). We define a topics extraction function T(C) as a function
associating topic information to a media content C. Topic information can be expressed in any textual
format as long as it conveys the key descriptive information that defines a topic which is being addressed
in the content.

Definition 9.9 (Transmodal Generation function). We call Transmodal Generation Function a generic
function extracting a Transmodal Trail from a media item C. We denote a generic Transmodal Function
as τ(C). Descriptors fs of segments of Transmodal Trails can be expressed in different formats, including
structured textual descriptions. Table 70 reports an example of an element of a Transmodal Trail
(scenelet). The textual information collects aspects coming from several tracks of the original content.

Definition 9.10 (Criteria Generation Function). We define a segmentation criteria generation function
Γ0=Γ0(T,γ,π) as a function that associates a list of segmentation criteria depending on the content
topics T(C), the genre γ(C) and on the segmentation purpose π. Segmentation criteria can be expressed
in natural language.

Definition 9.11 (Fundamental Segmentation Function S0). Given a Transmodal Trail σT of a media
item C, we define ϕ0 as a function that filters σT by selecting elements representing a change according
to a criteria set Γ0. We can then write:

σ̃0=ϕ0(τ(C),Γ0(T(C),γ(C),π)) (109)

We have therefore that σ̃0⊆τ(C). However, σ̃0 is not yet a proper segmentation, because it is not a
proper partition of the timeline of C. To obtain the proper partition σ0, it is sufficient that we modify
each segment of σ̃0 so that its ending element coincides with the previous element of the starting element
of the following segment (gap-filling). Finally we have:

σ0=S0(C,π)=gapfill(σ̃0) (110)
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It is clear that the function τ(C) is key to determine the way in which the process works, since it is
a parameter for both criteria generation and segment filtering (Equation 109). To implement a function
able to generate scenelets like that of Table 70, for example, we need to implement audio and image
classification, speech transcription and audio diarization. The formal functional dependency between
these data and τ is not reported here for the sake of simplicity, however we will describe a concrete
implementation in Section 9.2.7.

Once the fundamental segmentation σ0 is produced, the subsequent part of the algorithm is made
up of a bottom-up aggregative process, as illustrated in Algorithm 1. Differently from S0(), however,
each segmentation function Si() operates on the intermediate segmentation σi−1 rather than on τ(C).
Furthermore, it uses C to extract descriptions for elements si−1,j∈σi−1 and topics T(C), that are used
to obtain segmentation refinement criteria.

Definition 9.12 (Refinement Criteria Generation Function). We define a segmentation refinement
criteria generation function of order i, Γrefi (σi−1,γ(C),T(C),π) as a function that associates a list of
segmentation refinement criteria depending on a given segmentation σi−1, the topics T(C), the genre
γ(C) and on the segmentation purpose π. Segmentation criteria can be expressed in natural language.

Definition 9.13 (Merge Decision Function). A merge decision function δ(Γ,sk,sk+1) associates a true
boolean value to a couple of adjacent segments sk,sk+1 if they are considered mergeable under criteria
Γ, and a false boolean value otherwise.

Each Si works by iteratively considering groups of subsequent segments in σi−1, that are either
indvidual segments or partial aggregation of segments, as illustrated in Algorithm 2, where:

• function join(si,sk) returns a segment whose start is the start of si and whose end is the end of sk;
• function describei(c,σ) returns a described version of σ based on metadata extracted from C,

according to Definition 9.4. The function depends on the aggregation level i.

Algorithm 2 Segmentation refinement function Si
Input: σi−1=[si−1,1,si−1,2,...,si−1,Li−1

],C,π
Output: σi
γ←γ(C)
T←T(C)
k←2
σi=∅
σi−1=describei(C,σi−1)

Γi=Γrefi (σi−1,γ,T,π)
scurr=si−1,1

while k<Li−1 do
if δ(Γi,scurr,sk) then
scurr=join(scurr,sk)

else
σi←σi

⋃
{scurr}

scurr=sk
end if
k←k+1

end while

It is clear that the algorithms and functions defined earlier are quite high-level and hide a certain non-
trivial amount of implicit complexity. The conjecture (or thesis) of this work is that LLMs offer ways to
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solve this complexity and provide adequate implementations of these functions for the specific task of media
segmentation. In fact, empirical evidence gained in the early phases of this project showed that state-of-
the-art LLMs (like GPT4 Turbo) are able to implement γ(C), T(C), Γ0, Γ

ref
i , δ(Γ,si,sk) and ϕ0(τ,Γ) quite

straightforwardly, after several rounds of prompt refinement, and with good quality and stability of results.

9.2.5. Metrics

One of the biggest challenges in media segmentation is assessing whether one segmentation is “better”
than another. Assuming we have a ground truth segmentation σgt for a given media content C, the core
issue lies in identifying a method to compare different segmentations against σgt to determine which
one is the most similar. In the literature this is done in various ways, all based on discretized versions
of the segmentations. We briefly recall these methods below and then propose a couple of different ways
to directly compare σ and σgt.

9.2.5.1. Discretize the segmentation To discretize content C means dividing the interval [0,TC],
corresponding to its duration TC, into M consecutive subintervals of time (not necessarily equal), denoted
as {ιi}Mi=1. The segmentation σ of C can then be mapped into a binary sequence σ̃∈{0,1}M (discretized
segmentation) by assigning a label of 1 to each subinterval ιi in which a segment s∈σ starts, and 0
otherwise. There are primarily two types of discretization strategies: those based only on duration, such
as discretizing the content second by second, and those based on the events in C, such as discretizing
sentence by sentence ([681]) or according to the speaker. We chose to consider discretization on a per-
second basis. This means that if the content C lasts M seconds, the segmentation σ̃ is a sequence of 0s
and 1s of length M . We made this choice because it is a strategy adaptable to any content, as it does not
depend on C, and it also appears to be a discretization that closely approximates the real segmentation.

The problem of comparing σgt with σ is then translated into comparing two binary sequences of
equal length, σ̃ and σ̃gt. This becomes a classic classification problem, where standard metrics such as
precision, recall, accuracy, and F1-score can be used to compare the sequences. Note that the data is
typically heavily unbalanced, with many 0s and few 1s, making the F1-score the most significant metric
among those mentioned. The limitation of these “metrics” is that they rely on the exact matching of the
labels in σ̃ and σ̃gt, without considering that for the task considered, a label that is slightly misplaced
is not as incorrect as one that is misplaced by a larger margin.

To address this issue, the authors in [685] defined a new metric called pk that does not consider near
misses as completely wrong. Later, in [686], a slight modification of pk was introduced, usually denoted
as Wd, which addresses some of the limitations of pk. Both these quantities behave like true metrics,
meaning that pk(σ,σ)=Wd(σ,σ)=0, and their values increase (up to 1) as the compared segmentations
become more different. We refer the interested reader to [686] for more details. These two metrics have
been widely used in the literature to evaluate segmentations, see for example [681], [680], and [677].

9.2.5.2. Comparing σ and σgt directly In order to avoid the dependence on the discretization
strategy, we defined two additional quantities to compare segmentations. The first one, denoted by IoU ,
inspired by the intersection over union metric commonly used in computer vision tasks, is defined as
follows: for each segments in σgt, we consider the maximum of all the values of intersection over union
with respect to all the segments in σ; the value of IoU(σgt,σ) is the average of these maximums, i.e.

IoU(σgt,σ):=
1

|σgt|
∑
s∈σgt

max

{
s∩s′

s∪s′
:s′∈σ

}
, (111)

where |σgt| is the number of segments in σgt. If the segmentations match perfectly the value of IoU
is 1, while its minimum value is (theoretically) 0.
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Note that IoU is not symmetric and so it is not a metric. Therefore, we considered mapping the
segmentations into a space where it would be easy to use a real metric. In particular, we decided to map
any segmentation σ of a content C into an element fσ in the space [0,1][0,1] of functions from [0,1] to
[0,1], and on this space, we use a metric equivalent to the standard L1 metric on [0,1][0,1]. The bijective
map from σ to fσ is defined as

fσ(x)=
∑
s∈σ

i

|σ|
1s(x·TC) for any x∈ [0,1], (112)

where TC is the duration of C and 1s(x)=1 if x∈s and 0 otherwise. The function fσ is a monotone
increasing step function with positions, amplitude and number of steps depending on σ. Now we can
define a metric d that establishes the distance between two segmentations σ,σ′ using a variation of the
standard L1 norm ||·||1, defined as

d(σ,σ′)=d(fσ,fσ′):=2

∫ 1

0

|fσ(x)−fσ′(x)|dx=2||fσ−fσ′||1, (113)

The factor 2 in eq. 113 is chosen to ensure that the distance between a segmentation consisting of a
single segment and one composed of infinitely many infinitesimally small equal segments is 1.

9.2.5.3. “Metrics” Evaluation In this paragraph, we compare the different benchmarking tech-
niques defined above. The strategy is to simulate a large number of segmentations and altering each of
them modifying the number and/or the length of the segments. Then by using the “metrics” to compare
the original and the perturbed segmentations, we can conclude that a metric is consistent if it evaluates
as more different from the original ones for the segmentations which undergo stronger perturbations.

After a thorough analysis of the test set available at https://huggingface.co/datasets/raicrits/
YouTube_RAI_dataset, we concluded that segmentations, intended simply as partitions of a time interval
[0,T ], could be simulated as realizations of a Poisson process with parameter λ on [0,T ]. Specifically, we
can identify changes of segments within [0,T ] as occurrence times in the Poisson process. These simulated
segmentations exhibit statistical similarity to those found in the real dataset. We chose λ=λ≈0.0097 and
T=T=80032 to generate a simulated dataset of 1000 segmentations originated from the same stochastic
process on the same time interval. Afterward, we perturbed these 1000 segmentations in two ways:

• Adding and removing segments. This perturbation is performed for each reference segmentation
simulating another Poisson process on [0,T ] of arbitrary parameter λ. For adding segments we add
to the reference segmentation points of segment change corresponding to the occurrences of the new
simulated process, while for removing segments we remove randomly a number of segment changes
from the reference segmentation equal to the number of occurrences in the new simulated process.

• Changing the length of the original segments, i.e. changing the positions of the points of segment
change. This perturbation is performed by adding to the original position of each time instant
in which there is a segment change a random value coming from a Guassian random variable of
mean 0 and standard deviation θ∈R.

It is clear from Figure 74 that the “metrics” are all consistent with the perturbations applied, except
for the F1 score in the case of shrinking/stretching the segments as it is natural by its definition. We
also experiment combining the two perturbations considered and the results are coherent. The important
thing to notice is that each metric considered reacts in a different way to the perturbations, for example
over-segmentations seem to be under penalized by d while they are strongly penalized by Wd. This does
not permit to conclude that one benchmarking quantity is better or worse than the others. It would

32T and λ are approximations of respectively, the average duration of the contents in the real dataset and inverse of the
average duration of the segments of each video (see [687] for details on the properties of Poisson processes).
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(a) Effect of adding/removing segments on metrics (b) Effect of shrinking/stretching segments on metrics

Figure 74. Average values of the metrics evaluated on the 1000 simulated reference segmentations against their perturbed
versions. In (a) we added/removed segments while in (b) we changed the position of the points of segment change applying
a Gaussian perturbation with standard deviation θ to them.

be necessary to perform extended user evaluations in order to see which one of the “metrics” defined
(or combination of them) correlate the most with the human’s feedback.

9.2.6. Learning Paradigms

In this Section, we will explore how the presented algorithm can exploit learning to achieve its results.
Section 9.2.4 described a completely self-contained solution, able to produce a segmentation succession
Σ from the only inputs represented by the content itself C and a segmentation purpose π. In particular,
the process flow is based on the Segmentation Criteria Generation Function Γ0, which formulates seg-
mentation criteria based on the specific topics T(C) and information about the content genre expressed
by γ(C). As such, the formulation is substantially based on aprioristic knowledge about media genres
that might have been absorbed in their training phase by the LLMs implementing Γ0, contextualised
by the specific topical content of C. To overcome this limitation, which might be a source of bias as well,
we defined a learning paradigm with the objective of deriving segmentation criteria and corresponding
purposes, thanks to the availability of a good amount of manual segmentations for which - however -
original segmentation criteria and purpose are no longer available.

Let ∆={Σ1,Σ2,...,ΣM} be a set of manually generated segmentation successions of a content set
C= {C1,...,CM}33. Let ∆i= {σ1,i,...,σM,i} be the set of manually generated segmentations of level
i∈{0,...,I}. The idea is to try to distil criteria and purposes from the analysis of these data. For this,
we then define a Segmentation Criteria Synthesis Function and a Purpose Inference Function as follows.

Definition 9.14 (Segmentation Criteria Synthesis Function). The segmentation criteria synthesis function
Γ̃i=Γ̃i(∆

i) is a function that distils criteria based on the observation of a collection of segmentations ∆i.

Definition 9.15 (Purpose Inference Function). A purpose inference function Πi=Πi(Γ̃i) is a function
that maps segmentation purposes to criteria Γ̃i in a way that criteria generally satisfy purposes.

As immediately observable, and already pointed out when discussing the other functions introduced
earlier, these two functions are very abstract and imply the solution of very complex matters like criteria
synthesis from data and purpose abstraction. Again, the conjecture underlying this approach is that
LLMs (the means through which these two additional functions are implemented) are able to address
this complexity and provide useful outputs.

33The assumption, for the sake of simplicity, is that there is 1-1 relation between elements of C and ∆, but the method
can be generalised to a situation in which more than one segmentation is available for the same content item.
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Thus, the execution of Γ̃i and Πi produces instances of purposes π and criteria Γi, usable as learned
parameters in Algorithms 1 and 2.

In particular, in a minimal configuration, i.e. when the only available manual segmentation data
are at level 0 (fundamental segmentation), eq. 109 becomes:

σ̃0=ϕ0(τ(C),Γ̃0) (114)

and line 7 of Algorithm 2 becomes Γi=Γrefi (σi−1,γ,T,Π
0). Table 71 reports an example of a learned

purpose and corresponding criteria. The two rows were respectively learned from a dataset of talk shows
and of newscasts.

Table 71. Examples of learned purposes and criteria.

Purpose Π0 Description Criteria Γ̃0

Content Analysis Segmenting the program to an-
alyze content structure, diver-
sity, and transitions for aca-
demic research or production
review.

Speaker Change (Identifying
when different individuals con-
tribute to the discourse) Topic
Shift (Determining the range
of topics and their transitions
within the program) Narra-
tive Progression (Understand-
ing how the narrative develops
over time).

Editing and Post-production To facilitate the editing pro-
cess by marking points for po-
tential cuts or transitions be-
tween different types of con-
tent.

Change in Reporting Style
(Marks a transition between
live and pre-recorded content,
helping editors to arrange the
sequence.), Shift from Na-
tional to International Focus
(Identifies a change in focus
that might require different
graphical overlays or contex-
tual setup.), Transition to
recorded segment (Identifies
transitions to pre-recorded seg-
ments, which may be edited
differently than live content.)

9.2.7. Test and Validation

9.2.7.1. Approach In order to validate the identified process, we chose to compare an implementa-
tion of our transmodal approach with several reference monomodal approaches on a collection of datasets.
Below a list of these kind of approaches that we experimented with the respective identifier that we will
use in the presentation of the results (when relevant).

• STC: a standard topic-change detection approach based on similarity between sentences, developed
following the approach presented in [681] 34.

34https://github.com/gdamaskinos/unsupervised_topic_segmentation
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• RTC35: A novel topic-change detection approach based on the fine-tuning of BERT model on
the Sequence Classification downstream task, trained on a the test set of the YTDataset36.

• LTC37: A topic-change detection approach similar to the previous one but based on the fine-tuning
of Meta Llama 3 model [688], using LoRa technique [689], on the same dataset used for RTC.

• ATC38: Analogue to RTC but based on RoBERTa and trained on a different dataset mainly
composed of news transcripts.

• HEU: A heuristic method developed for the internal purpose of segmenting news programmes in
Rai, based mainly on the recurrent features occurring during segment changes in these particular
kind of contents.

• SDT: Scene detection based on a Python library39 used as a benchmark to compare methods
aimed at segmenting content form a semantic point of view with a low-level visual-only structural
segmentation approach.

9.2.7.2. Implementation Figures 75, 76 and 77 illustrate the implementation of our method, which
we call SegSmith. In the pictures, blue blocks represent the implementation of the various functions intro-
duced in earlier sections, green ellipses are the inputs and brown ellipses are data generated or transformed
in the process. Table 72 reports the meanings of the icons decorating the functional blocks of the mentioned
Figures. Blocks marked with the generative icon have been implemented with a LLM. Table 73 reports
the component used to implement each of the functional blocks. Figure 75 includes a couple of functional
blocks useful to build the Transmodal Trail like the one in the example of scenelet of Table 70, namely Di-
arization, Transcription, Role Inference, Img and Sound Class Inference, Img and Sound Classification. In
particular, the Img and Sound Class Inference blocks infer what visual and audio classes are likely to appear
in the content based on its genres. These classes are then fed to the two zero-shot classification blocks.

Table 72. Legenda for graphic labels in Figures 75, 76 and 77

Symbol Name Description

Descriptive It produces structured or unstructured descriptions of objects or
phenomena based on models built on examples of pre-existing
descriptions relating to a number of such objects (e.g. image
classification)

Transformative It produces, starting from objects or phenomena of a certain type,
equivalent objects or phenomena of different types (for example
the production of the transcribed text starting from speech or vice
versa)

Generative It produces, possibly conditioned to certain inputs (so-called
«prompts»), instances of objects (e.g. images, text) on the basis of
probabilistic models that represent in a compact way the essential
characteristics of the sets of such objects (e.g. Large Language
Models)

35https://huggingface.co/raicrits/BERT_ChangeOfTopic
36https://huggingface.co/datasets/raicrits/YouTube_RAI_dataset
37https://huggingface.co/raicrits/Llama3_ChangeOfTopic
38https://huggingface.co/raicrits/topicChangeDetector_v1
39https://www.scenedetect.com
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Table 73. Implementation details

Figure Tool Component

Figure 75 Diarization pyannote 40

Figure 75 Transcription whisperX 41

Figure 75 Role Infefence GPT4 Turbo
Figure 75 Genre Inference GPT4 Turbo
Figure 75 Img and sound claass Inference GPT4 Turbo
Figure 75 Topics Extraction GPT4 Turbo
Figure 75 Img Classification laion/CLIP-ViT-bigG-14-laion2B-39B-b160k42

Figure 75 Sound Classification laion/larger_clap_general43

Figure 75 Transmodal Trail Creation procedural
Figure 76 Segmentation Criteria Inference GPT4 Turbo
Figure 76 Segmentation GPT4 Turbo
Figure 77 Refinement Criteria Inference GPT4 Turbo
Figure 77 Segmentation Aggregation GPT4 Turbo
Figure 77 σi−1◁σi? procedural

Figure 75. SegSmith: Implementation of the Transmodal Analysis.

40https://huggingface.co/pyannote/speaker-diarization-3.1
41https://github.com/m-bain/whisperX
42https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k
43https://huggingface.co/laion/larger_clap_general
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Figure 76. SegSmith: Implementation of the Fundamental Segmentation S0.

Figure 77. SegSmith: Implementation of the Hierarchical Segmentation Si.

9.2.7.3. Data Collection and Analysis To test our approach, we collected a series of datasets
composed of material coming from RAI archives and RAI’s public social media services, to test possible
solutions on segmentation cases whose guiding purpose was varying. To accommodate the genre inde-
pendence requirement, we collected a number of programmes of several different genres. The amount
and genre of these programmes is summarised in Table 74.
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Genre Short Name Nr. of Programmes Total Duration
Culture, Talk Show, In-
depth news, Investigative
journalism, Morning Show

CMMDataset 70 93 h

News bullettin ANTSDataset 32 15 h
Talk Show, Interviews,
Lifestyle, Game Show,
Cooking, Politics debate,
Astrology Show

YTDataset 2169 458 h

Cultural, travel, and
historical documentaries,
True Crime

CMMDocDataset 16 18 h

Table 74. Experimental datasets

To better characterise the features of the available segmentation ground truth we performed a detailed
analysis on the CMM Dataset. The CMM Dataset, where CMM stands for Catalogo Multimediale in
Italian (Multimedia Catalogue in English), refers to the multimedia catalogue of Rai’s programmes. A total
of 70 episodes were randomly selected from 7 programmes aired in 2023, within the date range of January
3, 2023, to December 20, 2023. The genres of these programmes include Journalistic Insight, Inquiry,
Society and Customs, and News. More detailed information about the dataset is provided in Table 75.

The programmes were segmented by human annotators. Each programme consists of segments
defined by a start cut and an end cut, which correspond to specific moments within the programme.
These segments can be contiguous, where the end cut of one segment matches the start cut of the next,
or non-contiguous.

Figure 78 shows examples of segmentation for 5 episodes. The solid line segments indicate parts of
the programme separated by vertical bars representing the start and end cuts. In contrast, the dotted
line segments indicate portions of the programme that do not belong to any segment. These dotted
segments typically correspond to advertisements or nested programmes within the main programme.

Figure 78. Segmentation examples (ground truth).

For instance, Episode 57 has 3 segments followed by a long dotted portion, likely referring to a
nested program given its length. In Episode 32, there are no dotted parts, indicating that all segments
are contiguous. Episode 30 consists of a single long segment. Episode 16 is composed entirely of
non-contiguous segments. The lines for Episodes 30 and 16 are colored grey because they represent cases
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Program Type Episodes
Count

Segments
Count

Average
Length
(min)

Date
Range

Report Journalistic
insight

10 (2 with
FGS)

74 (56 with
FGS)

98.00 (14.37
s.t.d.)

2023-01-07
to 2023-08-
21

Agorà Journalistic
insight

10 (10 with
FGS)

191 (191
with FGS)

60.40 (37.18
s.t.d.)

2023-01-03
to 2023-08-
28

Petrolio Inquiry 10 (1 with
FGS)

26 (14 with
FGS)

58.40 (35.92
s.t.d.)

2023-06-30
to 2023-11-
04

Unomattina Society and
customs

10 (1 with
FGS)

48 (16 with
FGS)

120.30
(56.09
s.t.d.)

2023-01-21
to 2023-09-
16

Porta a porta Journalistic
insight

10 (1 with
FGS)

55 (19 with
FGS)

101.30
(12.53
s.t.d.)

2023-01-10
to 2023-09-
14

Tg Parlamento News 10 (9 with
FGS)

51 (50 with
FGS)

4.50 (0.92
s.t.d.)

2023-01-30
to 2023-12-
20

Presa diretta Journalistic
insight

10 (6 with
FGS)

151 (144
with FGS)

102.90
(14.73
s.t.d.)

2023-02-18
to 2023-09-
25

Table 75. CMMDataset detailed composition.

where segmentation is either done only with non-contiguous segments or consists of a single segment.
This analysis pointed out that this scenario occurs in 40 out of 70 programs, while the remaining 30
have a more fine-grained annotation, as seen in Episodes 57, 32, and 5. For a more comprehensive view
of this phenomenon, refer to the complete chart attached in Figure 79.

A conclusion that can be drawn from this analysis is that there is heterogeneity in the annotations both
inter and intra-programme. This variability could be due to different annotators or varying annotation
methods by the same annotator at different times, or even due to varying time constraints annotators were
given during the completion of their task. However, since we do not have data on who annotated each
programme, we can only state that the criteria by which the programmes in the dataset have been seg-
mented is highly heterogeneous and inconsistent. Furthermore, the lack of contiguity in segmentation (the
dotted lines of Figures 78 and 79) must be taken into account in metrics computation since the algorithms
must be evaluated only on the parts in which the annotators provided the explicit segmentation. These
observations, although limited to a single instance of data, pointed out the risk that the quality of ground
truth segmentation may be sometimes not adequate to effectively measure the performance of automatic
algorithms. This led us to build other experimental datasets quite carefully: both the CMMDocDataset
and ANTSDataset contain prgogrammes which do not suffer from the aforementioned issues.

9.2.7.4. Experimental Results Let’s now see how the models introduced in 9.2.7.1 perform com-
pared to our method SegSmith. Our method was applied using different configurations of its parameters
to see how these parameters change its behavior and performances.
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We analyzed the datasets described in Section 9.2.7.3 separately, segmenting their items and evaluating
the segmentations obtained with the considered methods against the ground truth available using the
quantities described in Section 9.2.5. As we anticipated in that Section, for the metrics computed on
the discretized segmentations we considered the items as discretized on a second by second basis. Notice
that we did not consider all the methods available for every dataset but only the ones that seemed to be
more significant, for example we considered HEU only on the ANTSDataset since for news programmes
an efficient empirically-validated heuristics is available44.

The results are summarized in Tables 7645, 77, 78, 79 where for each segmentation method used
it is reported the average value of the metrics considered. Notice that the column "#items" indicates
how many content items were segmented with each technique. Numbers lesser than the total number
of videos in the dataset for SegSmith are due to different reasons: provider’s filter errors, timeout errors
due to the high amount of calls to the OpenAI services or, in the case of the refined segmentations,
no further refinement proposed by SegSmith. The values in the column "∆ segments" indicate the
average difference of number of segments for the segmentations generated and the ground truth ones
(positive values indicates over-segmentations, negatives under-segmentations). These values are useful
for interpreting the values of the metrics considering what we observed in Section 9.2.5.3.

Table 76 includes the visual features - based shot detection model SDT, which shows the poorest
performance except for one metric. This widely foreseeable result stresses the difference between the
complexity of the editorial segmentation task w.r.t. the plain detection of low-level structural patterns.
All Tables report alternative methods as labelled in Section 9.2.7.1 and transmodal methods labelled
according to "<mode>_refined_<level>" pattern. The <mode> element is either "learnedcrits" or
"abstractcrits", respectively indicating configurations in which purpose and criteria have been learned
from data according to methods illustrated in Section 9.2.6 or in which the purpose is the fixed string
"identifying topics and subtopics". In this second case, segmentation criteria have been generated by
SegSmith. The <level> digit indicates the level of aggregative segmentation, as defined in Algorithm 2.

It is difficult to conclude from the experimental results if one model is better than another. As we
already pointed in Section 9.2.5.3, each metric takes in account different factors in establishing how a
segmentation is close to the reference one. Moreover, as observed in details in Section 9.2.7.3, the criteria
used to provide reference segmentations by human annotators are not so homogeneous, even within the
same dataset. This confirms that to really assess if one of the methods considered is significantly better
than the others it would be necessary to perform an extensive user evaluation.

9.2.8. Potential impact on AI research/media industry/society

This project aimed at defining the overall concept of a genre-independent user-centric automatic media
segmentation framework based on the integration of several AI tools, most importantly LLMs. We believe
that this objective stands as an innovation mark w.r.t. previous state of the art in media segmentation for
its generality and comprehensiveness, going beyond stereotyped research on few well-known media genres
and datasets. The overall theoretical setting on which this work is based is still expression of an early con-
ceptualisation, but we believe it can represent a reference for future work in the field of media segmentation.
The implemented framework, named SegSmith, is an initial attempt at materializing the research and
proved to be a sufficiently powerful software framework on which to build future versions of the algorithms.

The developed framework is relevant to a wide number of media applications and use cases, namely
all those which benefit from chapterisation of longer content into smaller coherent units. Examples

44For the sake of space it is impossible to fully account for the heuristics. Indicatively, it is based on the elicitation of the
anchorperson among the speakers detected via speaker diarization, and then considering segments as starting every time
the anchorperson starts speaking again.

45In the experiments conducted on this dataset, we selected programmes which were not affected by the heterogeneity
problems discussed earlier.
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d pk Wd IoU F1 ∆ segments #items
learnedcrits_refined_0 0.179 0.452 0.629 0.543 0.117 43.458 24
learnedcrits_refined_1 0.205 0.486 0.64 0.458 0.124 31.462 13
learnedcrits_refined_2 0.202 0.413 0.556 0.447 0.124 23.5 12
abstractcrits_refined_0 0.157 0.451 0.615 0.563 0.144 30.391 23
abstractcrits_refined_1 0.173 0.369 0.476 0.515 0.185 12.412 17
abstractcrits_refined_2 0.233 0.346 0.438 0.483 0.182 7.333 12

LTC 0.23 0.403 0.471 0.425 0.166 5.3 30
RTC 0.249 0.393 0.464 0.412 0.178 4.633 30
STC 0.308 0.387 0.414 0.312 0.218 -6.833 30
SDT 0.19 0.629 0.983 0.289 0.035 569.467 30

Table 76. Average metrics values on CMMDataset. In green, yellow and red the best, second best and worst values.

d pk Wd IoU F1 ∆ segments #items
learnedcrits_refined_0 0.179 0.571 0.865 0.394 0.05 58.6 10
learnedcrits_refined_1 0.169 0.406 0.58 0.468 0.062 23.5 8
learnedcrits_refined_2 0.16 0.389 0.531 0.46 0.083 8.0 4
abstractcrits_refined_0 0.15 0.504 0.794 0.467 0.047 57.0 10
abstractcrits_refined_1 0.242 0.416 0.561 0.464 0.072 14.25 8
abstractcrits_refined_2 0.314 0.408 0.5 0.366 0.08 5.125 8

LTC 0.197 0.429 0.525 0.423 0.089 3.5 16
RTC 0.202 0.486 0.572 0.428 0.068 5.562 16
STC 0.237 0.477 0.505 0.354 0.092 -4.5 16

Table 77. Average metrics values on CMMDocDataset. In green, yellow and red the best, second best and worst values.

of such situations among AI4Media use cases are UC1, UC2, UC3 and UC7. In general, foreseen
advantages range from media documentation, annotation and indexing to impact & interaction analytics
and marketing where the ability to associate key observations to coherent media segments enhances their
interpretability and actionability.

9.2.9. Assets released to the community

As part of the work, we released several artifacts (software, dataset), summarised in Table 80. We are
also planning to release a version of the implemented software framework.

9.2.10. Conclusions/future work

This work contributed to innovate the approach addressing the complex problem of genre-independent
user-centric media segmentation task. Differently from previous approaches, this work introduced
multimodality, in its here originally introduced transmodal conception, at the core of the envisaged
solution for the task, and it based the development of the approach on a general theoretical/algorithmical
formulation. As part of the effort, a study was conducted on the reliability of existing metrics, introducing
a novel one too. Possible learning paradigms have been also explored. The provided implementation,
that we named SegSmith, is complete from the point of view of the foundational theoretical setting and
provides a first software framework to build future developments upon. The experimental results are not
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d pk Wd IoU F1 ∆ segments #items
learnedcrits_refined_0 0.151 0.285 0.387 0.648 0.179 11.621 29
learnedcrits_refined_1 0.138 0.273 0.337 0.626 0.182 3.333 21
learnedcrits_refined_2 0.215 0.305 0.348 0.519 0.192 -3.714 14
abstractcrits_refined_0 0.19 0.209 0.25 0.646 0.201 3.000 30
abstractcrits_refined_1 0.185 0.242 0.275 0.549 0.199 -3.500 22
abstractcrits_refined_2 0.195 0.257 0.288 0.528 0.182 -6.000 10

HEU 0.08 0.124 0.137 0.769 0.25 -2.781 32
LTC 0.14 0.39 0.413 0.465 0.067 -3.938 32
RTC 0.188 0.432 0.453 0.389 0.069 -6.562 32
ATC 0.102 0.284 0.31 0.6 0.086 -3.719 32
STC 0.237 0.422 0.426 0.281 0.093 -14.188 32

Table 78. Average metrics values on ANTS Dataset. In green, yellow and red the best, second best and worst values.

d pk Wd IoU F1 ∆ segments #items
abstractcrits_refined_0 0.238 0.487 0.562 0.512 0.155 11.483 539
abstractcrits_refined_1 0.329 0.452 0.566 0.469 0.199 2.38 390
abstractcrits_refined_2 0.483 0.447 0.572 0.377 0.223 -0.623 244

LTC 0.361 0.407 0.444 0.425 0.211 -1.703 609
RTC 0.306 0.440 0.483 0.461 0.186 -0.376 609
ATC 0.628 0.425 0.434 0.286 0.251 -3.954 609
STC 0.311 0.457 0.484 0.436 0.215 -1.39 609

Table 79. Average metrics values on YT Dataset. In green, yellow and red the best, second best and worst values.

yet fully satisfying since they do not allow to draw very firm conclusions. However, the number of implied
hyperparameters is still too high to make them statistically representative of the ability of the framework
to fully address the original problem also because detailed analyses of available ground truth segmentation
pointed out several quality issues. Future developments will include further studies on the effects of the
various models’ hyperparameters on the experimental results as well as a thorough user evaluation on
several aspects including no-reference segmentation quality and segmentation purpose alignment.
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Name Type Link
BERT-
CTC

BERT
Change
of Topic
Classi-
fier

https://huggingface.co/raicrits/BERT_ChangeOfTopic

LLAMA-
CTC

LLAMA
3
Change
of Topic
Classi-
fier

https://huggingface.co/raicrits/Llama3_ChangeOfTopic

YTDataset Media
Segmen-
tation
Dataset

https://huggingface.co/datasets/raicrits/YouTube_RAI_dataset

Table 80. Assets delivered to the community from LLM research on editorial segmentation.
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Figure 79. CMM dataset segments.
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9.3. Evaluating LMMs on common sense and factuality
Contributing partner: CNR

9.3.1. Challenge

Despite the astonishing emerging capabilities of Large Language Models (LLMs) and, more recently,
of Large Multimodal Models (LMMs), recent research is discovering many limitations of such models
in comprehensively understanding complex multimedia data in a human-like fashion. While most of
the recent effort has been put into LMMs that can digest still images to solve many vision-language
downstream tasks, little attention has been paid to the more challenging video modality, with the time
dimension strongly connecting the sequence of images at various levels. Furthermore, it is well known that
these kinds of networks suffer from strong cultural biases and are therefore prone to better understand
the Western world, with many drawbacks when the same models are deployed in multi-cultural scenarios.

Many downstream applications have started to require generative methods that can understand and
digest long and unannotated streams of video data, as well as be resilient to specific cultural shifts. For
example, this is of utmost importance for improving the value, accessibility, and protection of large-scale
historical audiovisual archives, with impactful returns on cultural heritage accessibility and innovation
in the cultural and creative sector. The study and the integration of LMMs in this domain are oriented
towards developing novel tools that can automatically and effectively understand, extract information,
and index large audiovisual archives, with the final result of increasing their accessibility to final users,
their re-use and utility, even when dealing with complex and articulated semantic domains like the one
of a national cultural patrimony.

Another important use case where video understanding is a key element is in the organization of
personal multimedia archives, where people may like to retrieve shots and pose questions about long
and untrimmed amateur or egocentric videos. This necessity is also demonstrated by the increasing
interest in lifelong search challenges (LSC [690]) and egocentric tasks – like moment retrieval [691, 692]
– requiring the understanding of long-range time dependencies across different portions of a raw video,
as well as robustness to different intercultural scenarios.

As of now, these applications benefit from the development, in the last years, of cross-modal retrieval
deep learning methods, which are able to retrieve videos or images most relevant to a given textual query
[693]. Despite their large employment in large video search challenges like VBS [694] or TrecVID [695],
these technologies cannot handle more complex browsing and search schema in which the user interacts
with the system by asking complex questions on the video collection concerning long-range temporal
dependencies (e.g., Find the color of the jacket of the person taking the bus and commuting few minutes
after at the main station), or factual data (e.g., What is the name of the famous building I encountered
after having breakfast at the Bodeguita cafè?).

CLIP-like retrieval models, while being extremely efficient at retrieval time, cannot handle free-form
questions or perpetuate complex temporal or factual reasoning. On the other hand, while being promising,
LMMs like LLaVa [696] or [697] (especially with RAG [693] capabilities) cannot be easily deployed on
large-scale collections due to their inability to process long video streams and perform complex temporal
and factual reasoning to come to a reasonable conclusion.

In this activity, we move the first steps towards better benchmarking LMMs for understanding
long untrimmed videos and their capability of handling multi-cultural data, having in mind the above-
mentioned scenarios.

9.3.2. Objectives

Although LLMs achieved remarkable performance in many classical downstream tasks like image
captioning [698, 699] or image question answering [696, 700, 697], we believe that a careful evaluation of
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such models on tasks concerning the understanding of untrimmed long videos is never been done in the
literature. Some recent approaches [701, 702, 703, 704, 705, 706] try to answer similar questions. However,
the sources of the videos are mostly TV shows and movies, making the available data skewed toward this
domain. In light of this, in this activity we aim to understand the capabilities of the most promising LMMs
in understanding long-range temporal dependencies in untrimmed videos and possibly understand their
ability to be robust to multi-cultural scenarios. This is intended to be a first step toward developing more
time-aware and bias-mitigated LMMs, which can process and understand videos efficiently and effectively.

To reach this goal, we designed a two-stage plan. Firstly, we propose a new benchmark consisting of rela-
tively long video shots, with each video associated with a sentence involving objects and facts happening dis-
tant in time, which can be True, False or, in the edge case, Ambiguous. The videos are obtained from differ-
ent places in the world to capture as much as possible multiple and diverse cultures. The sentences are gen-
erated in a completely automated way using existing LMMs, and their ground truth answers are obtained
through crowdsourcing platforms that can offer efficient and reliable manual labeling. The proposed bench-
mark is constructed around already available footage, which is publicly accessible and usable. Secondly, we
test some state-of-the-art LMMs, such as VideoLLaVa [707] and [697] on this novel constructed benchmark
to effectively show the actual limitations of advanced multi-modal models on this challenging task.

9.3.3. State of the Art

Large Language Models (LLMs) have shown impressive performances in several Natural Language
Processing (NLP) tasks. They are able to solve, in a 0- or few-shot setting, several NLP tasks that
previously could exclusively be solved with specialized models [708].

Following this success, several approaches have been developed to let LLMs take images as input
along text. These models are also known as Visual Language Models (VLMs) or, more generically,
Large Multimedia Models (LMMs). These models often rely on a pre-trained LLM that is then further
trained to process images as well [696, 709, 710, 711]. VLMs show strong performances on several Visual
Question Answering Benchmarks as well as Image Captioning and more and are currently the solution
behind several state-of-the-art solutions for vision and language understanding.

To further improve on integrating language modeling with the ability to process different kinds
of inputs, novel models train on sequences of images to be able to process videos and create Large
Multimodal Models (LMMs) [712, 707, 713, 714]. While video language models show some degree
of temporal understanding, researchers are still working on optimal solutions to make these models
proficiently understand temporal and physical relations in videos.

New benchmarks have been developed recently to measure how well LMMs perform in understanding
videos. TVQA [701] is a Video Question Answering (VQA) dataset based on popular TV shows where
questions involve localizing objects and understanding subtitle-based information. TVQA+ [702] is an
extension of TVQA with bounding boxes and more fine-grained spatio-temporal questions. How2QA and
How2R [703] are humanly annotated benchmarks – the former for multiple choice question answering
and the second for image-video retrieval, based on HowTo100M [715]. NextQA [704] is a multiple-choice
benchmark meant to assess LMMs temporal understanding. They focus on testing if LMMs can un-
derstand actions following each other in a video. AGQA [705] focuses on measuring how well LMMs can
understand actions in videos and on carefully annotating the dataset so that different mistakes made by
these models are not considered as equal when measuring LMMs understanding ability. STAR [706] is
a benchmark meant to study the LMMs situational understanding, which is their ability to understand
and answer questions requiring the understanding of the context presented in a video.

All these benchmarks tackle a similar problem to the one presented in this study, that is, the ability
of LMMs to understand temporal relations in videos, which are the most prominent extension between
understanding images and understanding videos. However, each of them is focused on specific domains
and on specific ways to measure this complex ability of LMMs. Differently from the aforementioned
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(a) Amsterdam (b) Bangkok (c) Chiang Mai

(d) Istanbul (e) Singapore (f) Zurich
Figure 80. Examples of egocentric raw videos captured in different cities from the City Videos collection.

datasets, we focus on longer videos in the urban outdoor domain to understand how LMMs can generalize
to these complex scenarios, requiring the different architectures to be robust to heterogeneous geographical
– and therefore cultural – features.

9.3.4. Methodology

In this section, we carefully detail all the steps we followed to prepare our video benchmark. The overall
preparation process can be divided into two main stages. Within the first stage, we aim to produce
reasonable and unambiguous sentences concerning the content and events in the provided video that can be
further evaluated through human judgment. This is obtained through carefully prompting existing LMMs
and then further filtering their outcomes. The second stage, instead, consists of setting up a crowdsourcing
platform for obtaining ground-truth answers from human annotators for the previously generated sentences.
We detail these steps in the following sections and summarize the whole process in Figure 81.

9.3.4.1. Data Source As the primary source of visual data, we focused on videos from [716], which
capture an egocentric perspective of a person walking through famous cities (City Videos) like Venice,
Bangkok, Zurich, etc. We report some reference frames from some of the locations within the collection
in Figure 80. These videos satisfy our needs in the following ways:

• the environment is mostly controlled as there is the presence of many everyday life objects and
concepts, and it is free of unsafe content;

• as the cities shown in the video are well known, it is relatively easy to ground shots from the video
into recognizable named places (famous squares, buildings, monuments, etc.), which can be used to
test the ability of retrieval-augmented LMMs to access information outside the knowledge present
in their weights;

• the video is a raw single-shot stream without any cuts, where events happen in large temporal
windows, allowing us to test the ability of LMMs to process and understand long video sequences;

• being videos captured in diverse worldwide scenarios, we can later employ this benchmark to also
quantify the cultural biases of the model.

9.3.4.2. Data pre-processing After defining the data sources, we performed initial data collection
steps. The City Videos are currently focused on 10 cities worldwide and offer variegated data sources
referring to different geographical locations and cultures. We focus on 8 cities: Amsterdam, Bangkok,
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Frame sampling

Video

A girl is climbing 
the stairs on the 

right

A couple is drinking 
coffee in the street

There are some 
persons in front of 
the “Rock Shop”

LLaVa (image captioning)

LLaMa (aggregation) Is the girl climbing the stairs before the Rock Shop cafe is seen?

Human judgement

Agreement assessment and filtering

Benchmark
[video, question, T/F 

answer]

True / False / Not sure

Figure 81. Overall annotation pipeline. On the left, we depict the automatic generation of sentences through off-the-shelf
LMMs and LLMs. On the right, we show the manual judgment performed through crowdsourcing platforms.

Chiang Mai, Istanbul, Singapore, Stockholm, Venice, and Zürich. Although the final objective is to obtain
a video-wise annotation, the pipeline is frame-based in many of its steps, as i) current state-of-the-art
architectures that extract meaningful content from the visuals are tailored to analyzing still images and
not videos, and ii) it is easier for the annotators that have to check the produced sentences to work
on still images. For this reason, we extract frames from videos every 7 seconds. This amount of time
seemed the right compromise for avoiding redundancy while capturing all the events happening in the
video. The varying lengths of the videos provide us with a fair amount of images from each city.

The images from the videos contain several landmarks present within each city (see Figure 80 for
example images) and provide a good starting point for video-level questions. We collect a total of 6,295
frames. Figure 82 shows how these images are divided among each of the cities.

9.3.4.3. Landmark recognition We experimented with the automatic extraction of landmarks,
i.e., notable and easily identifiable locations within a city environment, e.g., statues, squares, and famous
buildings. The idea is that landmarks can be a cornerstone for a retrieval-based approach to answering
questions over hours-long videos. This was done through the use of an API provided by Google that
allows the automatic identification of notable places based on the content of an image (we tested with
all the frames from a video). However, in this way, we retrieve both landmarks in the sense we define
above, as well as commercial places, such as bars and restaurants. This second kind of landmark is
less interesting for our use case and provides too much noise to be reliably employed in our pipeline.
Moreover, most of our frames are generic views of the cities, with no landmarks. In these cases, Google’s
answers are mostly incorrect, with the service trying to guess a landmark from the visual similarity of
images and returning a list of unrelated places, typically commercial. This is likely due to the assumption
of Google’s service about the intent of the query, i.e., recognizing a landmark that is assumed to be
present in the image, while our intent is to tell what landmark we are seeing only if the image depicts
a landmark. This mismatch in detecting the presence or absence of a landmark causes a flood of false
positives. We also tried setting up a crowdsourcing activity to filter out such false positives, but it turned
out that relevant landmarks retrieved using this method were a minimal part of the data, and the cost
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Figure 82. Number of frames taken from each City Video and percentages over the total.

of the crowdsourcing activity would have required most of our budget.
Given the excessive number of false positives produced with the above landmark extraction procedure,

we were not able to incorporate this into the main dataset construction pipeline. However, we are
still working to reduce the number of false positive, by experimenting with different approaches for
the identification of landmarks in the video. In particular, we are employing image instance similarity
methods to visually match the content of a frame to a known point of interest found in the video frame.
Reference images are extracted from trustworthy collections, which largely diminish the possibility of
finding false positives – e.g. Wikipedia pages. These images will then be used as queries for a retrieval
system indexing the full video so that we can later provide this information to the LMM, which will
consequently include also geographical landmarks within the descriptions used to create the questions.

9.3.4.4. Automatic questions generation After the data definition, we define procedures for
automatically generating questions from the video that can be later evaluated as true or false by human
annotators. This step is required to have better control of the content of the questions and also to better
exploit the valuable and limited resource of human annotation. In fact, we assume that the validation of
automatically generated data is usually simpler and more controllable than directly requesting annotators
to caption a frame or write questions/answers from scratch, as this process would input a lot of unwanted
biases and variability, other than harming annotators with a long and complex task.

To extract high-level semantic information from the video, we start by following a frame-centric
approach. Specifically, we employ state-of-the-art computer vision models that can produce natural
language descriptions of the frame. More specifically, we rely on large multimodal models (i.e., LLaVA
[696]) to provide each image with a textual description of its most peculiar information. We designed
a prompt for the model to force them to describe the scene from different perspectives and create a
list of possible captions, grounded as much as possible to the depicted scene. In order to avoid strong
hallucinations and therefore ensure a good quality of the produced caption, we enforce the model through
appropriate prompting not to produce either low-level descriptions (e.g., concerning color palettes) or
too high-level captions (e.g., concerning the user sentiment). The top row of Table 82 shows the prompt
used to obtain the single frames descriptions.

To obtain a question concerning the whole video shot, we proceed by aggregating the captions obtained
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City Video Length (seconds) N. Frames N. Subvideos N. Questions

Amsterdam 4912 706 311 1555
Bangkok 10499 809 202 1005

Chiang Mai 4075 583 145 725
Istanbul 4080 583 156 760

Singapore 5800 607 151 755
Stockholm 3989 570 142 710

Venice 6599 721 180 900
Zurich 3899 558 139 695

Table 81. Relevant amounts of information about the raw data extrapolated from the video of each city.

(a) Frame 1 (b) Frame 2 (c) Frame 3
Figure 83. Example of frames extracted from a video over which the following questions is asked: "Is it true or false that
the statue of the seated figure, possibly a Buddha, appears in the video before the blue plastic chair with a simple design?"

from different frames by employing the sentence construction and summarization capabilities of a text-only
LLM (i.e., LLaMa). Specifically, knowing the temporal positioning of two frames within the video, we can
ask an LLM to join the respective captions using temporal indications like "after" or "before" to obtain
questions like "Is it true or false that the statue of the seated figure, possibly a Buddha, appears in the
video before the blue plastic chair with a simple design?" (As shown in the frame sequence in Figure 83).

To avoid feeding the human annotators with too long videos, we only feed LLaMa with captions
coming from frames within a 24-second wide temporal window to generate the final questions. We also
try to reduce the text model hallucinations through appropriate prompting and reject some generated
questions using a rule-based approach, which removes some unclear phrase constructions. The bottom
row of Table 82 shows the prompt used to obtain the questions over the whole video.

In total, we consider 8 cities: Amsterdam, Bangkok, Chiang Mai, Istanbul, Singapore, Stockholm,
Venice and Zurich. Table 81 shows how many frames per video we have and how many short videos we
extract from each longer city video. From this table, we notice that we end up with a set of approximately
7,000 questions that require manual annotation. Moreover, by resampling both the frame captions and the
aggregation over the video, we can further expand our raw dataset pool to provide it to human annotators.

9.3.4.5. Human Judgement In order to recruit human annotators, we rely on the prolific plat-
form46, shown in Figure 84a. Prolific is a platform designed to facilitate the recruitment of participants
for various types of research, including surveys, behavioral studies, and experiments, which is often used
to recruit human annotators for AI projects. It is characterized by the possibility of having diverse
demographics – given that it boasts a large and diverse participant pool from around the world – and
control over annotation quality through attention checks and historical performance data.

In our scenario, annotators are presented with videos and questions built as described in Section
46https://www.prolific.com
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LLava Prompt Write a list of extensive and detailed descriptions of at most three elements in this
photo choosing among people, objects, vehicles, signs, writings, bars, restaurants or
others. Describe only one of each kind, focus on remarkable things and avoid those
that are colored black or white. Describe them one by one, for each of them give as
many details as possible in a few sentences, such as colors, shapes, activities and
more, so it can’t be mistaken for another one. If there are writings on walls or signs
report them as well. Add geometric information if possible, such as sign shape and
similar. Avoid talking about the sky or the weather in general, don’t mention signs
that are upside down and don’t mention the color of the sky. Do not talk about
reflections or left and right and never mention foreground or background and never
use the word remarkable.

LLama Prompt Given the following descriptions about different events in a video ask 5 true/false
questions about the relative occurrence in time of two of these events. For example,
if a specific sign appears before a vehicle, or a specific person enters the video before
another and more. Make the questions precise and non ambiguous and ask questions
about the whole video without referring to the single events. The questions should
only be about events that happen in the video, not about them happening in general,
for example "Is the woman with black top and blue jeans blonde before a starbucks
sign appears on the wall?" should be asked in the form "Is it true or false that
the blonde woman with black top and blue jeans appears in the video before the
starbucks sign?" Keep all the details present in the descriptions you are provided,
don’t make up new ones but don’t omit any of the information you were given.
The following are the Events:infos. Please never mention the words frames, photos,
scenes, event, events, Event and Events and only write the questions.

Table 82. Prompts used to generate the frames descriptions with llava and to generate the questions with llama.

9.3.4.4 and are asked to answer each question by choosing one out of three possibilities:
• True: if the answer to the question is true;
• False: if the answer to the question is false;
• Don’t know: if the question is ambiguous in any way, e.g. one of the objects mentioned is not

there, or the question can’t be answered certainly or any other possible unclear case.
The annotators are presented with the videos and the questions through the questbase platform,

shown in Figure 84b. The Questbase platform enables the creation of simple multimedia forms built
of text, images, or videos, allowing the annotators to watch the video and answer the questions in a
single interface. Each video is shown as in Figure 85. We first show the annotator the list of questions,
then the video, and consequently, the annotator is presented again with the question, having to answer
each question individually. Reading the questions before looking at the video gives the annotator a hint
on what to look for in the video, easing the annotation process.

Each single questionnaire is composed of 50 questions about 10 videos, 5 questions per video. We
have each questionnaire taken by 5 different annotators. We estimate the time needed to complete one
of the surveys based on the time needed by reliable internal annotators sampled from our laboratory
and conclude that 25 minutes is the average time needed. We pay 3.13£ for each questionnaire, which
amounts to 7.51£/hour (set as a fair compensation on the prolific platform). Of the 7,000 available
questions, we have had 800 questions annotated by human raters. The remaining ones will be annotated
using different language models to generate the questions, to increase the diversity of the benchmark.
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(a) Prolific interface.

(b) Questbase interface.
Figure 84. Platform screenshots.

9.3.4.6. Agreement assessment and Filtering Figure 86 measures the agreement between annota-
tors in terms of Fleiss’ Kappa [546, 717], which measures agreement taking into account chance agreement,
i.e., agreement that occurs even in the case of random choices. Fleiss’ Kappa values range from -1 to 1. In
literature, commonly accepted values for Fleiss’ Kappa in the case of two labels and two raters are: 0.01-
0.20 as slight agreement, 0.21-0.40 as fair agreement, 0.41-0.60 as moderate agreement, 0.61-0.80 as substan-
tial agreement and 0.81-1.00 as almost perfect agreement. A negative value indicates that an agreement
is present, yet it is lower than the one observable by chance. A value of -1 indicates no agreement at all.
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Figure 85. Example of the interface shown to the annotators.

Since we are measuring agreement in a case involving three labels (given that we have the "Don’t
know" option for those cases when the question is not appropriate for the video) and five raters, the
values in Figure 86 can be still considered in the agreement range. Having more labels makes the
expected value of agreement lower and the low values we attain are motivated by this, as well as by the
naturally challenging dataset we are building, as also shown by the successive experiments. Istanbul is
the city with the lowest agreement, slightly below chance agreement, and is in contrast with the others.
After inspecting the videos, we believe this is the case because the part of the video that is exposed
to raters showcases extremely crowded streets. This makes all questions about people very difficult to
answer and it makes several details hard to see, since the viewpoint of the videos is at a person height.

Every video we study has several instances of the same objects, e.g. more people, more vehicles, etc.,
that naturally occur multiple times in an urban environment. Human annotators are faced with the
difficult challenge of identifying which instances are referred by the questions they have to answer and
often the ambiguity of this task is a source of a lower level of agreement.

Thus, we also perform additional filtering of the outcome of this human evaluation by manually
revising those samples where at least 4 raters agree, and they agree on either "True" or "False". Finally,
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Figure 86. Fleiss kappa agreement score for all the questions used to evaluate raters.

we keep a total of 266 questions about 165 unique videos.
As of now, the number of collected examples is quite limited. This comes from the fact that we

decided to prioritize quality over quantity, as the collected data serves as a preliminary benchmark and
the overall proposed annotation framework serves as a working pipeline for producing high-quality long
video annotations. Thanks to the developed pipeline, all these procedures can be scaled up to tens
of thousands of examples, with the final objective of collecting a gold set of large-scale, high-quality
human-annotated video data samples requiring long-term temporal reasoning to be processed.

9.3.5. Experimental results

In this section, we carefully set up some baselines to show to which extent current state-of-the-art methods
can provide correct answers to the novel crafted benchmark. Therefore, we define inference procedures to
adapt current methods to this novel benchmark. On properly introduced evaluation metrics, we perform
a final assessment that helps us understand the ability of current models to understand events happening
in potentially long video streams.

9.3.5.1. Methods The baselines we probe are either non-generative methods like CLIP [718, 719, 720],
as well as state-of-the-art large multimodal models able to process videos, like VideoLLaVa [707].

The clip models are tested through a similarity approach; for each video, we encode 8 frames and
compute their vector representation using the image tower of a CLIP-like model. Since all questions are in
the form of a before/after statement concerning two events, event A and event B, happening in the video,
we compute the similarity with 2 versions of the text, one saying that Event A happens before Event B and
the reverse statement saying that it happened after, we then compute the similarity between each of the
8 frames and each of the 2 statements. We then average over the frames and keep, as the correct answer
between the before and after statements, the one having the higher similarity with the visual feature.

On the other hand, generative video language models are evaluated by encoding the video frames and
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Accuracy Amst. Bang. Chia. Ista. Sing. Stoc. Veni. Zuri.

N samples 266 46 10 58 21 28 27 29 47

SO400M-14-SigLIP 0.451 0.477 0.200 0.518 0.476 0.286 0.444 0.500 0.463
H-14-378-quickgelu_dfn5b 0.549 0.489 0.444 0.561 0.550 0.423 0.600 0.577 0.638
H-14-CLIPA-336_laion2b 0.541 0.628 0.600 0.554 0.550 0.520 0.259 0.407 0.681
H-14_laion2b_s32b_b79k 0.486 0.455 0.444 0.518 0.300 0.536 0.370 0.667 0.500
H-14-quickgelu_dfn5b 0.576 0.477 0.500 0.500 0.810 0.667 0.625 0.808 0.467
g-14_laion2b_s34b_b88k 0.529 0.413 0.600 0.537 0.632 0.520 0.462 0.448 0.674
SO400M-14-SigLIP-384 0.522 0.477 0.600 0.491 0.619 0.400 0.462 0.607 0.587
g-14_laion2b_s12b_b42k 0.451 0.500 0.200 0.389 0.333 0.538 0.654 0.483 0.391

avg 0.500 0.489 0.426 0.497 0.510 0.474 0.462 0.561 0.526
Table 83. Accuracy in a 0-shot setting for 7 different CLIP-like models.

Full Score Amst. Bang. Chia. Ista. Sing. Stoc. Veni. Zuri.

N samples 266 46 10 58 21 28 27 29 47

Video-LLaVA-7B 0.526 0.500 0.800 0.586 0.381 0.643 0.407 0.483 0.511
Table 84. Accuracy in a 0-shot setting for the LLaVA model.

then evaluating their answers as True or False using the probability of each token and taking the higher
after normalizing over the whole set of answers. This is meant to moderate average biases present in the
models that generally make them more inclined to say "Yes" and "True" rather than "No" or "False".

We measure accuracy, precision, and recall as performance scores since the dataset is balanced
between positive and negative examples.

9.3.5.2. Results Table 83 shows the accuracy achieved by several CLIP-like models on the dataset.
As we can notice, the proposed task is very challenging for these models, as they can’t achieve more
than 55% accuracy, only slightly above random.

We also break down the results by city. However, given that the number of samples is scarce for some
cities, it is not possible to draw strong conclusions on the distribution of the accuracies varying different
cultural scenarios. However, we can notice how even Western cities – where most of the training data
comes from – maintain a near-random performance on this task, meaning that it is likely that the problem
resides in the temporal understanding abilities of these networks rather than in their cultural biases.

Table 84 shows the accuracy achieved in a 0-shot setting using generative approaches. Again, even for
these models trained on billions of data samples and fine-tuned using instruction tuning, our benchmark
is very challenging, and models are only able to perform slightly above random choice. This is a good
indication that our benchmark can be useful over time and that current video language models are not
yet able to achieve long-range temporal reasoning.

9.3.6. Assets released to the community

We release the benchmark developed in this study, the short videos with questions and correct answers
that have undergone human evaluation as well as the code we used to generated the larger datasets
exposed to human evaluation.

First, the actual benchmark that we have developed and is available here https://zenodo.org/
records/13379851 this is the benchmark we developed and it paves the way towards the assessment
of Large Vision Language Models temporal understanding in complex scenarios.

Second, the code used to create the videos with the automatically generated captions, available
here https://github.com/gpucce/EvaLMM/ that was used to create the initial pool of videos that have
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Figure 87. VISIONE software interface, developed by ISTI-CNR in collaboration with RAI as a demonstrator of UC3.
This video search and browsing tool can greatly benefit from LMMs capable of understanding long-range temporal
dependencies and answering complex factual questions concerning events happening in hours-long videos.

undergone human evaluation. This is useful for the future development of new benchmarks built from
an automatic approach similar to ours.

9.3.7. Potential impact on AI research/media industry/society

This activity stands to make a significant impact on the field of AI research, particularly in the domains of
large multimodal models (LMMs) and long-duration and long-tail video understanding. In particular, it im-
plements a strategic task within AI4Media (especially tasks 5.1 and 5.4), specifically through the VISIONE
large-scale video search tool (Figure 87), developed by ISTI in collaboration with RAI as a demonstrator of
UC3 (AI in Vision – High Quality Video Production & Content Automation), where the final aim is to pro-
vide users tools for searching and browsing large video collections. By developing and introducing a novel
benchmark specifically designed for long-range video understanding and factual reasoning, we provide the
research community with a critical tool for evaluating and improving the capabilities of existing text-video
models. This benchmark highlights the current limitations and guides future advancements, potentially
leading to the development of more sophisticated, temporally-aware models that can reason on long videos
and answer complex questions that also require access to external knowledge. Furthermore, the insights
gained from the whole activity will contribute to a deeper understanding of how LMMs process and
interpret complex, untrimmed video data, thus pushing the boundaries of what these models can achieve.

The result of this activity can impact how large-scale audiovisual archives are managed and accessed
in the media industry. With the proposed advancements in video understanding, media organizations
will be able to index, browse, and retrieve information from vast amounts of video data more efficiently
and accurately. This will enhance the value and usability of historical archives, making them more
accessible to researchers, historians, and the general public. Additionally, improved video analysis tools
can streamline content creation and curation processes, enabling more dynamic and contextually rich
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media experiences. This can lead to innovative applications in entertainment, journalism, and digital
storytelling, where a nuanced understanding of video content is crucial.

As a consequence, in general, the outcomes of this activity may show promising effects on society,
particularly in the context of cultural heritage preservation and personal media management. By im-
proving the accessibility of large-scale audiovisual archives, we facilitate greater public engagement with
historical and cultural resources, promoting education and cultural appreciation. This democratization
of access can have a lasting impact on societal knowledge and cultural preservation. Additionally, in the
realm of personal media management, enhanced video understanding capabilities will allow individuals
to organize and retrieve personal video content more effectively, making it easier to preserve and share
personal histories and experiences. This can also extend to applications in security, where better video
analysis can improve surveillance systems and incident investigation.

Overall, this activity not only addresses current limitations in AI but also paves the way for future
innovations that can significantly enhance the utility and accessibility of video content across various
domains, ultimately benefiting AI research, the media industry, and society as a whole.

9.3.8. Conclusions/future work

In this activity, we have taken significant strides toward addressing the challenging task of understanding
long-range temporal dependencies in untrimmed multicultural videos using large multimodal models
(LMMs). By developing a novel benchmark that incorporates true/false questions concerning multiple
time-spanning events within a video, we have provided a robust framework for evaluating the current
capabilities and limitations of state-of-the-art LMMs on the processing of challenging raw egocentric
video data. Our benchmark, coupled with automated sentence generation and reliable human labeling,
offers a comprehensive evaluation tool that can reveal the nuanced deficiencies in existing models’ abilities
to handle complex video understanding tasks.

The preliminary testing of state-of-the-art models – among which LMMs such as LLaVa, or CLIP-based
architectures like SigLIP [720] – has uncovered critical insights into their performance. These findings
underscore the need for more time-aware and contextually sophisticated models to address the intricate
requirements of video understanding, particularly in scenarios involving extensive temporal dependencies
and multicultural contexts. Our work highlights the necessity of further research and development in
this domain, preparing the stage for future advancements that can overcome these challenges.

We are already working on an extension of the presented benchmark, which includes geographical
factual data to allow for more complicated temporal reference points in the question construction. For
example, it could be interesting to also handle questions like "Is the person eating a sandwich before
the visit to the Rialto Bridge?. This kind of apparently easy question is actually very complex for
non-retrieval-augmented vision-language models, given that they likely do not have access to the visual
features of the Rialto Bridge to ground it within the video.

Using the proposed framework, the future steps will possibly include the collection of a full-sized
dataset composed of a heterogeneous set of questions (not necessarily accepting only binary answers)
that could be employed to fine-tune a state-of-the-art LMM model to better attend to long temporal
dependencies and multicultural data. The obtained models could then be implemented within large-scale
video browsing software like VISIONE to understand their usability in different applicative real scenarios,
like the ones requiring handling large audiovisual archives or managing private user video collections.

9.4. Use of LLMs for co-creative human-computer interfaces for game design
Contributing partner: UM
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9.4.1. Challenge

Large Language Models (LLMs), and in general foundation models (FMs) as media generators, have perme-
ated our everyday lives [721] and discourse [722, 723, 724] due to their accessibility and low barrier of entry.
Both amateurs and professionals use LLMs and FMs to create new forms of art [725]. However, controlling
such models is rarely user-friendly, achieved by changing values via UI buttons and sliders with unclear ef-
fects [726, 727, 728], or by editing code via APIs [729, 660]. More importantly, these models are often “one-
shot” and lack an output refining process, requiring trial-and-error of different prompts to direct the gener-
ation towards a user’s goal. While this process may be fun for inspiration or follow-up manual editing [730],
it proves challenging when more structured output is required, such as game content [731] which needs to
be functional (playable). To this point, LLMs struggle to produce structured data, as hallucinations [732]
and incomplete outputs lead to results that require repairing or that are simply unusable. Video games are
a pertinent field of applications for LLMs. Unlike traditional media, games are multi-faceted creative arti-
facts which hinge not only on text (e.g. narrative, dialogue), visual or audio, but also architectural layouts
(levels) and functional gameplay loops [731, 733]. This makes LLMs and other FMs of particular interest to
the game industry [734], and some promising research has already explored (unstructured) game content as
a target domain [735, 736]. However, current LLM applications to games lack any human-in-the-loop feed-
back and treat the LLM model as a black-box without any sort of output validation and explainability [737].

LLMAKER targets the issue of controllability in LLMs and FMs with a specific context and goal:
the design of a game through a primarily chat-based interface. To achieve this, LLMAKER builds an
ecosystem where multiple foundation models interact with each other and with a human user. While
existing platforms may generate images, videos, or audio tracks individually [734], LLMAKER envisages
a functional game content generation pipeline that intertwines FMs and LLMs controlled by user requests.
This pipeline raises important questions regarding (a) controllability and explainability of LLMs and
FMs, (b) LLMs as generators of structured (game) data via function calls, and (c) cohesion between
different (generated) modalities of game content such as visuals, audio, text descriptions, and game
rules [731]. LLMAKER addresses these via a chat-based interaction loop for designing missions in a
side-scrolling dungeon crawler video game, with enemy encounters and loot. By harnessing the pattern
completion capabilities of LLMs, LLMAKER transforms the fuzzy and ambiguous user requests into
precise, correctly formatted, and context-aware function calls for integration into an existing game design
system. LLM function calling provides the basis for a more verifiable and explainable generation process,
and functional errors [738] will be added in the feedback to the LLM as a way of refining interactions
and improving explainability for failed user requests.

9.4.2. Related Work

This section provides an overview on large language models with different prompting techniques and
evaluation methods, stable diffusion models, and AI-assisted design tools for video games.

9.4.2.1. Large Language Models Broadly speaking, LLMs are models trained on a corpora of
text with the goal of generating words that most likely would follow a starting prompt. In recent years,
however, LLMs are closely associated with the transformers architecture [739], particularly popularized
by OpenAI with the introduction of GPT-2 [740], and more recently GPT-3 [741] and GPT-4 [742].
The power of these generative pre-trained transformers (GPT) lies in both the backbone architecture
(the attention transformer) as well as the large training corpus. Being trained on a vast amount of text,
spanning multiple diverse fields, GPT models acquire an illusion of reasoning. This renders them, at
times, indistinguishable from a human typing from the other side of the screen.

Text generation via an LLM starts from an initial text prompt (the “system” prompt), which usually
defines some rules the model should follow, an optional history of the conversation, and the latest user
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message. This is the zero shot prompting: no additional domain knowledge is provided to the LLM,
therefore all responses are based on either information provided by the user during the conversation,
or present in the training data. The introduction of additional domain knowledge, oftentimes presented
via examples to the language model, allows for few-shot reasoning [743, 744]. Learning by examples is a
simple way to add domain knowledge, however it can lead to wrong assumptions made by the model. To
alleviate this issue, prompting with chain-of-thought examples [745, 746] simulates the reasoning behind
the decision making process, increasing the accuracy in responses given by the LLM on a variety of tasks.
However, even this prompting technique can sometimes fail [747, 748]. The problem of hallucinating
responses, paired with the extreme confidence LLMs seem to possess even when the information generated
is wrong, pushed for the introduction of another prompting technique: function calling [749, 750]. In
this case, the LLM relies on a separate system to obtain data for their responses, drastically reducing
the possibility of hallucinations [751, 745]. It is important to note that LLMs are not usually trained
on data that allows for function calling, therefore they need to be specifically fine-tuned for it [752].

Evaluation of different prompting techniques is carried out on now-standardized benchmarks, such
as GLUE [753], the Stanford Question Answering Dataset (SQuAD) [754], and SNLI [755]. These
benchmarks evaluate the ability of a language model to complete or classify human-written sentences.
Measuring the accuracy of the responses can be carried out via exact matches [756]. Alternatively, as
LLMs generate responses that can vary slightly from the target text, a semantic similarity accuracy
measure [756] can be used. In this work however, we can not rely on either measure, and instead we
devised our own accuracy measure based on domain features (see Section 9.4.5).

9.4.2.2. Stable Diffusion Diffusion models [757, 758] are a class of generative models that create
images conditioned by a textual prompt, starting from random noise. This is achieved by training
these models to learn a parametrized function that can iteratively reverse the additive noise from the
initially noisy image. Training these models starts by adding disruptive Gaussian noise to “clean” images
progressively over multiple timesteps. Then, the model is trained to apply the correct denoising diffusion
step to obtain back the original image [758]. The neural network architecture most commonly used
in such settings is the U-Net [242], suitable for image-to-image translation tasks. Such a generative
approach has been successfully applied to image synthesis [759], achieving better image fidelity and mode
coverage than GANs- and VAEs-powered methods.

Stable Diffusion (SD) models [760] are a popular class of latent diffusion models that can generate
images from different input modalities, such as text only or a combination of text and images. This
allows for different image editing and generation paradigms that better suit specific user needs; for
example, ControlNet [761] allows for the conditional generation of images starting from a text description
and a “control” image that the model uses as reference or starting point for the subsequent generation.

As these models are trained on a large corpus of images and text pairs, they rarely correctly capture
certain niche styles or subjects. However, instead of retraining from scratch these models with hundreds of
thousands of data points, one can use low-rank matrix adaptation (LORA) [762] to instill new knowledge
into the models, requiring only a few (ten to twenty) images, making it extremely easy to personalize
these models.

9.4.2.3. AI-assisted Design for Video Games Automated generation of content for video games
is a matter of computational creativity [763]. The entire field of procedural content generation (PCG)
is focused on producing functional content for video games that is also enjoyable to the players. The
content generated can span from weapons, as in Galactic Arms Race [764], to game mechanics [765],
to the game as a whole [766, 767, 768].

Tools that generate content for video games can require minimal user input, often just a couple of
parameters [768], such as in the ANGELINA system [769]. More interestingly, content generation can be
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guided by human designers. The mixed-initiative content creation [770] framework lets a human designer
interact with an automated PCG system to quickly iterate over content design while respecting designer
agency and authorship. Content creation systems are extremely versatile for level design [771, 772, 773],
in-game content [774], and game mechanics [775].

Applications of large language models for design tools have already shown promising results [776].
In this work, however, the LLM is implemented to make the back-end system as transparent as possible
to the user, meaning that the designers need not concern themselves with every minutia of the domain
while designing, as the LLM takes care of interfacing with it.

9.4.3. Game Domain: Dungeon Despair

To test LLMAKER functionalities (see Section 9.4.5) for creating semantically consistent and visually
coherent game content, it was necessary to design and develop an appropriate testbed game domain
for our use case. Towards this end, we designed and developed Dungeon Despair, a game domain that
follows as closely as possible the design concepts of the Darkest Dungeon [777] video game. Dungeon
Despair is a reversed dungeon-crawler video game, where the player acts as the dungeon keeper, setting
up traps and directly controlling groups of monsters to fend off progressively stronger parties of human
heroes. Upgrading, reinforcing, and expanding the dungeon itself is achieved via the in-game currency:
stress. Stress is built up by the heroes as they struggle while exploring the dungeon, and is lowered
by positive events, such as defeating monsters or looting treasure chests. As stress is a resource that
depends on the difficulty of the dungeon itself, the player must balance their gameplay to maximize
how much they can accumulate before eliminating the heroes party. Dungeon Despair draws inspiration
from Darkest Dungeon, where instead the player controls the heroes and must minimize the stress to
avoid dangerous and negative effects to appear during their missions. We draw inspiration from the
graphical style of Darkest Dungeon, which we try to mimic in our assets generation. We show a demo
of our Dungeon Despair in Figure 88. The game is built using the PyGame [778] library, and all assets
were generated using our framework, LLMAKER, which we will explain further in Section 9.4.5.1.

In the current state of Dungeon Despair, levels follow a clearly defined parametric, context-aware
generative grammar [779, 780, 781]. Context-awareness is necessary for defining constraints, and param-
eters are used when assigning properties to each element in the level. Generative grammars have been
leveraged in the context of procedural content generation for video games via mixed-initiative design
[782, 783], learned from examples [784, 785], or via answer-set programming [786].

A level starts with the root node Level, which only has one production rule: Level→Room. A
Room can then be expanded to a sequence Room :Corridor :Room if the current room has less than
4 corridors connected to it. Each Room contains an Encounter. Each Corridor may contain between
1 and 4 Encounters. An Encounter can be Empty or contain up to 4 Enemy entities, a Trap, or a
TreasureChest. It is important to note that a Trap can only be placed in an Encounter contained in
a Corridor. An Enemy is defined by its Name, Description, Species, and combat-oriented statistics:
HealthPoints, Dodge, Protection, Speed—each defined within a range of positive values. A Trap is
defined by its Name, Description, and Effect of activating. A treasure chest is defined by its Name,
Description, and Loot that it contains. Unlike Darkest Dungeon, here each room and each entity has
to be uniquely identified by its name (i.e., there can not be two enemies with same Name). In the
context of this domain, a valid level is therefore a level that complies to the above described grammar,
and satisfies all specified constraints.

9.4.4. Objectives

As presented in Section 9.4.1, the goals of this project test (a) the controllability and explainability of
LLMs and FMs, (b) the applicability of LLMs as generators of structured (game) data via function calls,
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Figure 88. A screenshot of our Dungeon Despair demo video game. In the “Encounter” tab, the user can see the room, the
heroes party (left) and the enemies (right), as well as hovering over their sprites to learn more about each of them. In the
“Events” tab, the user can see the combat history as well as any other additional messages. In the “Level” tab, a preview of
the map is shown, with information about encounters and other dangers the heroes party may face. Finally, in the
“Actions” tab, a series of possible attacks are displayed for the user to choose and progress through the encounter.

and (c) the cohesion between different (generated) modalities of game content such as visuals, audio, text
descriptions, and game rules [731]. Over the course of the LLMAKER project, and the formalization
of the user experience described in Section 9.4.3, these objectives have crystallized into questions of (A)
controllable game content design via function calling LLMs, and (B) visually consistent (but unique)
game art via Foundation Models.

Based on the above, we formulate the following research questions which have been tested throughout
this project and are validated in experiments reported in Section 9.4.6:

RQA.1 Does function calling produce more valid artifacts than other prompt engineering methods?

RQA.2 Does function calling result in faster responses to a designer’s query?

RQB.1 Does an increasing level of context result in more consistent entities sprites generated in a
room?

RQB.2 Does an increasing level of context result in more visible entities sprites generated in a room?

RQB.3 Does an increasing level of context result in more diverse enemies of the same type across
different rooms?

9.4.5. Methodology

In this section, we report implementation details of the main application, the LLMAKER, and the
experimental protocols for both the LLM prompt engineering study and the effects of context on images
generation study.
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9.4.5.1. General LLMAKER architecture and interface We develop LLMAKER as a Windows
application. LLMAKER allows the user to design a level for a hypothetical dungeon crawler video game,
in the vein of Darkest Dungeon [777], called “Dungeon Despair”47. Generation is driven exclusively via
natural language instructions. A LLM, in this case GPT 3.5 Turbo, interprets the request and, via
function calling [752], generates as response the function name and parameters that will be executed
on our back-end system. Parameters for the function are filled out either via extrapolation from the
user request, or are generated by the LLM directly. For example, the user can specify the “name” of an
enemy to create, and the LLM will use it in the function call, while generating the enemy’s “description”
accordingly. As we leverage a back-end system, we can enforce constraints that the LLM is forced to
adhere to. The back-end functions affects the level by:

1. adding, removing, or modifying a room;

2. adding or removing a corridor;

3. adding, removing or altering an enemy, a trap, or a treasure chest.

Once the function is executed, the LLM provides a short summary of the changes to the user. In case
a function fails to execute, a functional error [787] is returned to the LLM, which can decide whether
to try calling the function again with different parameters, or simply inform the user of the problem.

While the level is described in its entirety in a structured text format, here JSON, we extend the
capabilities of LLMAKER to support the generation of graphical assets (backdrops for the room or
corridor, and sprites for enemies, traps, and treasure chests). We use Stable Diffusion models [788]. We
refer to the explanation of the “fine-tuned SD” in section 9.4.5.3 for further details on the configuration
of SD models used in the current LLMAKER application.

We can identify three main components the user can interact with in the main LLMAKER interface,
as shown in Figure 89. On the right side of the interface, we can find the “Chat Area”. This is where the
user can ask questions about the current level, or request changes (as mentioned above). To the right of
the interface, the current room or corridor is displayed as its image background along with any enemies,
traps, and treasure chests. Hovering over any of these entities will make a tool-tip appear, summarizing the
properties of the entity. Finally, a mini-map at the bottom of the interface shows rooms and corridors on a
tile-based grid. Users can move from one room or corridor to another simply by clicking on the mini-map.

The entire application is built with Python using PyQt for the user interface. LLMAKER is powered
by GPT 3.5 Turbo, a proprietary LLM provided by OpenAI. LLMAKER interacts with the model via
API calls using Python. The functions in our back-end system allow for creation, removal, or editing of
rooms, corridors, enemies, treasures, and traps. The description of these methods, necessary for function
calling, is included in each API call following YAML formatting, as recommended in the OpenAI API
developer guidelines.

9.4.5.2. Controllable game content design via function calling LLMs As introduced in
Section 9.4.4, we are interested in evaluating the efficacy of the function calling approach over alternative
prompt engineering methods (RQA.1 and RQA.2). We test our function calling configuration against
different prompting techniques on 5 separate test cases (T1-T5) available in this project repository48. We
report one test case in Table 85. The test cases used in this work have a different number of (artificial) user
requests. They all represent realistic use-cases for a designer faced with the task of creating a game level.
Each test case has a different number of target rooms, enemies, traps, and treasures for the system to
achieve. Other than the diversity in content generated, the test cases also have different levels of specificity

47Source code available at https://github.com/gallorob/dungeon-despair
48We release the source code for this project at https://github.com/gallorob/llmaker_functioncalling
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Figure 89. A screenshot of our chat-based level design interface, LLMAKER. On the upper left pane, the preview of the
currently selected room. On the lower left pane, the generated level layout, with rooms (larger squares) and corridors
(smaller squares). On the right pane, the chat area with the conversation between designer and LLM.

in requests (for example, T2 and T4 are not very specific in what the user wants), as well as different
design control flow (for example, T3 and T5 are not ordered and instead jump from one room to another).

We run each test case 10 times, with seed randomization. We test the following prompting techniques,
introduced in 9.4.2.1, assigning the respective prompts49:

• Zero-shot: the LLM has only basic knowledge of the level grammar;
• Few-shots [743]: the LLM has a basic knowledge of the level grammar, and the “Additional

Information” consists of a few example interactions presented in the system prompt;
• Chain-of-thought (few-shot) [746]: the LLM has basic knowledge of the level grammar, and

the “Additional Information” consists of a few example interactions with explanations in natural
language of how the changes to the level are made presented in the system prompt; and

• Function Calling [745]: the LLM has a basic knowledge of the level grammar, and the “Additional
Information” consists of a description of functions it can access, and the corresponding arguments
per function.

Zero-shot, Few-shots, and Chain-of-Thought are our baseline techniques. Along with the system
prompt, each interaction with the LLM also includes a JSON representation of the current level (empty at
the beginning of each test case). We do not include the history of the conversation (i.e., past interactions
between user and system), as it is not required to fulfil the user requests. The function calling LLM
output does not contain a representation of the level, as it updates the current level directly via the
functions it calls. The other models instead output directly a JSON-formatted level, which will be parsed
to tentatively update the current level.

We identify four possible outcomes whenever an LLM responds to a user request to change the level:
49Prompts used in this project are available at https://github.com/gallorob/llmaker_functioncalling/tree/main/

prompts
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Table 85. User requests for test case T5. Each request is submitted sequentially via LLMaker.

Create 3 rooms, each connected to the next one, all set in a different
European city
Add a goblin archer in the first room
Also add two zombies
Now generate a room connected to the first one, set in underground
Atlantis
Put a couple of evil mermaids in Atlantis
Place multiple ocean-themed traps in the corridor to Atlantis
Place a single treasure chest in all rooms, each containing a piece of
a treasure map
Remove the chest containing the second piece of the treasure map
Add another room connected to Atlantis, set in Hell
Place two fallen angels armed with flaming swords
Change one of the angels to a capybara monster
Set the health of the capybara to 1000
Make the capybara a punker, with pink spiky hair

• Parser Fail: the produced output is not a parseable level, which can happen when the JSON
is ill-formatted or missing entirely;

• Domain Fail: the produced output is a parseable level, but it is not a valid level (i.e., at least
one of the grammar constraints is not satisfied);

• Design Fail: the produced output is a parseable level, but its contents have not been changed
as the user requested; and

• Success: the produced output is a parseable level and its contents reflect the user requests.
A function calling LLM will never produce a level that is not valid, as the back-end system applies

changes that always adhere to domain constraints. However, it can misinterpret or fail to accommodate
all user requests. At each request, we check that the updates carried out by the system on the level
reflect what the user expected. More precisely, we check that objectively defined requests are correctly
implemented in the level (e.g., a new room or a new enemy has been added, the health points of an enemy
are set to a specific value, etc.), and define an acceptance interval for subjective requests (e.g., when
checking for requests such as “Add a couple of enemies”, we check that there are more than one enemy, and
less than the maximum number allowed per encounter). If during the test case a parser, a domain, or a
design fail is raised, we track which request triggered it. Once a fail occurs, we terminate the execution of
the test case. During the execution of a test case, we also track changes to the level itself, which allows for
easier visual debugging. Finally, we note that different prompting methods result in different number of
tokens generated by the language model and, therefore, different compute time elapsed to obtain a response.
In this work, we track the average time per request the LLM required to produce a response per test case.

9.4.5.3. Visually consistent (but unique) game art via Foundation Models Similar to
Section 9.4.5.2, to evaluate the algorithms we need a hand-crafted and curated set of test cases that
encompass realistic designer request. We generate, via LLMAKER, 5 thematically unique rooms and,
for each room, 5 thematically coherent enemies. We then proceed to generate all possible combinations
of enemy per room, over 10 separate and reproducible runs. We share our source code for this set of
experiments at https://github.com/gallorob/llmaker_sd_context.
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We test two different Stable Diffusion (SD) models:
• Vanilla SD: the off-the-shelf Stable Diffusion v1.5 from RunwayML available online50; and
• Fine-tuned SD, specifically the A-Zovya RPG Artist Tools v4 model51. The fine-tuned SD is

further enhanced by the application of two distinct LORAs: Necro Sketcher52 and DarkestDun-
geon53. While both are tuned to mimic the artistic style of Darkest Dungeon, the former is specific
for entities (such as monsters and objects) found in the game, whereas the latter is specific for
environmental backgrounds and landscapes. We use Necro Sketcher only when generating entities
for Dungeon Despair, and DarkestDungeon only when generating rooms and corridors backdrops.
Furhter, we employ a custom variational auto-encoder (VAE) from StabilityAI54, as recommended
in the user guide of A-Zovya RPG Artist Tools v4.

Quantifying the effects of different levels of context in the image generation process requires first the
definition of multiple metrics. Measuring the consistency of an entity sprite within a room (RQB.1) can
be defined as the percentage of shared colors between the two images (the entity sprite and the room
background). We define the consistency C as

C=
∥γ(e)∩γ(r)∥
∥γ(r)∥

·100, (115)

where γ(·) is a function that extract the ordered list of colors in the quantized input image down to a
32 colors palette, e is the entity sprite image, and r is the room background image. As it’s defined, an
entity image that scores 100% consistency will share at most 32 colors with the background image, and
a score of 0% implies that the two images do not share any color.

While consistency between rooms and entities is important, we always want to avoid generating
entities that get lost in the room. To be more precise, while we want the entities to look as if they
“belong” in the room, we also want them to “pop” visually (RQB.2). We measure the effects of different
levels of context on this by defining a simple visibility metric V , computed as the difference between
the (LUMA) gray-scaled images, i.e.:

V =g(r∪e)−g(r), (116)

where g is the grey-scale transformation applied to input images, e is the entity sprite image, and r is
the room background image.

To answer RQB.3, we instead rely on the Learned Perceptual Image Patch Similarity (LPIPS) metric
[789]. We employ LPIPS to measure the diversity between different entities. We identify three different
types of diversity we are interested in:

1. Context (dcontext): here we compare, for the same run, same entity, and same room, the different
character sprites generated by different levels of context;

2. Runs (druns): here we compare, for the same entity, same room, and same context level, the
diversity resulting from a different initialization in the foundation model; and

3. Room (drooms): here we compare, for the same run, same entity, and same context level, the
diversity that arises when looking at different rooms.

While the above metrics are used to answer the aforementioned research questions, we also care about
the quality of the generated character images. We measure the effects of different levels of context on
this metric via BRISQUE [790, 791]. We show example values of all the presented metrics in Table 86.

50https://huggingface.co/runwayml/stable-diffusion-v1-5
51https://civitai.com/models/8124?modelVersionId=250344
52https://civitai.com/models/70147/darkest-dungeon-style-or-necro-sketcher-or-lora
53https://civitai.com/models/65324/darkestdungeon
54vae-ft-mse-840000-ema-pruned, available at https://huggingface.co/stabilityai/sd-vae-ft-mse-original/tree/

main
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Metric
None Semantics

Quality 36.71 15.55
Complexity 35% 58%
Colourfulness 3% 7%
Visibility 4.1×10−5 2.4×10−5

Consistency 50% 50%
Diversity 0.37

Table 86. Example of metrics values for “Mad Tinkerer” in “Steam Engine Room” at different levels of context.

Stable
Diffusion

(T2I)

Entity Name,
Entity Description

Room Name,
Room Description

Stable
Diffusion
(Inpaint)

Crop
Image

Extract
Edges

Remove
Background

Get Alpha 
Mask

Remove
Background

Figure 90. Pipeline diagram for the generation of an entity leveraging both semantics (room name and description) and
image context. We show interim outputs and final output for “Faerie Queen’s Guard”: “Elite warriors sworn to protect the
faerie queen, armed with enchanted blades and shields, and capable of flight” in the “Airship Docking Bay”: “A vast
hangar housing airships of various sizes, bustling with activity as crews prepare for departure”. The full prompt, with
Compel weighting, for the in-painting step is “darkest dungeon, (full body)+++ faerie queen’s guard: (elite warriors sworn
to protect the faerie queen, armed with enchanted blades and shields, and capable of flight)++, set in airship docking bay:
a vast hangar housing airships of various sizes, bustling with activity as crews prepare for departure, masterpiece++,
highly detailed+”.

We measure the colorfulness of images being generated following [792] M(3) formula of colorfulness,
defined as:

M(3)=σrgyb+0.3·µrgyb

σrgyb=
√
σ2R−G+σ

2
0.5·(R+G)−B

µrgyb=
√
µ2R−G+µ

2
0.5·(R+G)−B

(117)

We track the complexity of the images being generated. We are interested in this as we expect
more details provided to the foundation model result in more complex images. We measure this as the
percentage of edges detected via the holistically-nested edge detection (HED) [793] detector in the image.

We analyse the effects on the above metrics by varying levels of context. Context is defined as
additional information available to the foundation model whilst generating the entity sprite. All entities are
generated using the same base information: the entity name and physical description (e.g. “Mischievous
Imp” as entity name and “Small, agile creatures known for their trickery and deception, wielding enchanted
daggers and arcane spells” as physical description). We identify the following levels of context:

Final report on Multimedia Summarisation, Analysis and Production 262 of 322



1. None: The entity sprite is generated using only the base information, and no additional context
is provided.

2. Colours: We extract the principal colours of the room, provided with their names to the foundation
model. We only pass up to 8 colours to avoid prompt bloating.

3. Semantics: We use the name and the description of the room the entity would be in.

4. Semantics & Colours: We combine methods (2) and (3).

5. Semantics & Image: Along with the room semantics (3), we pass a cropped section of the image.

6. Caption: We use the BLIP model [697] to generate a caption of the room the entity would be in.

7. Caption & Colours: We combine methods (2) and (6).

8. Caption & Image: Along with the room caption (6), we pass a cropped section of the image.

“Colours” are extracted by first quantising the room image (with a depth of 32), and then ordering
the RGB pixel values based on their frequency. We create the list of colours as strings by finding the
closest RGB value for which we know the HTML names.

When using “Image”, for either “Semantic & Image” or “Caption & Image”, we first generate the entity
image using only the semantics or the caption information. We then apply an edge detection filter, and
pass it to a SD model that performs in-painting over a cropped portion of the room image. The transparent
entity image is then obtained by masking the output image of the in-painting with the alpha channel of the
original (semantics- or caption-context) image. We illustrate this pipeline in Figure 90 for better clarity.

9.4.6. Experimental results

In this section, we present the results obtained from our experiments. The research questions A and
B elaborated in Section 9.4.4 are addressed in the below subsections:

9.4.6.1. Controllable game content design via function calling LLMs Table 87 summarises
the metrics for all configurations for each test case (T1-T5) from 10 runs with seed randomisation.
Overall, other prompting techniques fail in a way that makes the system unable to move forward, often
after as few as 1 or 2 responses, in the case of Zero-shot and Chain-of-Thought. None of the baseline
methods ever completes a test case without failing. Conversely, function calling never raises a parser
or domain fail, while it can still incur design fails. Additionally, it achieves the highest average number
of responses (reaching the end of each test case) with some of the lowest per-request elapsed time. We
further perform Wilcoxon signed-rank test [794] with Bonferroni correction on each test case for each
methods pair to assess which configuration is significantly faster than the others and completes more
requests. Significance is established at p<0.05.

In our experiments, we find that parser fails exclusively occur when the language model ignores
the prompt request to always generate a JSON in its response, and instead inquires the user for more
information. For example, for requests where a new room should be generated (e.g.: T1.3, T2.3, T3.4,
and T4.3), the model asks for the new room properties instead of generating a new one. While this
behaviour could be acceptable in a more interactive setting, we still mark this as a failure since part
of the prompt is being ignored.

Failing to comply to the domain grammar makes up the majority of failures that the baseline models
run into. In almost all cases, the LLM fails to create corridors when a new room is created, even though
this is described in the level grammar and included in the system prompt. Another, less common,
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Table 87. Results for different prompting methods on all test cases averaged from 10 independent runs. Fails measure the
number of instances of 10 runs that failed, while Responses and Time (per Request) are averaged from 10 runs and
include the 95% Confidence Interval. Responses and Time values with ⋆ indicate significantly outperforming all other
configurations on this Test Case.

Prompting Test
Case

Fails ↓
Responses ↑ Time (s) ↓

Pars. Dom. Des.

Zero
Shot

T1 0 10 0 3±0.0 6.1±0.1
T2 0 10 0 3±0.0 10.2±0.2
T3 0 10 0 2±0.0 7.6±0.3
T4 10 0 0 1.1±0.2 2.8±1.5
T5 7 3 0 3±0.0 26.6±0.3

Few
Shot

T1 0 10 0 4±0.0 15.6±0.8
T2 0 10 0 4±0.0 12.7±0.2
T3 0 10 0 7±0.0 21.4±0.2
T4 0 10 0 3±0.0 5.9±0.1
T5 0 10 0 3±0.0 26.9±2.6

Chain
of

Thought

T1 0 10 0 3±0.0 16.4±0.4
T2 0 10 0 3±0.7 13.7±3.2
T3 0 10 0 2±0.0 11.9±0.3
T4 0 10 0 3±0.0 12.8±0.2
T5 10 0 0 1.5±0.9 67.3±4.8

Function
Calling

T1 0 0 7 7±0.0⋆ 9.6±0.6
T2 0 0 0 9±0.0⋆ 6.9±0.4⋆

T3 0 0 0 10±0.0⋆ 5.7±0.0⋆

T4 0 0 1 11±0.0⋆ 4.9±0.1
T5 0 0 0 13±0.0⋆ 8.5±0.1⋆

domain failure occurred when the models ignored part of the level grammar, such as defining the loot
of a treasure chest as a list of items instead of a single string.

Function calling cannot, by design, run into parser or domain failures. Yet, design failures can still
occur, albeit more rarely. In our experiments, we see this in T1, where the model only adds one trap
in the corridor instead of at least two as requested by the user. When looking at the conversation logs,
we actually observe that the LLM attempts to add two traps to the same encounter, but the second
attempt always fails by design and the model does not try again in a different encounter of the corridor.
In T4, instead, the model attempts to add a new room with the same name as an existing room, which
is not allowed, and the model does not try again by giving it a different name.

When looking at the elapsed time per request, we observe that the baseline models scale with the
complexity of the level, which is expected as they need to regenerate the entire JSON description of the
level in their responses. For all baseline methods, we see that T5 is the test case that results in the highest
elapsed time—with Chain-of-Thought achieving the highest value (67.3 seconds). On average, even though
Chain-of-Thought fails after 2 or 3 requests in all test cases, its response time is between 100% (T1) and
600% (T5) slower than function calling, which manages to always complete at least 7 requests per test case.
We believe this is because, along with the JSON description of the level, Chain-of-Thought also needs to
generate the decision-making thought process undertaken to alter the level. The elapsed time in T5 for
Chain-of-Thought is particularly interesting, as it seems almost an outlier compared to the other tests,
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especially given that it fails after 1.5 responses on average. However, the first request of T5 is to generate
three rooms at once, therefore the response is noticeably long. When inspecting the output for T5.1, we
see that Chain-of-Thought provided multiple JSON representations of the level, one per room being added.

Other baseline methods also underperform when compared to function calling. The response time
for Zero-Shot is at worst 200% (T5) slower than function calling, and for Few-Shot it is at worst 300%
(T3) slower. Additionally, Zero-Shot is unable to complete more than 3 responses before failing, whereas
Few-Shot performs slightly better, completing as many as 7 responses in T3.

Function calling is agnostic to the complexity of the level, as it only needs to generate the function
calling data (which can happen multiple times per request), and a final short summary text response.
Although this means that there are always at least two responses being generated per user request,
the average time is almost always consistently lower than the baselines on each test case, with the
exception of Zero-Shot on T4, which achieves a lower elapsed time compared to function calling, albeit not
significantly. However, the responses from Zero-Shot in T4 lacked the required JSON structure entirely.

9.4.6.2. Visually consistent (but unique) game art via Foundation Models Table 88 reports
the results for each metric for sprites generated using the Vanilla SD and fine-tuned SD models. Results
are collected from 250 tests, with 5 different entities placed in 5 different rooms each and images generated
for each combination 10 times. In these tables we indicate the number of times a context level yields
significantly better results for a specific metric compared to the other context levels. We perform a
Welch T-test with Bonferroni correction to determine significance of results at p<0.05.

From our results, it is clear that the additional styling choice greatly affects all metrics, to the point
where no context level is clearly superior to another for the fine-tuned SD model. However, it seems
that “Caption & Colours” is the better context level for the vanilla SD model. A collection of sprites
with a single prompt, “Mischievous Imp”55 generated in two separate rooms can be found in Table 89.
One of the drawbacks of the vanilla SD model, which can be seen in this example, is that sometimes
the generated entity sprite is not recognized as foreground and therefore is partly removed along with
the background. Using a specific LORA instead, we found that this is much less frequent.

The quality of the images generated using semantic context and their combinations is generally lower,
while captions and colors are among the better context levels for this metric. Intriguingly, the complexity
of the images generated with the image inpainting is much higher only in the case of the fine-tuned
SD model, whereas it’s much lower for the vanilla SD model. Just as surprisingly, we find that the
consistency of the generated images for semantics variants is much lower than even the baseline. When
looking at the visibility, in the case of fine-tuned SD-generated images, we find that unsurprisingly no
additional context makes them “pop” more from their background, whereas in the case of the vanilla
SD model the caption with colors is the context level that mostly results in images that stand out.
Colorfulness is also different for the two styles: in vanilla stable diffusion, caption with colors generates
much more colorful images than the other context levels, whereas in the fine-tuned SD model purely
semantics is enough to generate more colorful images.

Results seem to suggest that, in both cases, the use of semantics levels of context is actually detri-
mental for some of the key metrics of interest, namely the consistency, the visibility and, surprisingly,
the diversity across rooms (drooms).

9.4.7. Assets released to the community

As part of the work, we released several artifacts (software), summarised in Table 90. We are also
planning to release a full version of LLMAKER and publish an additional paper on the generation of
game sprites via FMs.

55A “Mischievous Imp” is defined as a “Small, agile creatures known for their trickery and deception, wielding enchanted
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Table 88. Summary table from 250 generation tests per context level; results include both a vanilla SD model and a
fine-tuned SD model for the task at hand. The number under each column indicates the times a context level yields
significantly higher value in the row’s metric, compared to the other context levels. The best context level per metric
appears in bold.
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Fine-tuned SD model

Quality 5 6 2 3 0 4 6 1
Visibility 7 1 4 0 0 2 2 3
Consistency 4 6 1 3 0 5 7 2
Complexity 0 1 3 4 6 1 3 6
Colorfulness 0 3 6 1 3 1 3 5
dcontext 3 0 5 4 6 6 0 2
druns 5 2 4 3 0 7 1 4
drooms 3 5 2 1 0 7 6 4
Vanilla SD model

Quality 4 4 1 3 0 1 4 4
Visibility 2 4 4 3 0 0 6 5
Consistency 4 5 1 2 0 5 7 3
Complexity 4 3 2 6 5 5 1 0
Colorfulness 0 5 4 2 4 1 7 2
dcontext 1 5 0 3 5 4 7 2
druns 1 5 4 3 5 2 7 0
drooms 2 6 3 1 0 4 7 5

9.4.8. Potential impact on AI research/media industry/society

LLMAKER directly contributes to AI4Media Use Case 5 (AI for Games): LLMAKER’s focus on control-
lability and cohesion is directly applicable for many procedural content generation tasks (see Section 9.4.2)
where structured content is important—such as level generation [763]. In addition, LLMAKER provides
practical insights to AI4Media’s T4.3 (Novel methods for explainable and interpretable AI), as the LLM
constantly provides feedback of its additions to the level design to the user (see Figure 89). LLMAKER
directly contributes to AI4Media’s T5.2 (Media content production) as it produces both structured
content described textually (as room and enemy descriptions, as well as stat blocks) and visually (as
enemy sprites, as per Table 89). Extensions to this work, and its broader applications to AI research
and the (designer-focused) applications for the media industry are described in Section 9.4.9.

daggers and arcane spells”
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Table 89. Sprites generated for the entity “Mischievous Imp” using the fine-tuned SD model and the vanilla SD model.
The two rooms tested are “Submerged Arena” (top two rows) and “Hieroglyphic Hallway” (bottom two rows) and are
similarly generated via the respective SD model.
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9.4.9. Conclusions/future work

LLMAKER is posed as an innovative tool for co-creative video game content design empowered by
large language models. In LLMAKER, the interaction between designer and system is entirely based on
natural language, with the LLM translating user queries into properly formatted requests to a back-end
system via function calling. We also proposed a pipeline using stable diffusion models to generate the
graphical assets that represent the content being idealized by the user.

In Section 9.4.6.1, we demonstrated that the function calling approach is superior to other LLM-based
methods for generating content in terms of prompt adherence and domain constraints satisfaction.
Additionally, LLMAKER consistently processes user requests in a few seconds, serving the user with
the updated content almost in real-time. LLMAKER demonstrates how function calling for LLMs can
be efficiently implemented in a content design tool.

Experiments in Section 9.4.6.1 focused only on content consistency, i.e. whether the generated content
adhered to both domain specifications and reflected user requests correctly. However, other aspects of
LLMAKER should be considered going forward. So far, we did not focus on how useful the responses were
to a human designer, as we put an emphasis on a JSON representation of the level. This is an important
direction for future research, as better responses would improve the usability of the application overall.

Experiments in Section 9.4.6.2 used automated metrics for calculating image quality, consistency,
and variety. While a diverse set of metrics (popular in the bibliography) were explored, it is worth noting
that these metrics are not tailored to the task of visual design of game assets. Therefore, the quality
and diversity of assets produced (e.g. in Table 89) could be additionally validated via human viewers,
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Name Link
Function Calling Benchmark https://github.com/gallorob/llmaker_

functioncalling
Game Sprites Generation Framework https://drive.google.

com/drive/folders/
1SNmGMj0pTZGTSvgMu7j1irvdRn1OnWYT?
usp=drive_link56

Dungeon Despair (Domain) https://github.com/gallorob/
dungeon-despair-domain

Dungeon Despair (Game) https://github.com/gallorob/
dungeon-despair

LLMAKER (Demo) https://github.com/gallorob/llmaker/
tree/cog24-demo

Table 90. Assets delivered to the community from LLMAKER activities.

e.g. in a survey similar to [795].
Overall, from experiments in Section 9.4.6.2 it is unclear which of these context levels would be best

for LLMAKER. The in-painting step included in the “Semantic & Image” and “Caption & Image” context
levels requires additional computation, which would affect the real-time applicability of the program, and
it does not seem to lead to any clear benefits as identified by our metrics. While semantic information is
easily provided by the LLM, it also does not perform well. On the other hand, the caption information
requires a forward pass of the BLIP model, which again would impact performances. A small user study
would thus also indicate the tradeoffs of quality, diversity, and response time.

Another research direction could address the lack of proactive assistance in the current implementation
of LLMAKER: the tool simply implements the changes requested by the user, but never tries to suggest
changes of its own. This is a known problem in the field that is still under active research [796]. Suggested
changes by a proactive AI co-creator could include adapting enemies’ combat statistics to a specific
play-style [797], or altering the layout of the level based on a difficulty scale [798]. Additionally, the
current implementation does not guarantee that the level can be completed—indeed, no completion
criteria are included in this version of LLMAKER. Adding such constraint checks would ensure the
playability and balance of generated levels.

Finally, we note that LLMAKER is the first procedural content design assistant that is in constant
dialogue with the designer, opening up future work for mixed-initiative tools where interaction between
human and machine is based exclusively on natural language. LLMAKER offers new opportunities for
assisted design, but comes with new challenges of cognitive demand. Future work should evaluate the
chat-based interaction of LLMAKER with actual designers in user studies. Studies on user interfaces
in computer-aided design tools are quite common also in the arts industry [799]. A similar study with
LLMAKER should aim to better understand how the system helps designers by identifying its strength
and weaknesses, and most importantly evaluate the creative process based entirely on the communication
via natural language paradigm.
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10. Conclusion
D5.4 is the final deliverable of WP5 and presents progress in the different WP5 tasks since the submission
of previous deliverables, i.e. D5.1-D5.3 The deliverable presents the latest research results of WP5
regarding Content-centered AI, specifically on the tasks: T5.1 “Media analysis and summarisation”, T5.2
“Media content production”, T5.3 “Learning with scarce data”, T5.4 “Language analysis in Media”, T5.5
“Computationally demanding Learning”, T5.6 “Music Annotation and Audio Provenance Analysis” and
T5.7 “Research on Large Language Models for the media industry”.

Several new methodologies bringing novel solutions and state-of-the-art results are presented, while
also, multiple datasets were produced. Approaches that fall under T5.1, include, but are not limited
to, novel methods and software for efficient and aesthetically pleasing video summarization, algorithms
for video analysis for multimodal gesture recognition, face labeling, shot detection and character objec-
tification detection. The presented works are particularly relevant to the AI4Media use cases, since they
can be integrated in media outlet workflows to automatically support content organisation (UC7), event
detection in long videos (UC3) and information discovery from multimedia data (UC3, UC4, UC7).

Under T5.2, we presented research on Robot Systems for automatic visual target detection that can
lead to aesthetically pleasing and efficient UAV cinematography. Moreover, we presented generative
approaches that attempted to enhance digitized music scores with human and instrument-like charac-
teristics without supervision. Advances in both video and music production are particularly useful in
the media sector, and clearly align with AI4Media use cases like UC3, UC5 and UC6 where content
generation is the main focus.

A plethora of important learning algorithms were developed in T5.3 for learning from scarce data that
have led to multiple publications in top conferences and journals of Computer Vision and Machine Learning.
Bioinspired DNN learning approaches were researched, as well as, automatic video search software systems
that automatically annotate visual data, and unsupervised domain adaptation methods for detection of
events in different types of images and videos. Moreover, novel state-of-the-art methods were studied for
representation learning for a variety of tasks, such as reducing the need for annotated data, information
retrieval from videos, human face awareness and understanding and noisy data training among others.

Regarding T5.4, the work presented in this deliverable was mainly focused on language model
adaptation to specialized domains and experimentation with alternative vectorial representations of
text data. Specifically, we presented the first large multilingual dataset for sentiment-classification that
aligns sentiments expressed toward given entities, across different languages. This research results aligns
with use-cases that include the usage of AI against misinformation in the news (UC1) and can be used
in the context of journalism or/and news research/analysis in different countries and languages (UC2,
UC4). Moreover, we tested an novel, “contrastive” type of vectorial representations of texts, suited to
classifiers that decide whether two texts belong to the same class or not. While the test was conducted
on authorship analysis tasks, the agnostic nature of these representations allows them to be used in
other text classification tasks, such as classification by topic.

Under T5.5, we presented novel research works that handle efficient training methods and math-
ematical computations in DNNs with matrix factorization layers that achieve semantic-rich feature
representations, positional embedding methodologies that enhance Transformer performance in classifica-
tion tasks while preserving privacy, and Super-Resolution evaluation datasets and baselines. These results
are useful in multiple Deep Learning scenarios where Transformers are utilized and matrix multiplications
are performed.

Important developments in AI-enabled music analysis were included in T5.6. Works presented include
studies for the reliability and realism of DNN confidence in automatic music classification, development
of pre-trained DNN fine-tuning methodologies to novel music-relevant domains for music tagging and
music information retrieval, and finally a novel audio provenance analysis framework. These outcomes
are useful in use cases where music or audio analysis is the focus.
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Finally, in this deliverable the outcomes of three mini-projects implemented by RAI, CNR and UM
were reported, focusing on the use of LLMs for different media industry applications as part of T5.7. The
first work tackled the challenging problem of editorial media segmentation through the creation of a novel,
multimodal LLM-based framework, to be able to find relevant parts, e.g. short clips or larger segments,
in multimedia data that can have an independently exploitable nature on publication platforms and that
can be identified following multiple segmentation criteria. The developed framework is relevant to a wide
number of media applications and use cases, namely all those which benefit from chapterisation of longer
content into smaller coherent units, like UC1, UC2, UC3 and UC7 in AI4Media. The second work focused
on creating a benchmark for LLMs to evaluate their performance in understanding long, untrimmed
videos, in a human-like fashion, without being hindered by original domain differences such as cultural
biases. This work can impact how large-scale audiovisual archives are managed and accessed in the
media industry, being relevant to UC2, UC3, UC4, and UC7. Finally, an innovative tool was developed
for co-creative video game content design empowered by LLMs to help the seamless interaction between
designer and system, while also a generative pipeline was proposed to generate the graphical assets for
the video-game. This research result directly contributes to game development use cases like UC5.

As the AI4Media project reaches its conclusion, WP5 “Content-Centered AI” is also completed. WP5
has been a key work package within AI4Media, with numerous partners contributing through research and
the development of AI technologies designed to generate positive social, ethical, and economic impacts for
the media sector. Despite the challenges, WP5 has yielded significant outcomes, including the creation
of novel software tools, research published in top-tier venues, and publicly available datasets aimed at
benchmarking and advancing AI research. These achievements have been closely aligned with carefully
designed Use Cases that drive impactful research tailored to the needs of the media industry. Additionally,
WP5 has fostered exceptional cooperation across multiple levels: between partners, across work packages,
and among various European organizations. Given these accomplishments, we firmly believe that the
outstanding work produced in WP5 will have a lasting influence on the research community and media
organizations. We are eager to see how the connections and innovations developed throughout WP5,
and AI4Media as a whole, will continue to evolve and shape the future.
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