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1 Executive Summary

This deliverable presents the research carried out as part of the technical tasks of Work Package 4
of the AI4Media project, entitled Explainability, Robustness, and Privacy in AI. These tasks, i.e.,
T4.2, T4.3, T4.4 and T4.5, cover the areas of AI Robustness, Explainability, Privacy, and Fairness
respectively, and are accompanied by Tasks 4.1 and 4.6, which cover legal and benchmarking
aspects that are not part of this deliverable. For each contribution in this report, we provide an
overview of the work carried out, as well as references to the publications and software released by
each partner.

This deliverable covers work carried out after the submission of D4.5 “Intermediate toolset
for robust, explainable, fair, and privacy-preserving AI” in M36, and includes outcomes produced
and finalised in the final 12 months of the project, from M37 (September 2023) to M48 (August
2024). As the final WP4 toolset of the project, it adds to the already considerable volume of work
produced by all partners. While some partners’ contributions to WP4 concluded with D4.5, this
deliverable includes work from (in alphabetical order) CEA, CERTH, FhG-IDMT, HES-SO,
IBM, UCA, UNIFI, and UNITN.

Introductory remarks are given in Section 2, covering an overview of the Trustworthy AI field
(Section 2.1), the timeline of Work Package 4 (Section 2.2) and the structure of this document
(Section 2.3).

A new contribution towards the AI Robustness task (T4.2) is detailed in Section 3. The work
examines the effect of deploying multiple adversarial defences simultaneously, and the modifications
that can be made to ensure the combination remains effective (Section 3.1).

Contributions towards the AI Explainability task (T4.3) are detailed in Section 4. This in-
cludes work on (i) explanations for automated video summarisation (Section 4.1), (ii) the benefits
of using synthetic data for few-shot class-agnostic counting (being able to count objects in images
regardless of class, Section 4.2), (iii) the risks posed by explainable AI models to the privacy and
security of models and data (Section 4.3), (iv) concept discovery and dataset exploration with
singular value decomposition matrix factorisation (Section 4.4), (v) examining the explainability
of attention-based architectures, pinpointing the differences between post-hoc and attention-based
explanations (Section 4.5), (vi) a novel approach to out-of-distribution detection using visual at-
tention heatmaps (Section 4.6), and, (vii) addressing the limitations of imitation learning for
autonomous driving (Section 4.7).

Contributions towards the AI Privacy task (T4.4) are detailed in Section 5. This includes
work on (i) examining the true privacy benefits of federated learning, with reference to the strong
trust models that are inherent to its present uses (Section 5.1), and (ii) securing federated learning
using fully homomorphic encryption (Section 5.2).

Finally, contributions towards the AI Fairness task (T4.5) are detailed in Section 6. This
includes work on (i) ensemble post-processing of LLMs to improve fairness (Section 6.1), and (ii)
bias detection in text-to-image generative models (Section 6.2).

In summary, the work presented in this deliverable has resulted in:

• 12 conference and workshop papers (AAAI/DAI ‘24, IEEE/ISM ‘22, WACV ‘24, PETS ‘24,
ICLR ‘23, ICML ‘24, IEEE/CVF ‘23, IEEE/T-IV ‘23, ECML-PKDD/FLW ‘23, NeurIPS/
SoLaR ‘23, CVPR ‘24, WACV ‘24); and

• 7 open-source software and tools that are openly shared (e.g., in GitHub).
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2 Introduction

2.1 Trustworthy AI Overview

Artificial Intelligence (AI) holds significant importance in the European Union (EU) due to its
potential to foster innovation, drive economic growth, improve public services, and shape social
development. While AI offers immense opportunities and numerous benefits, there are also po-
tential risks associated with its development such as security vulnerabilities, lack of transparency,
privacy concerns, and bias and discrimination.

Trustworthy AI aims at developing and deploying Machine Learning (ML) technologies that
are reliable, transparent, accountable, and aligned with the democratic and ethical values shared in
our society. Trustworthy AI is typically divided into four broad dimensions: (i) AI Robustness,
(ii) AI Explainability, (iii) AI Privacy, and (iv) AI Fairness.

AI Robustness focuses on detecting and mitigating adversarial attempts such as the introduction
of misleading or malicious input to push an ML model towards making incorrect decisions or
predictions. These attacks can be achieved through the use of adversarial samples in various data
types (e.g., images, text, etc.) and across a broad range of model architectures.

Traditional ML models, such as deep neural networks, are inherently black boxes or operate
in a black-box setting1 so their decision-making processes are difficult to explain. The lack of
interpretability and transparency in these models can lead to distrust and reluctance to adopt
them, especially in critical applications (e.g., healthcare, finance) where decisions may have a
significant impact on individuals. AI Explainability aims to provide users with transparency and
understanding of how decisions are made by ML models.

AI Privacy focuses on designing and developing techniques to protect individuals’ personal
information including their sensitive information by maintaining its confidentiality and privacy. It
also aims to prevent unauthorized access and misuse, as improper handling of personal information
can result on unintended parties accessing individuals’ sensitive information. Such sensitive infor-
mation can then be used against the individuals for discrimination or blackmail. AI models are
typically trained on a large amount of data, which in many cases contains sensitive information.
Thus, AI Privacy aims to produce reliable ML models while ensuring that individuals’ privacy is
enhanced.

Finally, AI models can inadvertently learn biases from the data that they are trained on,
reflecting and preserving biases and prejudice already present in our society. This can result in
discriminatory treatment in various domains where AI is used such as mortgage lending, hiring,
and criminal justice. AI Fairness aims to address these issues by developing AI models that treat
individuals/groups fairly without favoring or disadvantaging any specific group/individual.

2.2 WP4 Timeline

This work package (WP4) is dedicated to Trustworthy AI. It involves 12 partner institutions,
namely – AUTH, CEA, CERTH, FhG, HES-SO, IBM, IDIAP, KUL, UCA, UNITN, UNIFI, and
UPB/UNSTPB – and runs throughout the entire duration of the AI4Media project (Figure 1).
WP4 consists of 6 tasks organized as 4 vertical tasks, AI Robustness (Task 4.2), AI Explainability
(Task 4.3), AI Privacy (Task 4.4), and AI Fairness (Task 4.5), and 2 horizontal tasks, focusing on
the ethical and legal dimensions of AI within the European Union (Task 4.1) and benchmarking
of AI systems (Task 4.6) (see Figure 2).

1A black-box setting refers to a scenario where the user has limited or no access to the internal workings of a
model.
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Figure 1. WP4 four-year timeline, showing the position of the present deliverable (D4.7) with reference to the
lifetime of the AI4Media project.

Figure 2. WP4 Tasks, comprising four vertical tasks (technical) and two horizontal tasks.

During the course of the project, this work package has produced 3 types of deliverables: (i)
toolset, where the technical research output produced from the four vertical tasks will be reported,
(ii) legal, where the output of the corresponding horizontal task will be reported, and (iii) bench-
mark, for the second horizontal task. This document consists of the third and final iteration of the
toolset deliverable. Each iteration of this type of deliverable will report the contributions of the
partners ranging from new algorithms accompanied by experimental results to toolset modules.
In each iteration, we expect individual contributions to be at various stages of this pipeline as
investigations mature.

The third and final iteration of this deliverable is an extension of the first two (D4.1 and D4.5).
In this iteration, we present the research outputs that each partner achieved, as well as the outcomes
of secondments conducted between M37 and M48, the final 12 months of the AI4Media project.
This deliverable contains contributions within the dimensions of AI Robustness, AI Explainability,
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AI Privacy, and AI Fairness.

2.3 Document Organisation

This deliverable follows the same structure as D4.5, with a similar structure for all the tasks to
ensure a harmonized presentation of the algorithms/tools that were developed since D4.5. Sec-
tions 3 - 6 describe the contributions towards each vertical task in Figure 2 (i.e., AI Robustness,
AI Explainability, AI Privacy and AI Fairness), respectively. All sections follow the same structure,
featuring a summary of each of the individual pieces of work from the work package partners. Sec-
tion 7 briefly presents activities related to the organisation of events on Trustworthy AI. Finally,
Section 8 concludes the deliverable, summarizing the final progress achieved as part of WP4.
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3 AI Robustness (Task 4.2)

Machine Learning (ML) models are vulnerable to a variety of threat models [1], [2] in which
adversarial samples play a critical role. Adversarial samples consist of inputs (images, texts,
tabular data, etc.) deliberately crafted by an attacker in order to produce a desired response by
the ML model, unintended by the model creators.

There are four broad types of adversarial threat models depending on how an attacker decides
to exploit potential vulnerabilities in an ML model. (i) Poisoning attacks focus on the insertion
of malicious data within the datasets used to train a model while (ii) Inference attacks intend to
infer private information about a target model or the data used to train it. (iii) Evasion attacks,
on the other hand, attempt to modify legitimate input samples in a manner that leads a model to
misclassify it, while (iv) extraction attacks aim at extracting the parameters of a third party ML
model so as to clone it.

In the following, we present one new contribution to the AI Robustness task which examines
the effect of deploying multiple adversarial defences simultaneously, and the modifications that can
be made to ensure the combination remains effective (Section 3.1).

3.1 Elevating Defenses: Bridging Adversarial Training and Watermark-
ing for Model Resilience

Contributing partner: IBM

When models are deployed in the wild, they may be subject to multiple types of attacks
simultaneously. Therefore, ML developers may wish to deploy multiple defensive techniques in
parallel to protect against threats such as privacy, model stealing, evasion, or backdoor attacks.

However, many of these defences have been independently developed over time to tackle specific
attacks, and their simultaneous deployment has generally not been a consideration in defence
design. Initial works in this area started to study which defences conflicted with each other [3].
Conflicting defences have training or algorithmic objectives which oppose each other in a manner
such that the resulting model is only weakly protected, or sufferers significant benign performance
deterioration.

In the following sections, we describe our work Elevating Defenses: Bridging Adversarial Train-
ing and Watermarking for Model Resilience, with the publication full text being found in [4]. In
this paper, we propose modifications to defence combinations such that their defensive properties
are retained with minimal overhead. In particular, we tackle the problem of combining model
watermarking methods with adversarial training.

3.1.1 Baseline

The baseline of combining adversarial training and model watermarking can be summarised below:

• Utilize the standard adversarial training procedure, where the data points are perturbed
(with Projected Gradient Descent (PGD)) based on the specified perturbation budget (β) at
every iteration.

• The Out-Of-Distribution (OOD) dataset (watermarking set) is provided by the model owner
in advance.

• During the training phase, the watermarking set can be added to the training set, or the
model can be separately trained on it at the end of every epoch.
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Limitations: Both adversarial training and the watermarking, when applied individually,
work effectively for the purpose they were designed for. However, when applied simultaneously,
they have a conflicting interaction. The study [3] observed that baseline interaction has good
performance with respect to the utility of the model; however, it affects the adversarial performance
and decreases its robustness against evasion attacks. They attribute performance degradation as a
result of using OOD watermarks, which use labels distinct from those in the actual training dataset,
thus altering the model decision boundaries. As a result, this makes it easier for an evasion attack
to identify a perturbation that causes incorrect results.

3.1.2 Proposed Technique

We propose to use watermarks generated via adversarial training, also known as adversarial wa-
termarks. They are often used in the literature [5] owing to their high transferability to stolen ML
models. The idea is to use watermarks that are distinct compared to the training samples, but
have a similar distribution to our adversarial training dataset. In our case, the training dataset
comprises original data samples and their respective perturbed adversarial samples. We cannot use
watermarks with the same distribution as the training set because it would be difficult to differen-
tiate them, and may provide a false sense of verification. Instead, we hypothesise that watermarks
generated using an adversarial training technique will have a similar distribution, i.e., they share
certain statistical properties as that of adversarial samples in the training set.

However, one may wonder if adversarial samples and adversarial watermarks will be too similar,
and conflict at inference time. In fact, adversarial samples and adversarial watermarks differ in the
way they are crafted. We propose to generate the watermarks using adversarial training with a
higher perturbation budget than the adversarial samples. We claim that there exists a lower bound
for an epsilon (ϵ-perturbation budget) with which adversarial training can be used effectively, after
which the utility of the model degrades, making it ineffective. We leverage this knowledge to
generate adversarial watermarks with a higher perturbation budget to differentiate them from the
adversarial samples. In addition, we empirically observed, as was also reported in [6], that when
we apply adversarial training to improve the robustness within some ϵ-neighbourhood, it exhibits
effectiveness for (ϵ + α)- neighborhood, where α is a positive constant. Thus, we use β perturbation
budget, where β > ϵ + α, to generate the adversarial watermarks.

The training process is similar to the baseline approach, but we substitute the OOD dataset
with adversarial watermarks. These watermarks are derived from samples within the original
training set, aligning with the distribution of adversarial samples, also generated from the training
dataset. The main difference between adversarial samples and watermarks lies in the perturbation
budget employed during their generation. While they exhibit similar statistical properties, they
also remain unique.

3.1.3 Results

We used FMNIST dataset as OOD for MNIST, and vice-versa, however, there is no direct correla-
tion. Any arbitrary data points can be chosen as watermarks provided they are out-of-distribution
with respect to the training dataset

Table 2 illustrates the performance of the combined effect of deploying Adversarial Training
(ADVTR) and watermarking techniques. We can observe that for both the approaches, the baseline
(OOD Watermarks (WMs)), and our proposed strategy (adversarial watermarks) perform strongly
in terms of the model utility and watermark verification. However, the adversarial accuracy when
trained using OOD watermarks witnesses a drop of around 4% (from 92.82% → 88.39%) for
the MNIST dataset and around 13% drop (from 70.95% → 57.75%) for the FMNIST dataset.
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ADVTR + WM (OOD) ADVTR + WM (Adversarial)
Dataset

Test Acc Adv Acc Water Acc Test Acc Adv Acc Water Acc

MNIST 99.02 88.39 100 99.03 92.01 100

FMNIST 85.42 57.75 100 86.49 65.84 93

Table 2. Performance of the model with simultaneous deployment of adversarial training and model watermarking
technique while using OOD and adversarial watermarks.

In our proposed strategy, where we use adversarial watermarks, we can see that it outperforms
the baseline with respect to its robustness against evasion attacks. In terms of its adversarial
accuracy, it has less than 1% drop (from 92.82% → 92.01%) for the MNIST dataset and around
4% drop (from 70.95% → 65.84%) for the FMNIST dataset. We attribute this slight decrease
in robustness performance to an unintentional conflict that might arise concerning the interplay
between the perturbation budget used to craft the adversarial samples and watermarks. However,
the overall results obtained empirically support our hypothesis of using the watermarks with a
similar distribution as that of adversarial samples to enhance the robustness of the model, while
also maintaining comparable performance in terms of test and watermarking accuracy.

3.1.4 Robustness in Black-box Setting

In this particular setting, our adversary has no direct access to the trained model or any other
internal working. However, they can query the Application Programming Interface (API) to gain
information about its performance of various inputs. For each query, we only output the class label
of the input image predicted by our model and do not provide any information about the class
logits. Finally, our attacker uses the information about the queried input-output pairs to train a
duplicate model that has a identical test performance as that of our original model.

We examine the transferability of our watermarks to the model stolen using the black-box
model stealing attack. As we can observe in Table 3, test accuracy is high for both datasets for
both approaches. Moreover, one can notice that transferability for adversarial samples for both
approaches is very low. We claim this is because, while launching a black-box attack, we had no
information that the model was trained using adversarial training. Our adversary only queried
the pure input-output pairs, thus limiting our model performance on the adversarial samples.
However, we can notice a high transferability of our watermarks for the model which was trained
using adversarial watermarks.

Black-box Transferability

AdvTraining + WM (OOD) AdvTraining + WM (Adversarial)
Dataset

Test Acc Adv Acc Water Acc Test Acc Adv Acc Water Acc

MNIST 89.24 1.29 6 88.36 0.33 54

FMNIST 72.47 3.96 8 73.86 10.09 56

Table 3. Transferability of performance for various metrics when the models undergo black-box model stealing
attack.

Furthermore, one can observe that even if the model was trained simultaneously using adver-
sarial training, the adversarial watermarks did not conflict with the adversarial samples and were
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Figure 3. Impact of removal attack on the model stolen using black-box setting

independently verified with high confidence. The results confirm our understanding regarding the
conflict between adversarial watermarks and adversarial samples, and demonstrate the efficacy of
our suggested interplay of the two techniques in a black-box setting.
With respect to Pruning. Figure 3a, plots the effect of pruning the stolen model with different
pruning rates for two datasets. From Table 3, we know that the transferability of the OOD
dataset is quite low, and thus, applying further removal attacks does not significantly affect its
behavior. Further, one can observe that, with increasing pruning rate, our approach can still verify
the ownership of the model with high confidence, i.e., for both the datasets, the models can be
confidently verified with more than 50% transferability rate, with as high as 80% pruned neurons.
This implies that the embedded watermarks significantly contribute to the important neurons of
our model. Thus, they cannot be easily removed without degrading the model performance.
With respect to Fine-tuning. Figure 3b plots the effect of fine-tuning the stolen model with
40 epochs. The OOD watermarking accuracy by default is low due to its low transferability (Table
3). Thus fine-tuning it further does not give us any useful information. However, we can see that
when we fine-tune the models trained using adversarial watermarks, the watermarking accuracy
decreases to a certain point and then nearly stays constant throughout the remaining process.
Although we observe a decrease in watermarking accuracy, it is still high enough (more than 45%
for both datasets) to confidently verify the ownership of the models. The findings empirically show
the effectiveness of our approach to pruning and fine-tuning attacks in the black-box setting.

3.1.5 Conclusions

This study introduced a novel way of combining adversarial watermarks and adversarial training
without undermining its primary objectives. We observed that there exists a lower bound pertur-
bation budget above which the utility of the model worsens, making it ineffective. We leverage
this information to generate the adversarial watermarks that differ from the adversarial samples
used in the training. We benchmark the performance of our strategy on various model stealing
and removal attacks. Our proposed technique consistently outperforms the baseline in nearly all
scenarios.
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3.1.6 Relevant Resources and Publications

Relevant publications:

• J. Thakkar, G. Zizzo, and S. Maffeis. “Elevating Defenses: Bridging Adversarial Training
and Watermarking for Model Resilience”, Deployable AI workshop in conjunction with AAAI
(DAI), 2024 [4].
Arxiv record: https://arxiv.org/pdf/2312.14260.

3.1.7 Relevance to AI4Media use cases and media industry applications

Media companies will benefit from using model watermarking and adversarial training in their ma-
chine learning models due to the increasing reliance on AI for content creation, recommendation
systems, and copyright enforcement. Model watermarking allows companies to embed identifiable
information within their models, providing a means to prove ownership and combat unauthorized
usage, which is crucial in protecting intellectual property in an industry heavily reliant on pro-
prietary content. Adversarial training, on the other hand, enhances the robustness of machine
learning models against malicious attacks that could distort recommendations or manipulate con-
tent. By employing these techniques, media companies can ensure the integrity and security of
their AI systems, maintain consumer trust, and uphold their competitive edge in a rapidly evolving
digital landscape.
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4 AI Explainability (Task 4.3)

The last decade has seen a tremendous adoption of AI technology across a wide range of industries.
AI has now become an indispensable part of our society. Accompanying this adoption however
is an increasing concern about the opacity of such systems to human scrutiny. The reasons why
such systems arrive at specific decisions are in most cases unknown to their users. In many cases,
this opacity exists as well for the designers of such systems. This situation is thus one of the main
obstacles that prevent the further adoption of AI technology across society today.

Explainable AI hence attempts to provide tools which enable the generation of explanations
clarifying how a given model reached a decision and are understandable by humans. The method-
ologies and tools presented in this section hence address the need in the industry and society
at large for AI models that can provide human understandable explanations of their underlying
mechanisms.

Contributions towards the AI Explainability task (T4.3) include work on (i) explanations for
automated video summarisation (Section 4.1), (ii) the benefits of using synthetic data for few-shot
class-agnostic counting (being able to count objects in images regardless of class, Section 4.2),
(iii) the risks posed by explainable AI models to the privacy and security of models and data
(Section 4.3), (iv) concept discovery and dataset exploration with singular value decomposition
matrix factorisation (Section 4.4), (v) examining the explainability of attention-based architectures,
pinpointing the differences between post-hoc and attention-based explanations (Section 4.5), (vi)
a novel approach to out-of-distribution detection using visual attention heatmaps (Section 4.6),
and, (vii) addressing the limitations of imitation learning for autonomous driving (Section 4.7).

4.1 Explainable Video Summarization

Contributing partner: CERTH

4.1.1 Overview

The current practice in the Media industry for producing a video summary requires a professional
video editor to watch the entire content and decide about the parts of it that should be included
in the summary. This is a laborious task and can be very time-consuming in the case of long
videos. Video summarization technologies aim to generate a short summary by selecting the most
informative and important frames (key-frames) or fragments (key-fragments) of the full-length
video, and presenting them in temporally-ordered fashion. The use of such technologies by media
organizations can drastically reduce the needed resources for video summarization in terms of
both time and human effort, and facilitate indexing, browsing, retrieval and promotion of their
media assets [7]. Despite the recent advances in the field of video summarization, which are tightly
associated with the emergence of modern deep learning network architectures [8], the outcome of a
video summarization method still needs to be curated by a video editor, to make sure that all the
necessary parts of the video were included in the summary. This content production step could
be further facilitated if the video editor is provided with explanations about the suggestions made
by the used video summarization technology. The provision of such explanations would allow the
editor to progressively gain a better understanding of the reasoning behind the proposals of the
used method, utilize it more effectively and thus reduce the needed time for content curation. In
the context of Task 4.3, we developed an integrated framework for producing explanations about
the outcomes of video summarization at different granularities, which is presented below.
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Figure 4. High-level overview of our framework for explaining video summarization.

4.1.2 Multi-Granular Explanation of Video Summarization

A high-level overview of the developed framework for multi-granular explainable video summariza-
tion is given in Fig. 4. Given an input video, a summarizer and the produced video summary
(which in this case is formed by the three top-scoring video fragments by the summarizer), our
framework produces three different types of explanations: i) a fragment-level explanation that in-
dicates the temporal video fragments that influenced the most the decisions of the summarizer, ii)
an object-level explanation that highlights the most influential visual objects within the aforemen-
tioned fragments (denoted as “object-level explanation #1” in Fig. 4), and iii) another object-level
explanation that points out the visual objects within the fragments that have been selected for
inclusion in the summary, that influenced the most this selection (denoted as “object-level expla-
nation #2” in Fig. 4). In the core of this framework there is an XAI (explainable AI) method that
is responsible for producing the explanation.

Fragment-level explanation: For fragment-level explanation, the input video needs to be
temporally fragmented into consecutive and non-overlapping fragments. To perform this process,
we employ a pre-trained model of the TransNetV2 method for shot segmentation from [9]. If the
number of video fragments is equal to one (thus, the input video is a single-shot user-generated
video) or less than ten (thus, the selection of three fragments for building the summary would
not lead to a significantly condensed synopsis of the video), we further fragment the input video
using the sub-shot segmentation method from [10]. The defined video fragments along with the
input video, the summarizer and the produced video summary, are given as input to the XAI
method. This method can be either model-agnostic (i.e., it does not require any knowledge about
the summarization model) or model-specific (i.e., it utilizes information from the internal layers
of the model). In our work, we considered the LIME explanation method from [11] and the
best-performing configuration of the attention-based explanation method from [12], respectively.
LIME [11] is a perturbation-based method that approximates the behavior of a model locally by
generating a simpler, interpretable model. This method was designed for producing image-level
explanations by masking out regions of the image; thus, we had to adapt it to operate over sequences
of frames and produce fragment-level explanations. In particular, instead of masking out regions of
a video frame during a perturbation, we mask out entire video fragments by replacing their frames
with black frames. The perturbed version of the input video is fed to the summarizer, which
then produces a new output (i.e., a new sequence of frame-level importance scores). This process
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Figure 5. Processing pipeline for producing object-level explanations. The selected video fragments are the most
influential according to the fragment-level explanation, or the top-scoring by the summarizer.

is repeated M times and the binary masks of each perturbation are fitted to the corresponding
importance scores using a linear regressor. Finally, the fragment-level explanation is produced by
focusing on the top-3 scoring fragments by this simpler model. The attention-based method of
[12] can be applied on video summarization networks that model the frames’ dependence using
an attention mechanism [13]–[15]. This method uses the computed attention weights in the main
diagonal of the attention matrix for a given input video, and forms an explanation signal by
averaging them at the fragment level. The values of this explanation signal indicate the influence
of the video’s fragments in the output of the summarizer, and the fragments related to the top-3
scoring ones are selected to create the fragment-level explanation.

Object-level explanation: The processing pipeline for creating object-level explanations is
shown in Fig. 5. The selected video fragments for creating such explanations can be either the
most influential ones according to the fragment-level explanation, or the top-scoring ones by the
summarizer, that were selected for inclusion in the video summary. The XAI method in this case is
LIME [11], and the goal is to apply perturbations at the visual object level in order to identify the
objects within the selected fragments, that influence the most the output of the summarizer. Once
again, we use an adaptation of LIME, that takes into account the applied spatial perturbations
in the visual content of a sequence of video frames (and not on a single frame). To make sure
that a perturbation is applied on the same visual object(s) across the frames of a video fragment,
we spatially segment these frames using a model of the Video K-Net method for video panoptic
segmentation [16]. The top-scoring frame (by the summarizer) within a selected video fragment (by
the fragment-level explanation or the summarizer) is picked as the keyframe. Once all the frames
of this fragment have been spatially segmented by Video K-Net, the appearing visual objects in the
selected keyframe are masked out across the entire video fragment through a series of perturbations
that replace the associated pixels of the video frames with black pixels. The perturbed version of
the input video after masking out a visual object in one of the selected video fragments is forwarded
to the summarizer, which outputs a new sequence of frame-level importance scores. This process
is repeated N times for a given video fragment and the binary masks of each perturbation are
fitted to the corresponding importance scores using a linear regressor. Finally, the object-level
explanation is formed by taking the top- and bottom-scoring visual objects by this simpler model,
and highlighting the corresponding visual objects (using green and red coloured overlaying masks,
respectively) in the keyframes of the selected video fragments.
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4.1.2.1 Experimental Setup In our experiments we employ the SumMe [17] and TVSum
[18] datasets, which are the most widely used ones in the literature for video summarization [8].
SumMe is composed of 25 videos with diverse video contents (e.g., covering holidays, events and
sports), captured from both first-person and third-person view. TVSum contains 50 videos from
10 categories of the TRECVid MED task. To measure the influence of a selected video fragment or
visual object by an explanation method, we mask it out (using black frames or pixels, respectively)
and compute the difference in the summarization model’s output, as ∆E(X, X̂k) = τ(y,yk). In
this formula, X is the set of original frame representations, X̂k is the set of updated features of the
frames belonging to the selected kth video fragment (after the applied mask out process), y and
yk are the outputs of the summarization model for X and X̂k, respectively, and τ is the Kendall’s
τ correlation coefficient [19]. Based on ∆E, we assess the performance of each explanation using
the following evaluation measures:

• Discoverability+ (Disc+) evaluates if the top-3 scoring fragments/objects by an expla-
nation method have a significant influence to the model’s output. For a given video, it
is calculated by computing ∆E after perturbing (masking out) the top-1, top-2 and top-3
scoring fragments/objects in a one-by-one and sequential (batch) manner. The lower this
measure is, the greater the ability of the explanation to spot the video fragments or visual
objects with the highest influence to the summarization model.

• Discoverability- (Disc-) evaluates if the bottom-3 scoring fragments/objects by an expla-
nation method have small influence to the model’s output. For a given video, it is calculated
by computing ∆E after perturbing (masking out) the bottom-1, bottom-2 and bottom-3
scoring fragments/objects in a one-by-one and sequential (batch) manner. The higher this
measure is, the greater the effectiveness of the explanation to spot the video fragments or
visual objects with the lowest influence to the summarization model.

• Sanity Violation (SV) quantifies the ability of explanations to correctly discriminate the
most from the least influential video fragments or visual objects. It is calculated by counting
the number of cases where the condition (Disc+ > Disc-) is violated, after perturbing (mask-
ing out) parts of the input corresponding to fragments/objects with the three highest and
lowest explanation scores in a one-by-one and sequential (batch) manner, and then expressing
the computed value as a fraction of the total number of perturbations. This measure ranges
in [0, 1]; the closest its value is to zero, the greater the reliability of the explanation signal.

The number of applied perturbations M for producing fragment-level explanations was set
equal to 20.000. The number of applied perturbations N for producing object-level explanations
was set equal to 2.000. The number of video fragments for producing explanations (both at the
fragment and the object level) was set equal to three. For video summarization, we use models of
the CA-SUM method [13] trained on the SumMe and TVSum datasets. For further implementation
details, we refer the reader to the relevant paper (see the last one in Section 4.1.3).

4.1.2.2 Quantitative Results The results about the performance of the examined explana-
tion methods on the videos of the SumMe and TVSum datasets, are presented in Tables 4-9. In
each case, the top part shows the computed Disc+/- and SV scores for videos that have at least
one top- and one bottom-scoring fragment (or visual object) by the explanation method, while the
bottom part shows the computed scores for videos that have at least three top- and three bottom-
scoring fragments (or visual object) by the explanation method. The best scores are shown in bold
and the arrows indicate the optimal (lower or higher) value for each evaluation measure. For the
sake of space, we show the top- and bottom-k scoring fragment (with k = 1, 2, 3) in the same cell.
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Table 4. Performance of fragment-level explanation methods on the SumMe dataset.

Disc+ (↓) Disc+ Seq (↓) Disc- (↑) Disc- Seq (↑) SV (↓) SV Seq (↓)

Top/Bottom-1
Attention 0.568 - 0.971 - 0.063 -

LIME 0.747 - 0.886 - 0.438 -

Top/Bottom-1
Attention 0.617 - 0.951 - 0.000 -

LIME 0.879 - 0.802 - 0.600 -

Top/Bottom-2
Attention 0.888 0.546 0.980 0.930 0.400 0.200

LIME 0.891 0.785 0.966 0.759 0.400 0.600

Top/Bottom-3
Attention 0.967 0.547 0.955 0.886 0.400 0.400

LIME 0.945 0.750 0.918 0.658 0.600 0.600

Table 5. Performance of fragment-level explanation methods on the TVSum dataset.

Disc+ (↓) Disc+ Seq (↓) Disc- (↑) Disc- Seq (↑) SV (↓) SV Seq (↓)

Top/Bottom-1
Attention 0.579 - 0.983 - 0.000 -

LIME 0.798 - 0.952 - 0.298 -

Top/Bottom-1
Attention 0.561 - 0.984 - 0.000 -

LIME 0.795 - 0.940 - 0.308 -

Top/Bottom-2
Attention 0.967 0.519 0.990 0.963 0.333 0.000

LIME 0.909 0.696 0.954 0.875 0.308 0.282

Top/Bottom-3
Attention 0.964 0.483 0.982 0.943 0.333 0.026

LIME 0.960 0.618 0.969 0.834 0.461 0.333

Concerning fragment-level explanation, the results in Tables 4 and 5 show that the attention-
based method performs clearly better compared to LIME, in most evaluation settings. The pro-
duced fragment-level explanations by this method are more capable to spot the most influential
video fragment, while the competitiveness of this method is more pronounced when more than one
video fragments are taken into account (see columns “Disc+ Seq” and “Disc- Seq”). Moreover, the
produced fragment-level explanations are clearly more effective in discriminating the most from
the least influential fragments of the video, as indicated by the significantly lower SV scores in all
settings (see columns “SV” and “SV Seq”).

The performance of the developed method for object-level explanation is initially evaluated
using video fragments that were found as the most influential ones by the considered fragment-
level explanation methods. The results of our evaluations, shown in Tables 6 and 7, demonstrate
that the object-level explanations for the selected video fragments by the two different explanation
methods exhibit comparable performance. In general, the LIME-based fragments allow the object-
level explanation method to be a bit more effective when spotting the most influential visual
objects, while the attention-based fragments lead to better performance when spotting the visual
objects with the least influence on the model’s output. The comparable capacity of the fragment-
level explanation methods is also shown from the mostly similar SV scores. A difference is observed
when the applied perturbations affect more than one visual objects, where the produced object-
level explanations using the attention-based fragments are associated with clearly lower SV scores.
Therefore, a choice between the fragment-level explanation methods could be made based on the
level of details in the obtained object-level explanation.

The performance of the developed object-level explanation method on the videos of the SumMe
and TVSum datasets when using the three top-scoring fragments by the summarization method,
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Table 6. Performance of the object-level explanation method on the SumMe dataset using the selected video
fragments by the attention-based and LIME explanation methods.

Disc+ (↓) Disc+ Seq (↓) Disc- (↑) Disc- Seq (↑) SV (↓) SV Seq (↓)

Top/Bottom-1
Attention 0.969 - 0.949 - 0.694 -

LIME 0.941 - 0.910 - 0.603 -

Top/Bottom-1
Attention 0.976 - 0.963 - 0.639 -

LIME 0.937 - 0.878 - 0.666 -

Top/Bottom-2
Attention 0.988 0.968 0.981 0.958 0.555 0.639

LIME 0.962 0.915 0.921 0.839 0.833 0.750

Top/Bottom-3
Attention 0.994 0.962 0.989 0.952 0.750 0.555

LIME 0.959 0.897 0.956 0.828 0.611 0.805

Table 7. Performance of the object-level explanation method on the TVSum dataset using the selected video
fragments by the attention-based and LIME explanation methods.

Disc+ (↓) Disc+ Seq (↓) Disc- (↑) Disc- Seq (↑) SV (↓) SV Seq (↓)

Top/Bottom-1
Attention 0.954 - 0.989 - 0.211 -

LIME 0.949 - 0.987 - 0.162 -

Top/Bottom-1
Attention 0.940 - 0.981 - 0.277 -

LIME 0.908 - 0.962 - 0.444 -

Top/Bottom-2
Attention 0.956 0.908 0.995 0.980 0.111 0.111

LIME 0.948 0.909 0.968 0.907 0.277 0.611

Top/Bottom-3
Attention 0.990 0.889 0.998 0.978 0.111 0.000

LIME 0.961 0.879 0.996 0.907 0.111 0.500

is reported in Tables 8 and 9, respectively. A pair-wise comparison of the Disc+ and Disc- scores
shows that our method distinguishes the most from the least influential object in most cases, a
fact that is also documented by the obtained SV scores. Moreover, it is able to spot objects that
have indeed a very small impact on the output of the summarization process, as demonstrated by
the significantly high Disc- scores. Finally, a cross-dataset comparison shows that our method is
more effective on the TVSum videos, as it exhibits constantly lower SV scores for both evaluation
settings (one-by-one and sequential).

4.1.2.3 Qualitative Results The top part of Fig. 6 provides a keyframe-based representation
of the visual content of the original and summarized version of a TVSum video, titled “Smage Bros.
Motorcycle Stunt Show”, while the bottom part shows the produced explanations by the proposed
framework. The green- and red-coloured regions in the frames of the object-level explanations, in-
dicate the most and least influential visual objects, respectively (also shown in segmentation masks,
right below). In this example, the created video summary shows the riders of the motorcycles and
one of them being interviewed. The obtained fragment-level explanation from the employed method
indicates that the summarizer concentrates on the riders (2nd and 3rd fragment) and the interview
(1st fragment). Further insights are given by the object-level explanation of the aforementioned
fragments, which demonstrates that the motorcycles (2nd and 3rd fragment) and the participants
in the interview (1st fragment) were the most influential visual objects. Similar remarks can be
made by observing the produced object-level explanation using the selected fragments from the
summarizer (see 1st and 2nd fragment). These findings explain why the summarizer selected these
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Table 8. Performance of the object-level explanation method on the SumMe dataset using the selected video
fragments by the summarization method.

Disc+ (↓) Disc+ Seq (↓) Disc- (↑) Disc- Seq (↑) SV (↓) SV Seq (↓)

Top/Bottom-1 0.894 - 0.990 - 0.397 -

Top/Bottom-1 0.769 - 0.977 - 0.357 -

Top/Bottom-2 0.985 0.692 0.995 0.912 0.365 0.516

Top/Bottom-3 0.999 0.881 0.994 0.715 0.484 0.476

Table 9. Performance of the object-level explanation method on the TVSum dataset using the selected video
fragments by the summarization method.

Disc+ (↓) Disc+ Seq (↓) Disc- (↑) Disc- Seq (↑) SV (↓) SV Seq (↓)

Top/Bottom-1 0.772 - 0.996 - 0.195 -

Top/Bottom-1 0.883 - 0.879 - 0.255 -

Top/Bottom-2 0.655 0.506 0.997 0.832 0.222 0.155

Top/Bottom-3 0.964 -0.184 0.999 0.841 0.344 0.133

parts of the video for inclusion in the summary and why other parts (showing the logo of the
TV-show, distant views of the scene and close-ups of the riders) where found as less appropriate.
This paradigm shows that the produced explanations could deliver insights about the focus of the
summarization model, and thus, assist the explanation of the video summarization outcome.

4.1.3 Relevant Resources and Publications

Relevant publications:

• E. Apostolidis, G. Balaouras, V. Mezaris, I. Patras, ”Explaining Video Summarization Based
on the Focus of Attention”, Proc. IEEE Int. Symposium on Multimedia (ISM), Naples, Italy,
pp. 146-150, Dec. 2022. DOI:10.1109/ISM55400.2022.00029. [12].
Zenodo record: https://zenodo.org/records/7573492.

• E. Apostolidis, V. Mezaris, I. Patras, ”A Study on the Use of Attention for Explaining Video
Summarization”, Proc. NarSUM workshop at ACM Multimedia 2023 (ACM MM), Ottawa,
Canada, Oct.-Nov. 2023. DOI:10.1145/3607540.3617138. [20].
Zenodo record: https://zenodo.org/records/10184460.

• E. Apostolidis, G. Balaouras, I. Patras, V. Mezaris, ”Explainable Video Summarization for
Advancing Media Content Production”, Encyclopedia of Information Science and Technology,
Sixth Edition, IGI Global, 2023. DOI:10.4018/978-1-6684-7366-5.ch065. [7].
Zenodo record: https://zenodo.org/records/10039722.

• K. Tsigos, E. Apostolidis, V. Mezaris, ”An Integrated Framework for Multi-Granular Expla-
nation of Video Summarization”, arXiv, May 2024, arXiv:2405.10082 (under review) [21].

Relevant software and/or external resources:

• The PyTorch implementation of our work on attention-based explanation of video summa-
rization can be found in https://github.com/e-apostolidis/XAI-SUM.
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Figure 6. Top part: a keyframe-based representation of the original and the summarized version of a TVSum
video, titled “Smage Bros. Motorcycle Stunt Show”. Bottom part: the produced explanations by our framework.
Green- and red-coloured regions indicate the most and least influential visual objects, respectively.

4.1.4 Relevance to AI4Media use cases and media industry applications

The developed framework can facilitate the explanation of AI methods for video summarization.
Given the broad use of these methods in several use cases of AI4Media, their output will help
to: (i) better assist the summarization of the developed news stories by indicating the parts of

Final toolset in robust, explainable, fair, and privacy-preserving AI 29 of 87



the video that affected the most the suggestions of an AI-based video summarizer concerning the
parts that should be included in the summary (Use Case 2: AI for News - The Smart News
Assistant), (ii) support the production of summarized versions of a given video (e.g. according to
the needs of the targeted audiences), by providing explanations about the summarization outcome
and facilitating content curation (Use Case 3: AI in Vision - High Quality Video Production &
Content Automation), and (iii) advance both the re-organization of media collections and the
content moderation, by associating summarized versions of video items with human-interpretable
visual explanations (Use Case 7: AI for (Re-)organisation and Content Moderation).

4.2 Semantic Generative Augmentations for Few-Shot Counting

Contributing partner: CEA

The work presented in this section was undertaken as part of a secondment under the AI4Media
Junior Fellows Exchange programme

With the availability of powerful text-to-image diffusion models, recent works have explored
the use of synthetic data to improve image classification performances. These works show that
it can effectively augment or even replace real data. In this work, we investigate how synthetic
data can benefit few-shot class-agnostic counting. This requires generating images that correspond
to a given input number of objects. However, text-to-image models struggle to grasp the notion
of count. We propose to rely on a double conditioning of Stable Diffusion with both a prompt
and a density map in order to augment a training dataset for few-shot counting (8). Due to the
small dataset size, the fine-tuned model tends to generate images close to the training images. We
propose to enhance the diversity of synthesized images by exchanging captions between images
thus creating unseen configurations of object types and spatial layout.

Figure 7. Left: FSC147 image with BLIP2 caption (above) and exemplar boxes (in red). Right: Ground-truth
density map.

Few-shot Counting. The goal of few-shot class-agnostic counting is to learn to count objects
regardless of their category. To achieve this, the query image x ∈ RH×W×3 is annotated with
n ∈ {0, 1, 2, 3...} exemplar boxes of coordinates b ∈ R4. The counting network takes as input both
the query image and the set of n boxes. It predicts a density map [22] d ∈ RH×W of same size as the
image. As shown in 7, this ground-truth density map has zero values where there are no objects,
and a Gaussian kernel of fixed variance at the center of every object. The final count is obtained
by summing across all positions of the density map. The model is typically trained with an L2

loss between the predicted and ground-truth densities. There are usually three datasets Dtrain,
Dval, Dtest comprising objects of disjoints categories. The goal is to learn a counting network
on Dtrain able to count the unseen objects in Dval and Dtest. To evaluate class-agnostic models,
object categories from the test set Dtest are disjoint from those in the validation Dval and train
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Figure 8. Overview of the SemAugm approach to create synthetic data that augment the training datasets of
few-shot class-agnostic counting models.

sets Dtrain. This open set evaluation allows us to measure the network’s ability to count objects
from unseen categories.

4.2.1 Methodology

Text-and-Density Guided Augmentations. To synthesize new images that can effectively
augment a few-shot counting dataset, we need to have control over the number of objects and how
they are laid out. Indeed, we need to ensure that we know the density maps of the synthetic samples
so that they can be used to train the model. In addition, being able to control object type and
spatial configuration also constitutes a lever to diversify the dataset by generating new combinations
of categories and densities. It allows circumventing the labeling of the generated data and also
constitutes a lever to diversify it. As few-shot counting datasets are generally limited in size, we
take advantage of available pre-trained diffusion models to synthesize diversified augmentations of
the training samples, reducing overfitting and improving generalization. However, large pre-trained
generative models such as Stable Diffusion are usually conditioned through textual prompts.

To finetune these models, we first have to pair textual captions to the training images. We
obtain diverse and descriptive captions using an off-the-shelf captioning model, e.g BLIP2 [23].
This produces richer captions than plain object categories such as “a photo of {class}”. However,
two shortcomings remain. First, generated captions may not contain any information about the
number or arrangement of the objects. Second, text-conditioned Latent Diffusion Models (LDMs)
poorly respect prompts regarding compositional constraints. Even adding this information in the
caption does not guarantee that generated images would follow them. This is especially problematic
as the correctness of the layout is a prerequisite to generate images for which we know the ground-
truth. Therefore, we further condition the generative model directly on the density maps as an
additional input, using the ControlNet fine-tuning strategy. To summarize, our generative model
is now conditioned on a text prompt, obtained by an automated captioning of the training image,
and its ground truth density map to enforce the spatial layout of the objects. This allows us to
synthesize new samples that augment the original image, while keeping the ground truth intact,
making the augmentation amenable to supervised learning.

To formalize the augmentation process, let Dtrain = {xi, bi, di}Ni=1 be an annotated counting
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dataset, with xi an image, bi the exemplar bounding boxes for each image, and di its ground-truth
density map. Let C = {ci}Ni=1 be the set of corresponding captions. For each image xi, we aim at
generating M augmentations using our text-density conditional generative model g(di, ci).

Baseline We sample augmentations from the LDM by taking advantage of the non-deterministic
reverse diffusion process and the expressiveness of the pre-trained model. For an image xi we pro-

duce M augmentations x̃
(j)
i that share its caption and density map:

x̃
(j)
i = g(di, ci), j = 1, ...,M (1)

These augmentations preserve both the number and layout of objects – because of the density
conditioning – and the semantics e.g., object category and type of background – because of the
text prompt. This already augments the number of samples available for training.

Diverse We can, however, go further and diversify the augmentations by altering either the
text description or the spatial organisation of the objects. To do so, we take advantage of dual
conditioning on both densities and captions. We mix the two sets to create new combinations
(density map, caption), producing augmentations that are semantically and geometrically more
diverse than the original dataset. Yet, this mixing of the conditionings should be done carefully, to
avoid low quality augmentations. Indeed, not all combinations make sense, e.g., “a herd of cows”
and “a pearl necklace” exhibit very different spatial layouts. To prompt the generative model with
realistic (density, text) pairs, we rely on caption similarity to find new associations between images
that share some semantics, e.g., “cows” and “bisons”.

We swap captions at random between pairs of compatible images. Two images are said to be
compatible, if their captions are more similar than some threshold tc, i.e:

sim(ci, ck) =
Ψ(ci)

⊤Ψ(ck)

||Ψ(ci)||2||Ψ(ck)||2
> tc

where Ψ is a suitable text encoder. We then sample new images using the initial density map,
but replacing the original caption with the caption ck ∈ C from a compatible training observation
chosen at random:

x̃
(j)
i = g(di, ck), j = 1, ...,M (2)

This process results in more diverse augmentations compared to the baseline and alters more the
images than traditional augmentations (color jitter, crops, etc.), as shown in 9.

Synthetic and Diverse Balance We follow the training strategy from Trabucco et al. [24],
where the synthetic augmentations are used as a regular data augmentation with a probability p0
when training the counting model. As a way to balance baseline and diversified augmentations, we
set a probability pc that defines the fraction of the M augmentations that use a swapped caption
instead of the original one. Typically, pc = 0.5 means that 50% of the generated augmentations
employ the original (caption, density) pair and that the remaining 50% use new (caption, density)
combinations. For each augmentation, we keep the density used to condition the image generation
and the original exemplar boxes as ground truth to train the model. Note that if the caption
changes the object category, bounding boxes for the exemplars might not be accurate anymore
(e.g “pens” are narrow and elongated, while “erasers” are closer to squares.

4.2.2 Experimental results

The approach has been tested on FSC147 [25], which is a 3-shot counting dataset with 147 object
categories. It is the de facto standard of class-agnostic counting benchmarking. 89 categories are
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Figure 9. Qualitative results for the Baseline vs. Diverse augmentations. At the bottom of each diverse sample we
show the caption used to generate the image. Our strategy allows to diversify the type of objects and/or the
background.
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used for the training set, 29 are included in the validation set the remaining 29 constitute the test
set. Note that the categories from the three sets are completely disjoint. In total, the dataset
contains 6135 images, from which 3659 are used for training. The number of objects in the images
varies from 7 to 3731 with an average of 56. Every image is annotated with 3 exemplar bounding
boxes and an object density map. We follow the standard evaluation of the counting accuracy
through the Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).

(a) SAFECount [26]

Val Test

MAE RMSE MAE RMSE

Trad. Augmentation∗,† 13.95 51.73 13.73 91.85

+ Real Guidance [27] 14.94 53.09 13.48 80.69

+ Baseline (Ours) 13.30 49.38 13.22 92.47

+ Diverse (Ours) 12.59 44.95 12.74 89.90

Trad. Augmentation 15.28 47.5 14.25 85.54

(b) CounTR [28]

Val Test

MAE RMSE MAE RMSE

14.25 50.15 13.13 88.21

15.37 49.47 13.37 96.44

12.60 43.53 11.83 87.97

12.31 41.65 11.32 77.50

13.13 49.83 11.95 91.23

Table 10. Quantitative results on FSC147. (*) Traditional augmentations include color jitter, random cropping.
(†) [26] and [28] are reproduced, while those on the last line are reported from original papers

Comparison with Traditional Augmentation We report in Table 10 the improvement in
counting accuracy on FSC417 with our augmentation strategies when training SAFECount [26]
and CounTR [28]. Consistent with the literature on synthetic data augmentation, baseline aug-
mentations improve the results for both networks: MAE decreases by respectively 5% and 10% for
SAFECount and CounTR on the val set. Nonetheless, diversifying the augmentations allows us
to reduce the MAE even further, by 10% and 11% on the same val set and by 7% (SAFECount)
and 13% (CountTR) on the test set. We attribute this to ControlNet overfitting the training data
due to the small dataset size. The low guidance employed to generate the images (2.0) aims at
promoting diversity [29] but, as shown in Figure 9 (Baseline Gen.), the generated images remain
close to the original image in terms of visual appearance of the objects and background. However,
ControlNet generalizes to different captions. In Figure 9 (Diverse Gen.), we observe that swapping
captions allows us to create more diverse data, altering the size and texture of objects and their
background. Such features cannot be altered with traditional data augmentation. When mixing
baseline and diverse augmentations, the performances for both networks improve significantly with
respect to the model without synthetic augmentation, or with naive augmentations only.

Comparison with Real Guidance We compare our approach with Real Guidance, an aug-
mentation strategy for image classification by He et al. [27]. Augmentations are generated by
prompting a pre-trained text-to-image diffusion model with the image classes. To reduce the do-
main gap, the synthetic images are generated from the real images with added noise as proposed in
SDEdit [30]. Table 10 shows that our augmentation strategy outperforms Real Guidance2. Start-
ing from the real image with added noise is generally insufficient to preserve the number of objects
and their positions (Figure 10, 2ndcol.). It shows that the density map conditioning ensures the
preservation of object positions and number without requiring to start from the real image, which
can limit the diversity of the generated images.

2Except on test RSME with SAFECount, where Real Guidance performs better, due to two outlier test images
with more than 2500 objects that dominate the average error (see supplementary material).
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Figure 10. Qualitative comparison with Real Guidance [27]. Our augmentations preserve the layout while creating
more diverse backgrounds. Ground-truth density maps overlap with the generated images (last 2 columns).

A more complete set of experimental results can be found in the associated publication (see
Section 4.2.3). In particular, we report some results on the dataset CARPK [31] that consists to
count cars in aerial views of parking lots, either with the networks only pre-trained on FSC147
or fine-tuned on CARPK itself. In that case, we obtain better results than SAFECount, CounTR
and BMNet+ [32].

4.2.3 Relevant Resources and Publications

Relevant publications:

• Doubinsky, P.; Audebert, N.; Crucianu, M.; and Le Borgne, H. Semantic Generative Augmen-
tations for Few-Shot Counting. In Winter Conference on Applications of Computer Vision
(WACV), 2024. [33].
Zenodo record: https://zenodo.org/records/10204069.

Relevant software and/or external resources:

• The PyTorch implementation of our work “SemAugm” can be found in https://github.c

om/perladoubinsky/SemAug.

Limitations Our synthetic data needs a ground truth and exemplars to train the counting
network. Conditioning on densities makes it possible to reuse both the original density and the
exemplar bounding boxes. However, changing the caption can affect the object category, and in
turn its shape. In some rare cases, exemplar boxes do not fit the generated objects anymore. We
explored to what extent refining these boxes could improve our model. We segmented objects using
SAM in zero-shot [34] prompted with object centers. Preliminary results showed no improvement
with box refinement, possibly due to inaccurate segmentation.

4.2.4 Relevance to AI4Media use cases and media industry applications

The developers of AI tools for the media industry can benefit from this asset to create synthetic
data that will enrich their training datasets. The current version of the tool has been tested in the
context of few-shot class-agnostic counting, that is the ability to count some object of any type in
an image, by showing to the tool only few (e.g., 3) examples.
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The adoption of AI tools in the media industry raised several challenges, regarding their per-
formance but also their reliability and to which extent the tools can be trusted, that is their
trustworthiness. The current tool can contribute to address these challenge by several ways (1) by
augmenting the training datasets of AI tools, it will contribute to improve their performance (2)
since the augmentation is made with synthetic data which generation is controlled, to some extent,
with a human instruction, the resulting dataset can be enriched in order to reduce their potential
biases toward particular classes of individuals

4.3 AUTOLYCUS: Exploiting Explainable Artificial Intelligence (XAI)
for Model Extraction Attacks against Interpretable Models

Contributing partner: IBM

4.3.1 Overview

As the adoption of Machine Learning as a Service (MLaaS) platforms has experienced significant
growth, there has been a corresponding increase in the demand for tools that facilitate eXplainable
AI (XAI) [35]. These tools are crucial in providing users with transparency and a comprehensive
understanding of how decisions are made by ML models. However, the data used for such ex-
planations can pose security and privacy risks. Existing literature identifies attacks on machine
learning models, including membership inference [36], model inversion [37], and model extraction
attacks [38]. These attacks target either the model or the training data, depending on the settings
and parties involved.

XAI tools can increase the vulnerability of model extraction attacks, which is a concern when
model owners prefer black-box access, keeping model parameters and architecture private. To
exploit this risk, we propose AUTOLYCUS, a novel retraining (learning) based model extraction
attack against interpretable models under black-box settings. As XAI tools, we exploit Local
Interpretable Model-Agnostic Explanations (LIME) [11] and Shapley Values (SHAP) [39] to infer
decision boundaries and create surrogate models that replicate the functionality of the target
model. LIME and SHAP are mainly chosen for their realistic yet information-rich explanations,
coupled with their extensive adoption (most used, cited, and active model agnostic explainers),
simplicity, and usability.

4.3.2 Methodology

To learn a surrogate model S that closely approximates the target model M , the attacker first
needs to create a surrogate dataset DS . We assume that the attacker has access to n samples per
class in the auxiliary dataset DA = X1, X2, . . . , Xt∗n which may or may not have samples from the
original dataset DM . Here, Xi = {x1

i , x
2
i , . . . , x

m
i }, where xj

i represents the value of feature j in
sample Xi and m is the total number of features. We also assume that there exists a query budget
Q which restricts the total number of queries that an attacker can send to the target model M .
The proposed model extraction attack is depicted in Figure 11.
Generating Candidate Samples. Assume the attacker sends a query for a given sample Xi

(e.g., one of the samples in DA) to the target model M . The target model M sends the predicted
class yi and the corresponding explanation Ei. The explanation returned by LIME consists of the
prediction probabilities (due to black-box access scenario, we assume only the top class) yi and the
decision boundaries dbji ordered by feature importances. Whereas, SHAP only returns the feature
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Figure 11. AUTOLYCUS system diagram consisting of the following steps: (1) a user sends a query to the
MLaaS platform, (2) the MLaaS platform verifies the validity of the query such that no empty or incomplete
queries are sent, (3) the ML model M predicts the class of the queried sample yi and the explainer computes its
explanation Ei, (4) the MLaaS platform returns the results to the user, and (5) in case of an adversarial user,
they exploit explanations via TRAV-A algorithm to extract the decision boundaries of the target model M .

importance. To generate new and informative candidate samples, the attacker considers only the
top k features of the sample Xi through its feature importance.

For each of the top k features, the attacker generates candidate samples by analyzing the de-
cision boundaries returned by LIME or the feature importances returned by SHAP. The attacker
computes new values of feature(s) j, denoted as x̂i

j by altering it into the decision boundary dbji
in LIME or to the next available value in SHAP with the coefficient(s) denoted as δj . Formally,

x̂i
j is computed as: x̂i

j = dbji ± δj (in LIME) or x̂i
j = xi

j ± δj (in SHAP), where j is the index of
the feature that the attacker is aiming to modify and δj is the alteration coefficient. For LIME, δ
is equal to 1 for categorical features to reflect encoding difference and to 0.01 (or lower) for contin-
uous features. Since the perturbation is decided by the decision boundaries in LIME, δ has lower
importance. On the other hand, it is very important in SHAP, since it determines the exploration
difference between successive samples. A good rule of thumb is setting it close to the standard
deviations if available or to the quarters of the solution range. Depending on the intended alter-
ation, δj can be manually configured to larger or lower values if necessary. The resulting candidate

sample is obtained as X̂i = {x1
i , x

2
i , . . . , x̂i

j1 , . . . , xm
i } or X̂i = {x1

i , x̂i
2, . . . , xi

m−2, x̂i
m−1, xm

i }.
Creating the Surrogate Dataset. To create the surrogate dataset DS , the attacker uses the
traversal algorithm TRAV-A. Recall that the attacker has access to n samples per class from the
auxiliary dataset DA. Thus, initially, DS is limited to DA. Let DE denote the dataset with the
samples that need to be explored (initially DE = DA). TRAV-A starts by exploring the samples in
DE . It selects the first sample Xi in dataset DE and sends a query to the target model M . After
receiving the predicted class yi, TRAV-A checks if the maximum number of samples generated for
this class has been reached. If that is the case, TRAV-A continues by sending a query for the next
sample in DE and checking if the above condition is met. Otherwise, TRAV-A adds Xi to the
surrogate dataset DS and generates new candidate samples (as previously described).

If any of the generated samples has not been previously explored (i.e., is not a part of DE),
then it is added to DE . In the next iteration, TRAV-A sends a query for the next sample in
DE . TRAV-A employs a breadth-first search strategy to traverse the candidate samples generated
during the exploration of a specific sample. We adopt this approach to prevent the deep exploration
and propagation of a single sample. This process continues until one of the following conditions is
met: (i) there are no unexplored samples in DE or (ii) the query budget Q has been exhausted.
Using the generated surrogate dataset DS , the attacker trains the surrogate model(s) S.
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4.3.3 Experimental Results

To evaluate the performance of the proposed algorithm, we employ three widely used datasets:
Iris, Breast Cancer, and Adult Income. Each dataset is split into three subsets: (i) the training
dataset (75%), (ii) the test dataset (15%), and (iii) the auxiliary set (10%). The training dataset
is used for training the target model M , the test dataset for evaluating the performance of the
model extraction attacks, and the auxiliary set for creating the auxiliary dataset DA. We conduct
experiments on the following interpretable models; decision trees, logistic regression, Naive Bayes,
k-nearest neighbor classifiers, and random forest.

We use accuracy and model similarity to evaluate the performance of the constructed surrogate
models in comparison to the target models. Accuracy represents the proportion of correct clas-
sifications relative to all predictions made by the surrogate model. Model similarity is the label
agreement between the target model and the surrogate models against a neutral dataset, which is
referred in the literature also as fidelity or 1 −Rtest [38].

We compare the performance of AUTOLYCUS with four other approaches:
Baseline attack. The surrogate model S is trained directly on the auxiliary dataset (DA = DS).
In this scenario, the attacker does not send any queries (Q = 0) to the target model M .
Steal-ML attacks. Tramer et al. propose a “path-finding attack” to target decision tree models
and an equation-solving attack to target logistic regression models for model extraction [38]. The
path-finding attack is a deterministic, top-to-bottom attack that explores all the nodes until an
exact reconstruction is achieved. “The equation-solving attack” is a technique employed against
logistic regression models and neural networks. Its query results are converted into linear equations
to be solved collectively.
IWAL attack. Chandrasekaran et al. [40] propose an active learning based model extraction
attack IWAL to target tree structured models. IWAL is the importance weighted active learning
algorithm of Beygelzimer et al. [41], which iteratively refines a tree in each query by minimizing
the labeling error.

For each corresponding model type and dataset, we compare the similarity results and the query
budget required for the proposed attack to the ones required for the baseline attack, Steal-ML, and
IWAL attack. We obtain the results for these attacks from their respective papers. For Figure 12
and Table 11, the number of top features allowed to be explored (k) is set to 3. The size of the
auxiliary dataset per class (n) is set to 1 (for LIME) and 5 (for SHAP). This is a design choice
to demonstrate the impact of the size of the auxiliary dataset while providing a slight leverage to
SHAP considering that LIME explanations offer significantly more information.

Our results demonstrate the effectiveness of the proposed attack. We observe that by exploiting
AI explanations, an attacker can create fairly accurate surrogate models that have high similarity to
the target models even under low query budgets. The performance of the model extraction attack
is enhanced as the model complexity (architecture, number of features, and classes) decreases or
model accuracy increases. We also observe that the proposed attack requires fewer queries for
partial reconstructions with comparable accuracy and similarity than the state-of-the-art attacks
that rely on exact reconstruction. Furthermore, we explored potential countermeasures to mitigate
this attack such as adding noise to the decision boundaries of explanations or adding noise to the
training data.

4.3.4 Relevant Resources and Publications

Relevant publications:

• A. C. Oksuz, A. Halimi, and E. Ayday. “AUTOLYCUS: Exploiting Explainable Artificial
Intelligence (XAI) for Model Extraction Attacks against Interpretable Models”, Proceedings
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Table 11. Comparison with SOTA

Dataset
SOTA Attacks AUTOLYCUS

Attack Name Model 1 −Rtest Queries Model 1 −Rtest Queries n XAI Tool

Iris Equation Solving [38] Logistic Regression 1 644 Logistic Regression 1 100 1 LIME

Iris Path Finding [38], [40] Decision Tree 1 246 Decision Tree 1 10 1 LIME

Iris IWAL [40] Decision Tree 1 361 Decision Tree 1 10 1 LIME

Breast Cancer Equation Solving Logistic Regression 1 [644,1485] Logistic Regression 0.992 100 5 SHAP

Adult Income Equation Solving Logistic Regression 1 1485 Logistic Regression 0.998 1000 5 SHAP

Adult Income Path Finding Decision Tree 1 18323 Decision Tree 0.937 1000 5 SHAP

Adult Income IWAL Decision Tree 1 244188 Decision Tree 0.937 1000 5 SHAP
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Figure 12. Impact of the number of queries (Q) on surrogate model similarity in the Adult Income dataset.

on Privacy Enhancing Technologies (PETS), 2024 [42].
Arxiv record: https://arxiv.org/pdf/2302.02162.

4.3.5 Relevance to AI4Media use cases and media industry applications

XAI plays a crucial role in the media industry by making it easier for stakeholders to understand
how decisions are made. This leads to improved content moderation and a more personalized and
engaging user experience. On the other hand, this work shows that an attacker can create a model
that performs similarly to the target model by exploiting AI explanations. Given the extensive use
of AI models in the media industry, this work can help companies understand the extent of model
stealing attacks and how to better protect their AI assets.

4.4 Concept Discovery and Dataset Exploration with Singular Value
Decomposition

Contributing partner: HES-SO
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4.4.1 Overview

Many applications now require models to be pre-trained on large-scale datasets such as ImageNet.
However, difficulties such as labeling errors and long-tail errors, which are confusing for domain
experts, have not been completely resolved. Labeling errors and noise can reduce model quality and
evaluation, producing unintended biases. As dataset volumes increase, evaluating the quality of
supervised labels becomes more difficult. Deep learning models are often overconfident, inaccurate,
and biased toward simple features such as texture.
This study provides a framework for analyzing patterns learned by deep learning models using
matrix factorization. The method identifies vectors at intermediate representations that can be
linked to high-level, human-understandable notions. These vectors are then used to investigate
training datasets to detect inputs that contain artifacts, confounding variables, or inaccurate labels.
The suggested method provides a novel strategy for automatically discovering concept vectors by
decomposing a layer’s latent space into matrices of singular values and vectors. The approach is
unbiased and successful in uncovering ignored concepts or patterns because it does not rely on
user-defined commands or questions.

4.4.2 Methodology

The method consists of three main phases: identification of orthogonal vectors via Singular Value
Decomposition (SVD), gradient-informed ranking of these vectors, and selection and visualization
of top vectors as human-understandable concepts.

Figure 13. Visualization of the discovered concept vectors for ImageNet classes. In the first two rows, the input
image is shown together with a zoomed-in version of the automatically segmented concept. The last row shows the
input images with largest projection on the concept vectors and the relative concept segmentation masks.

SVD is applied to the matrix of a layer’s responses to the input dataset to obtain orthonormal
vectors summarizing the encoding of the dataset in the latent space. This decomposition yields
matrices U (orthonormal vectors), Σ (singular values), and V (right singular vectors).
Gradient-Informed Ranking. To ensure the singular vectors are relevant to the downstream
predictive task, the perturbation impact of moving feature representations along these vectors

Final toolset in robust, explainable, fair, and privacy-preserving AI 40 of 87



is evaluated. This is done by considering the directional derivative of the model output along
the singular vectors, combined with the projection coefficients of activations and gradients. The
importance of a singular vector to the prediction is then computed as the sample mean of these
values across all inputs.
Candidate Directions for Discovery The top-ranking vectors are identified as candidate vectors
for concept discovery. These vectors are projected onto the input data to retrieve samples with
increasing projection values. For convolutional networks, concept activation maps are created by
weighing feature maps with the coefficients of the concept vector. Concept segmentation masks
are derived by retaining input pixel values with high activation in the concept maps.
The discovered concept vectors are used to explore the dataset, identifying anomalous samples
that may contain artifacts or misleading factors. These samples are flagged based on the statistical
dispersion of their projections onto the concept vectors.

4.4.3 Experimental results

The concept discovery strategy was applied to standard models with pretrained weights available
online, with a particular emphasis on Inception V3 (IV3) trained on the ImageNet ILSVRC2012
dataset. This method exhibited the ability to automatically detect and understand high-level
concepts inside natural image categories.
The analysis included classifications such as lionfish, police van, bubble, and zebra. The approach
discovered concept vectors that were consistent with high-level elements such as patterns (e.g.,
lionfish fins, zebra coat), graphics and tires (police vehicle), and glossy reflections (bubble). These
concepts were split and illustrated to ensure they were understandable to humans (see Fig. 13).
User evaluations indicated that the discovered concepts were easy to understand, thereby aiding
in model interpretation. Quantitative studies further validated the effectiveness of the method.
Using concept vectors, we discovered outlier photos (see Fig. 14) in the sample with inaccurate
or confounding labels. This phase improved the overall quality and dependability of the training
data.
The results show that the suggested method effectively identifies concepts that are understandable

Figure 14. Results of dataset exploration with concept discovery. The method identifies training images with
particular issues. The first example presents a strong style shift from real images to drawings. Extremely poor
resolution affects the quality of the second input. The last two images present confounding factors. Multiple labels
are equally correct for the third image, and the last image shows an optical illusion - where there seems to be a
cliff, there is actually a high resolution detail of two ants on a wooden surface.

to humans while also detecting labeling errors and confounding factors in huge datasets. By
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applying concept discovery to only a small portion of the training dataset, significant insights can
be obtained about the behavior of the model and the quality of the dataset.

4.4.4 Relevant Resources and Publications

Relevant publications:

• Graziani, Mara, et al. “Concept discovery and dataset exploration with singular value decom-
position.” ICLR 2023 Workshop on Pitfalls of limited data and computation for Trustworthy
ML. 2023. [43].

Relevant software and/or external resources:

• The PyTorch implementation of our work can be found in https://github.com/maragrazi

ani/concept_discovery_svd.

4.4.5 Relevance to AI4Media use cases and media industry applications

In the context of AI4Media, concept discovery via Singular Value Decomposition (SVD) can un-
cover underlying patterns in multimedia datasets, improving transparency and decision-making
in recommendation systems. For example, it can recognize visual features such as animals or ve-
hicles, increasing the accuracy of personalized content recommendations. Furthermore, through
dataset exploration, SVD-based concept discovery improves the dependability and ethical integrity
of AI applications in the media, aligning user expectations with responsible content management
methods.

4.5 Attention Meets Post-hoc Interpretability: A Mathematical Per-
spective

Contributing partner: UCA

4.5.1 Overview

Attention-based architectures, in particular transformers, are at the heart of a technological rev-
olution. Interestingly, in addition to helping obtain state-of-the-art results on a wide range of
applications, the attention mechanism intrinsically provides meaningful insights on the internal
behavior of the model. Can these insights be used as explanations? Debate rages on. In this
work, we mathematically study a simple attention-based architecture and pinpoint the differences
between post-hoc and attention-based explanations. We show that they provide quite different
results, and that, despite their limitations, post-hoc methods are capable of capturing more useful
insights than merely examining the attention weights.

4.5.2 Methodology

Let us first present the architecture of the model we use for evaluating the explanation methods.
This work considers a set of tokens belonging to a dictionary identified with [D]. A document x

is an ordered sequence of tokens x1, . . . , xT , where T denotes the length of the document. Without
loss of generality, it is assumed that the d unique tokens of x are the first d elements of [D].

Final toolset in robust, explainable, fair, and privacy-preserving AI 42 of 87



Figure 15. Illustration of the model architecture considered for comparing explanation methods

The model f is a single-layer, multi-head, attention-based network followed by a
linear layer. More formally:

f(x) :=
1

K

K∑
i=1

fi(x) =
1

K

K∑
i=1

W
(i)
ℓ ṽ(i)(x) , (3)

where fi := Wℓ
(i)ṽ(i) ∈ Rdout , with Wℓ

(i) ∈ R1×dout being the part of the final linear layer associated
with head i, and for i ∈ [K], ṽ(i)(x) is the output of an individual head. The value of f is used
for classification; for instance, in a sentiment analysis task, document x is classified as positive if
f(x) > 0.

The input text x, is transformed into an embedding e ∈ RT×de by summing word embeddings
and positional encodings.

For each of the K heads, the key k ∈ RT×datt , query q ∈ RT×datt , and value v ∈ RT×dout

matrices are computed by applying linear transformations to e using Wk,Wq ∈ Rdatt×de , and
Wv ∈ Rdout×de , respectively. The attention weights α ∈ RT are then computed as the softmax of
the scaled dot-product of k and q. Then the intermediary output ṽ ∈ Rd

out is computed are the
average of the values v weighted by the attention α.

Each head outputs the linear transformation Wℓ ∈ R1×dout of the ṽ associated with the query
corresponding to the [CLS] token.

The final prediction f(x) of the model is the average of the outputs across all heads.

Attention-based explanations
In that context, for a given query q ∈ Rd

att, the attention αt received by each index t is defined as

αt :=
exp
{
q⊤kt/

√
datt

}∑Tmax

u=1 exp
{
q⊤ku/

√
datt

} . (4)

The scaling factor 1/
√
datt, although not strictly necessary (since Wq and Wk are learnable pa-

rameters of the model), is retained to properly scale the positional embedding.
The intermediary output value before the final linear transformation associated with the query

q is

ṽ :=

Tmax∑
t=1

αtvt ∈ Rd
out . (5)
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Each individual head transforms the ṽ associated with the query corresponding to the [CLS] token.

Specifically, for i ∈ [K], fi(x) = W
(i)
ℓ ṽ(i).

Note that, in general, a Transformer model is structured as a series of sequential layers, each
equipped with a specific number of parallel heads. These heads operate independently, executing
the attention mechanism. To produce token-level attention-based explanations, one must aggregate
the attention matrices at both the head and layer levels. [44] provide a detailed depiction of these
operations; refer to Figure 2 in [44] for a comprehensive illustration.

In our scenario, the model is single-layered, hence layer-level aggregation is omitted.
As a result, each head produces an attention vector of size T that highlights the focus of the

head on each token. However, heads often concentrate on different sections of the document.
Thus, aggregating the K attention vectors is crucial. The two most common aggregation

methods involve computing the average vector or determining the maximum value among the
vectors for each token. Formally, for any token t ∈ [T ], we define:

α− avgt :=
1

K

K∑
i=1

α
(i)
t , (6)

and
α−maxt := max

i∈[K]
α
(i)
t . (7)

It is important to note that α−avg and α−max can lead to very different explanations. Addi-
tionally, α−avg, α−max, and G− l1 generate non-negative weights. Consequently, these methods
do not differentiate between words that contribute positively or negatively to the prediction.

Gradient-based explanations
Given a model f and an instance x, the gradient with respect to a token t ∈ [T ] is defined as:

∇etf(x) ∈ Rde . (8)

It is important to note that the gradient ∇et is calculated with respect to the embedding vector
et ∈ Rde .

The function f is linear with respect to the fi head, i ∈ [K], hence, the gradient of f with
respect to the token embedding et is:

∇etf(x) :=
1

K

K∑
i=1

∇etfi(x) ∈ Rde . (9)

The primary quantity of interest is the gradient of a single attention head, ∇fi(x). Recall that q
is the query corresponding to the classification token [CLS].

The gradient of the model f with respect to the embedded token et, t ∈ [T ] can be
expressed with attention weights (Gradient Meets Attention):

∇etf(x) =
1

K

K∑
i=1

[
α
(i)
t (W (i)

v )⊤(W
(i)
ℓ )⊤ +

α
(i)
t√
datt

W
(i)
ℓ

(
v
(i)
t −

Tmax∑
s=1

α(i)
s v(i)s

)
(W

(i)
k )⊤q

]
∈ Rde .

(10)
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Perturbation-based explanations
LIME for text data, as detailed in [45], operates by starting with the document x to be explained
and generating local perturbations X1, . . . , Xn.

Let X denote the distribution of the randomly perturbed documents. In this context, X is
generated as follows: first, pick s uniformly at random from [d] (the local dictionary), then choose
a set S ⊆ [d] of size s uniformly at random. Finally, remove all occurrences of words appearing in
S from x, where removing means replacing with the UNK token. For simplicity, it is assumed that
tokens and words coincide. The perturbed samples X1, . . . , Xn are independent and identically
distributed repetitions of this process.

Associated with the Xi samples are vectors Z1, . . . , Zn ∈ {0, 1}d, indicating the presence or
absence of a word in Xi. Specifically, Zi,j = 1 if word j is present in Xi and 0 otherwise.

Under mild assumptions, ([45], Theorem 1) demonstrate that LIME’s coefficients converge
to limit coefficients β∞. Specifically, this convergence occurs in particular when the number of
perturbed samples n is large, and the bandwidth ν is also large.

The expression for the limit coefficient associated with word j is:

β∞
j = 3E [f(X) | j /∈ S] − 3

d

∑
k

E [f(X) | k /∈ S] . (11)

This coefficient can be computed (exactly or approximately) as a function of the model param-
eters, providing precise insights into LIME’s behavior in this context. This computation represents
the main result of this section.

Using the previous expression, LIME coefficients can be expressed using attention
weights (LIME Meets Attention):

β∞
j =

3

2K

K∑
i=1

Tmax∑
t=1

W
(i)
ℓ

(
α
(i)
t v

(i)
t − α

(i)
h,tv

(i)
h,t

)
1Xt=j + O

(
T (2−ϵ)∨3/2
max

)
. (12)

More details can be found in [46]. The Figure 16 illustrates the different explanations provided
by attention-based, gradient-based, and perturbation-based explanations for the same input.

4.5.3 Results/Conclusions

In this work, we offered a theoretical analysis on how post-hoc explanations relates to a single-layer
multi-head attention-based network. Our work contributes to the ongoing debate in this area by
providing exact and approximate expressions for post-hoc explanations on such model. Through
these expressions, we were able to highlight the fundamental differences between attention-based,
gradient-based, and perturbation-based explanations. This deeper understanding not only enriches
the ongoing discourse surrounding interpretability but also offers valuable insights for practitioners
and researchers navigating the complexities of transformers’ interpretation.

It is crucial to acknowledge that the quest for perfect explanations remains elusive; no single
method has emerged as entirely satisfactory. However, it is clear that current models employ
attention scores in a non-intuitive manner to arrive at the final prediction. In particular, these
scores go through a series of further transformations, which is ignored when looking solely at
attention scores. These scores also always provide a positive explanation, in contrast to (most)
perturbation-based and gradient-based approaches. For these reasons, we believe that they can

Final toolset in robust, explainable, fair, and privacy-preserving AI 45 of 87



extract more valuable insights than a mere examination of attention weights. This finding aligns
with the assertions made by Bastings and Filippova [47].

As future work, we plan to broaden the scope of our analysis by extending our investiga-
tions to diverse range of post-hoc interpretability methods, including Anchors, thus understanding
model explanations across different methodologies. We also would like to obtain similar statements
(connecting explanations to the parameters of the model) for more complicated architectures, in-
cluding skip connections, additional non-linearities, and multi-layer models, enabling us to discern
the relationship between model parameters and different explanations. Additionally, there is some
interplay between the sampling mechanism of perturbation-based methods (often replacing at the
word level) and the tokenizer used by the model (tokens are often subwords) which we would like
to understand better. Lastly, we emphasize that our focus in this paper has been on text clas-
sification. This choice allows us to capitalize on well-established, and broadly studied post-hoc
explainers and conduct a thorough theoretical analysis based on this specific domain. However, we
intend to expand the scope of applications for our analysis. Specifically, we remark that our study
focused on token-level explanations. Moving forward, we intend to extend our findings beyond text
models to encompass other domains, such as computer vision.

Figure 16. Different explainers can produce very different explanations. Here, the attention mean (α-avg) and
maximum (α-max) over the heads, LIME (lime), the gradient mean (G-avg), L1 norm (G-l1), and L2 norm
(G-l2), with respect to the tokens, and Gradient times Input (G × I) are employed to interpret the prediction of
a sentiment-analysis model. Words with positive (respectively, negative) weights are highlighted in green
(respectively, red), with intensity proportional to their weight. In the example, all the explainers identify the word
questionable as highly significant, while only lime, and G × I highlight a negative contribution. Interestingly,
α-avg and α-max identify the word popular as the most important word in absolute terms, in disagreement with
the all others.

4.5.4 Relevant Resources and Publications

Relevant publications:

• Lopardo, Gianluigi, Frederic Precioso, and Damien Garreau. ”Attention Meets Post-hoc
Interpretability: A Mathematical Perspective.” Forty-first International Conference on Ma-
chine Learning, 2024. [46].
Zenodo record: https://zenodo.org/record/12702363.

Relevant software and/or external resources:

• The PyTorch implementation of our work can be found in
https://github.com/gianluigilopardo/attention_meets_xai.
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4.5.5 Relevance to AI4Media use cases and media industry applications

In media-related use cases where explainability is key, our work will help to better understand
which explainability technique would suit better the needs of the specific use case.

4.6 Leveraging Visual Attention for OOD Detection

Contributing partner: UNIFI

4.6.1 Overview

Understanding the reliability of machine learning models is paramount when such models are
deployed for real-world tasks. One of the main issues of deep learning based classifiers, which is
due to the softmax operator, is that they tend to output high scores even for random inputs[48],
[49]. Unfortunately, this behavior hinders the reliability of neural network based systems.

Out-Of-Distribution (OOD) detection is a crucial challenge in computer vision, especially when
deploying machine learning models in the real world. In this work, we propose a novel OOD
detection method leveraging Visual Attention Heatmaps from a Vision Transformer (ViT) classifier.

4.6.2 Method

In this section, we present the details of our proposed out-of-distribution (OOD) detection model,
which can be summarized in four key steps:

• Train the Vision Transformer Classifier: We begin by training a state-of-the-art Vision
Transformer classifier using large-scale pre-training.

• Extract Visual Attention Heatmaps: From the trained ViT classifier, we extract Visual
Attention Heatmaps, highlighting the most relevant regions within each input image. These
heatmaps serve as valuable guides for focusing on critical areas during the OOD detection
process.

• Convolutional Autoencoder Training: We proceed to train a Convolutional Autoencoder
(AE) using the extracted attention heatmaps as training data. The autoencoder learns to
encode the meaningful and distinctive representations of the attention maps, facilitating
precise image reconstruction.

• Image Reconstruction Error as Discriminatory Feature for OOD Detection: The
core of our OOD detection model lies in the image reconstruction process. By comparing
the reconstructed attention heatmaps with the original ones, we can effectively identify OOD
samples based on their deviations from the learned in-distribution patterns.

4.6.3 ViT Backbone

The Vision Transformer is a state-of-the-art approach for various tasks, including classification [50].
Unlike a traditional convolutional approach, ViT relies on a Multi-Head architecture. Specifically,
an image is divided into a sequence of patches, which are linearly projected and fed into an Encoder
[50]. The core of the Encoder is the Multi-Head Attention. This Multi-Head Attention enables the
model to capture global dependencies and contextual information, allowing the system to model
both long-range interactions and small details present in the image.
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In this work, we leverage ViT’s strengths to train a classifier, exploiting its ability to learn
from patch-level features and capture intricate relationships among different parts of an image.
Interestingly, attention heatmaps, after fine-tuning, encode a semantic representation of input
samples. We exploit this rich and at the same time light representation of input images to learn a
representation for OOD detection. Figure 17 showcases examples of attention heatmaps generated
by the proposed approach.

To perform classification, we fine-tune a pre-trained ViT [51] on ImageNet21k [52]. The pre-
training procedure adheres to the guidelines outlined in [53], ensuring consistency with the sug-
gested approach. The model takes input images of size 224 × 224 and divides them into patches
of size 16 × 16. This way, each image is split into a grid of 14 × 14 patches, resulting in a total of
196 patches. We use the CrossEntropy as the Loss function.

The results of our experiments and evaluations are presented in section 4.6.6.

4.6.4 Using Visual Attention to Train an Autoencoder

The attention map provided by Vision Transformer can be highly beneficial in discriminating
between different species in wild animal classification. The attention map is a visual representation
that highlights the regions in the image that the model considers most relevant for making its
predictions. It allows us to gain insights into what parts of the image the ViT focuses on when
making classification decisions.

In the context of wild animal classification, where species might exhibit visual similarities, the
attention map can serve as a valuable tool to understand how the model distinguishes between
different animals. By analyzing the attention map, we can identify the key features or distinctive
patterns that the model relies on to make accurate classifications. Furthermore, using the visual
attention map can lead to improved model interpretability and explainability.

According to this, after training the Vision Transformer classifier, we proceed to extract the
Visual Attention Heatmaps for each image in both the training and test sets. To facilitate efficient
storage and analysis, we resize the attention heatmaps to a standardized size of 128 × 128 × 1.

We train a Convolutional Autoencoder for the task of OOD detection, leveraging visual atten-
tion extracted from a pre-trained Vision Transformer. The Convolutional AutoEncoder is designed
to reconstruct input images, then we use the reconstruction error to generate precision-recall curves
for OOD detection. The architecture, as in [54], consists of an encoder and decoder, each compris-
ing several convolutional layers, with Leaky ReLU activation functions to introduce a regularization
effect. The encoder takes grayscale input images of size 128 × 128 × 1 and progressively reduces
the spatial dimensions while increasing the number of channels. It culminates in a bottleneck layer
of size 512 × 1 × 1. The decoder then upscales and progressively reconstructs the original input
image through transposed convolutions and activations.

During the training process, the model is optimized to minimize the Mean Square Error (MSE)
loss between the reconstructed heatmaps and the original input.

4.6.5 Training

In this section, we provide a comprehensive overview of the training details for both the Classifier
and the Convolutional Autoencoder models.

Vision Transformer classifier We finetuned the proposed classifier using a pretrained Vision
Transformer model on the ImageNet−21K dataset. The model was initialized with a patch size
of 16x16, and the input images were resized to 224 × 224 × 3 during training. We conducted
the finetuning process for 50 epochs, utilizing the Cross Entropy loss function to optimize the
model’s performance. To optimize the model’s parameters, we employed the Adam optimizer
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with an initial learning rate of 0.0001. Additionally, we incorporated a learning rate scheduler
to dynamically adjust the learning rate during training. Specifically, we employed the StepLR
scheduler with a step−size of 7 epochs and a multiplicative factor of 0.1. This setup allowed us
to gradually reduce the learning rate every 7 epochs by multiplying it with the specified gamma
factor, which effectively aided in stabilizing and enhancing the convergence of the model during
the fine-tuning process.

Convolutional Auto-Encoder During Convolutional Autoencoder training, we utilized
grayscale visual attention heatmaps extracted from the Vision Transformer, as explained in Section
4.6.4, with an input size of 128 × 128 × 1. To regularize each convolutional layer, we employed
Leaky ReLU activation with a negative slope of 0.2. For optimization, we utilized the Adam
optimizer with an initial learning rate of 0.0001. To enhance convergence stability and overall
model performance, we implemented a linear learning rate scheduler. During the first 40 epochs,
the learning rate halved every 10 epochs, after which it remained constant. This schedule ensured
efficient training while preserving the fine-tuned model’s performance. The Autoencoder’s primary
objective during training was to minimize the MSE loss between the reconstructed output and the
input images. This training setup empowered the Autoencoder to learn meaningful representations
of the input data, facilitating precise image reconstruction and substantially contributing to the
subsequent out-of-distribution Detection process.

4.6.6 Experimental results

To demonstrate the effectiveness of the proposed method, we rely on several datasets. As a real-
world scenario we use WildCapture[55]. We randomly split the classes to obtain in-distribution
and out-of-distribution sets. We use the in-distribution set to train the Vision Transformer as
described in section 4.6.3 and the AE. Then we use the out-of-distribution split as a test set.

In order to prove the efficacy of our method, we use also the Caltech CameraTrap dataset [56]
as out-of-distribution set. We avoid overlap between classes in our WildCapture in-distribution set
and Caltech CameraTrap.

The results of this experiment are summarized in Table 12, which clearly showcases the su-
periority of our method in detecting out-of-distribution samples compared to the baselines and
alternative approaches. In fact, our method outperform the baselines in both Area Under the
Precision-Recall Curve (AUPRC) and Area Under the Receiver Operating Characteristic Curve
(AUROC) metrics.

Method ID: WildCapture OOD:WildCapture OOD: CCT[56]

Accuracy AUROC AUPR AUROC AUPR

Deterministic 94.30 57.44 61.46 57.43 68.06

Ensemble 81.89 41.25 90.94 53.36 84.65

RGB-AE 94.30 59.01 77.56 - -

Ours 94.30 92.63 92.25 99.29 97.17

Table 12. Results on WildCapture as in-distribution dataset

In Table 13 and in Table 14, we compare our method with some state-of-the-art methods using
respectively CIFAR10 and CIFAR100 as in-distribution sets. In both experiments, we use respec-
tively CIFAR100 and CIFAR10 as near OOD task and SVHN as far OOD task. The proposed
approach achieves state-of-the-art performance, demonstrating remarkable accuracy and outper-
forming existing techniques in accurately detecting out-of-distribution samples with 100% AUPR
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and AUROC in both benchmarks. This compelling result underscores the efficacy and versatility
of our method in handling diverse and challenging datasets, making it a promising solution for
out-of-distribution detection tasks.

Method ID: CIFAR10 OOD:CIFAR100 OOD:SVHN

Accuracy AUROC AUPR AUROC AUPR

DUQ [57] 95.50 90.80 88.80 97.20 96.90

SNPG [58] 96.00 91.60 91.10 97.80 97.50

Vit Ensemble [59] 98.70 98.52 98.70 98.58 99.82

DHM [60] 96.30 100.00 100.00 100.00 100.00

Ours 97.80 100.00 100.00 100.00 100.00

Table 13. Results on Cifar10 as in-distribution dataset

Method ID: CIFAR100 OOD:CIFAR10 OOD:SVHN

Accuracy AUROC AUPR AUROC AUPR

DUQ [57] 79.90 83.90 87.20 89.70 90.80

SNPG [58] 80.50 86.30 87.50 92.80 93.50

Vit Ensemble [59] 91.71 96.23 96.32 97.80 98.87

DHM [60] 81.30 100.00 100.00 100.00 100.00

Ours 89.80 100.00 100.00 100.00 100.00

Table 14. Results on Cifar100 as in-distribution dataset

4.6.7 Relevant Resources and Publications

Relevant publications:

• Cultrera, Luca, Lorenzo Seidenari, and Alberto Del Bimbo. ”Leveraging Visual Attention for
out-of-distribution Detection.” In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 4447-4456. 2023. [61].
Open access CVF: https://openaccess.thecvf.com/content/ICCV2023W/OODCV/html/C
ultrera_Leveraging_Visual_Attention_for_out-of-Distribution_Detection_ICCVW_

2023_paper.html.

Relevant software and/or external resources:

• The PyTorch implementation of our work can be found in https://github.com/lcultrera

/WildCapture.

4.6.8 Relevance to AI4Media use cases and media industry applications

The method developed can contribute to UC1 (AI for Social Media and Against Disinformation),
and specifically, Feature 1A (Detection/Verification of Synthetic Media). AI-generated images can
be considered as OOD samples and detection systems for this data could be used by social media
platforms to assess the authenticity of uploaded content. Moreover, this approach allows better
quantify uncertaingy of transformer based classifier, thus improving explainability.
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4.7 Addressing Limitations of State-Aware Imitation Learning for Au-
tonomous Driving

Contributing partner: UNIFI

4.7.1 Overview

The most common approach to train autonomous agents is to exploit imitation learning, where an
agent learns by replicating a policy. However, Imitation Learning (IL) has some limitations. Since
capabilities are learned by behavioral cloning, IL models usually lack explicit causal understanding.
Rather than rules, relations between patterns are learned, thus making the agent vulnerable to
spurious correlations in the data. This phenomenon is known in the literature as causal confusion
[62].

In particular, when training IL agents for automotive, there is evidence of a special case of causal
confusion referred to as the inertia problem [63]–[65]. The inertia problem stems from a spurious
correlation between low speed and no acceleration in the training data, making the driving agent
likely to get stuck in a stationary state. As a consequence, when a state-aware agent halts (e.g. at
a traffic light or in a traffic jam), it may not move again when it should. For state-awareness, here
we refer to any source of information that can inform the agent about its halted state, such as a
state variable, either explicitly modeled or implicitly inferred, that encodes velocity.

A second issue that limits the applicability of IL is the gap between offline and online driving
capabilities [66], [67]. Codevilla et al. [67] showed that there is a low correlation between offline
evaluation metrics (e.g. frame-wise Mean Squared Error in steer angle prediction) and the success
rate in online driving benchmarks. In online driving, the output of the model influences future
inputs, violating the independent and identically distributed assumption made by the learning
framework [68]. Accumulation of small errors thus brings the vehicle into new states, never observed
at training time [69]. Similarly to the inertia problem, this issue manifests itself the most in state-
aware models: the more variables are observed by the model, such as ego-velocity or previous
driving commands, the sparser the coverage of the training data gets, making it more likely to end
up in under-represented configurations at driving time.

To summarize, IL agents suffer from ill-distributed training data that presents spurious corre-
lations and domain shift compared to the test set. These issues make it particularly hard to train
state-aware agents: using multiple input sources increases the chances of discovering unwanted
correlations in the data or of observing under-represented inputs at inference time, for which the
agent does not know how to act confidently [68]–[70]. We address these difficulties in training
state-aware IL models.

Our IL agent is designed as a hierarchical transformer model with state token propagation. The
vehicle’s state is encoded in a special token of a vision transformer [50] and is enriched with new
information at each stage of the architecture. At first, we predict whether the vehicle must stop
or go, directly tackling inertia. This information is passed to the next stage which predicts the
driving commands (namely steer, throttle, and brake). Finally, the model leverages a differentiable
Command Coherency Module (CCM), encouraging the model to correctly bring the vehicle to the
desired future state by generating non-conflicting controls. Such command is used only at training
time and acts as a regularizer. Since our architecture is based on a transformer encoder [71], it
heavily relies on attention. We leverage such attention to gain insights about what the model is
focusing on to make its decisions (e.g., the vehicle’s state or visual patterns), following the recent
trend of designing explainable driving models [72]–[74].
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Table 15. Failure rate due to inertia problem in Town01 - New weather of the NoCrash benchmark

Train conditions New weather

Task Single Stage Ours Single Stage Ours

Empty 17% 1% 40% 8%

Regular 9% 1% 20% 2%

Dense 16% 6% 22% 4%

4.7.2 Method

Imitation Learning (IL) trains an agent by observing a set of expert demonstrations to learn a
policy [75]. In the simplest scenario, IL is a direct mapping from observations to actions [76]. In
automotive, the expert is a driver, the policy is “safe driving” and the demonstrations are a set of
(frame, driving-controls) pairs. In this work, we address Conditional Imitation Learning (CIL), a
declination of imitation learning where the policy must reflect a given high-level command, such
as turn right or follow lane. As in prior work (e.g. [73], [77], [78]), we divide our architecture into
multiple branches, with separate heads learning command-specific policies. However, differently
from prior work, we structure our model as a hierarchy of stages, each of which is dedicated to
addressing different aspects of driving.

The proposed model is state-aware, in the sense that it takes as input the speed and the steer,
acceleration and brake values predicted at the previous time step. In principle, informing the
model of the current state of the vehicle could ensure temporal smoothness and coherency in the
driving policy (i.e., the predicted driving controls). In practice, this makes the model vulnerable
to spurious correlations in the data, bringing out the inertia problem. To address this issue, we
propose a multi-stage transformer model with state token propagation. We feed the vehicle state
to the model as a special token of a vision transformer (ViT) [50]. Operationally speaking, the
state token fulfills the same role as the [CLS] (classification) token in standard ViTs. However,
by enclosing vehicle measurements we can inject information into the model and let it correlate to
relevant spatial features via self-attention. After each layer, the state token is enriched with spatial
information and is decoded into coarse-to-fine driving commands, depending on the stage. The
coarser of such commands is a decision on whether the vehicle should stop or go, thus explicitly
addressing inertia.
Injecting the state token into the model has the additional benefit of enabling data augmentation on
the state values itself, addressing what is arguably the biggest limitation of imitation learning, i.e.,
the inability to perform well in previously unseen states [66] that is also responsible for the gap of
accuracy between offline and online driving. We also introduce a regularizer that ensures coherency
in the generated driving commands. This is different from similar solutions adopted in prior works,
where speed is predicted to reduce inertia [63], but here we use it to reduce online-offline evaluation
gap.

4.7.3 Results

Ex-Post Explainability Tab. 15 indicates that, despite addressing in a very effective way the
inertia problem, the model still suffers from a few inertia failures. We exploit the Ex-post Semantic
Explainability approach presented earlier to inspect 50 episodes of the NoCrash benchmark[63]
where the inertia problem still occurs at traffic lights. In 56% of the cases where the vehicle is
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Table 16. % of detected entities in features when the vehicle is stopped at green traffic light on NoCrash.

Cause of failure Percentage of detection

Red Traffic light 56%

Pedestrian crossing 18%

Vehicle obstruction 3%

Tot 77%

stuck at a green light, the k most similar features to the attended one contain a red traffic light,
in 18% a pedestrian crossing, and in 3% a vehicle (Tab. 16).

In Fig. 17, we show the top 10 nearest samples of the image region with the highest attention
value (first transformer stage). The first two rows show failure cases: the model correctly focuses
on the traffic light but although it is green, the model maps it in a region of the latent space
densely populated by red traffic lights. We also show a sample of correct driving, where the vehicle
accelerates as soon as the light turns green: retrieved images all depict green lights. This suggests
that what may appear as inertia might instead be confused with a failure of the backbone that
mistakenly ”hallucinates” halt cues.

4.7.4 Relevant Resources and Publications

Relevant publications:

• Cultrera, L., Becattini, F., Seidenari, L., Pala, P. and Del Bimbo, A., 2023. Addressing
Limitations of State-Aware Imitation Learning for Autonomous Driving. IEEE Transactions
on Intelligent Vehicles. [79].
Arxiv record: https://arxiv.org/abs/2310.20650.

4.7.5 Relevance to AI4Media use cases and media industry applications

The proposed method is connected to the task of automated cinematography in T5.2, for which
autonomous agents are required to safely explore and plan in order to automatically produce
new media. For these tasks it is important to develop specific methods to explain the behavior
and performance of such state-aware agents trained which are typically trained off-line and then
executed in non iid scenarios. Therefore this contribution is useful for UC3 (AI in Vision - High
quality Video Production and Content Automation) since it can be used for improving reliability
and explainability of autonomous state-aware agents.
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Figure 17. Top 10 nighbors for the highest scoring attention after a traffic light turns green. We show examples of
both successful crossing of the traffic light (framed in green) and failed due to red light ”hallucination” (framed in
red).
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5 AI Privacy (Task 4.4)

Data is the new oil. Never before, so much personal data has been collected and evaluated. Never
before, so many technologies have been available to analyze the data and combine this into new
insights.

All these advances in Artificial Intelligence (AI) have the important downside that breaching
individuals’ privacy at scale is also as easy as never before. The European legislation reacted
with the General Data Protection Regulation (GDPR) regulating what is allowed and what is
not. However, this suggests a trade off between AI performance and privacy. But instead of
drawing things black and white, making data privacy a natural enemy of progress, it is important
to take a look at technologies that allow the processing of personal data without sacrificing sensitive
information held by individuals and organizations. More often than not, cleverly anonymised data
is enough.

Contributions towards the AI Privacy task (T4.4) during the last year include work on (i)
examining the true privacy benefits of federated learning, with reference to the strong trust models
that are inherent to its present uses (Section 5.1), and (ii) securing federated learning using fully
homomorphic encryption (Section 5.2).

5.1 Re-evaluating the Privacy Benefit of Federated Learning

Contributing partner: IBM

5.1.1 Introduction

The attractiveness of Federated Learning (FL) from a privacy-preserving point of view is that it
allows for the training of machine learning models without the need for potentially sensitive data
to be stored remotely. Within the FL protocol, training data remains on premises; training occurs
locally, and only the updates to the model’s parameters are shared to a central authority. They
then aggregate all the updates from FL participants and disseminate the resulting model back to
the participants. This process then repeats until the model is judged to have converged.

We observe that a large amount of trust is required on the part of the FL participant. Specif-
ically, clients need to trust the central authority to carry out FL in an honest manner and not
to undertake in malicious attempts at private data recovery. Several works [80]–[89] have been
proposed that show that a malicious central authority can subvert the privacy benefit of FL by
performing attacks against FL that allow for data reconstruction.

In this work, we address the question:

Given the large amount of trust required for Federated Learning to be truly private,
why not just send the raw data to the central authority, and trust they’ll use it only to
train a model?

Centralised training with ephemeral data storage (i.e. stored only in RAM and deleted imme-
diately after use) appears to be, from a privacy point of view, identical to FL. Both methodologies
require the 3rd party orchestrating training to conduct itself in an honest manner.

In this work, we provide a discussion of three aspects of FL that can affect the level of privacy,
namely model architecture, the levels of trust involved, and FL system implementations, through
the lens of a real world FL system: the Next Word Prediction model present in Google’s Gboard
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virtual keyboard3. We argue that these aspects form the foundations of a possible roadmap of
future research into FL and privacy.

5.1.2 Model Architecture Affects Privacy

The idea of modifying the architecture of the model in order to aid data reconstruction has been
investigated by several works [90]–[94]. Subsequently, we look at how an innocuous change to
the architecture of Gboard’s next word prediction model can result in serious privacy violations;
allowing an adversary to reconstruct both the words and sentences typed by the user.

Gboard’s Architecture and Privacy Gboard is a virtual keyboard application available for
both Android and iOS devices. Importantly, Gboard uses FL to train its next word prediction
model. This is a word level long Short-Term Memory (LSTM) language model, predicting the
probability of the next word given what the user has already typed into the keyboard.

The final layer of language model architectures typically includes a fully connected layer (with
or without a bias) that converts the previous layer activations into a probablity distribution over
the words. The inclusion of the bias term b is a design choice. We find that when a bias term
is present, a trivial attack can be instantiated to recover the typed words by taking advantage
of a key property of the gradients of the final, fully connected layer. For an example sequence
(x(1), c1), (x(2), c2), ..., (x(T ), cT ) of T total timesteps, where x(t) ∈ RD is the current word em-

bedding, and ct is the next word, we have the total loss function L =
∑T

t=1 ℓt(x
(t), ct), where

ℓt = − log ez
(t,ct)∑V

j ez
(t,j) , is cross entropy loss at timestep t. The vector z(t) = h(t)W +b is the model’s

raw logit output at timestep t, a vector of length V . We use the notation z(t,i) to index the output
vector, and h(t) is the previous layer activation at timestep t. Then, we have the derivative of the
loss at timestep t w.r.t the i-th neuron bias bi,

∂L
∂bi

=
∑T

t=1
∂ℓt

∂z(t,i) . As shown in [95], the sign of
the derivative of the cross entropy loss w.r.t to the outputs is negative only if i = ct i.e. token
i was typed. Thus the index of the negative bias gradients reveals the typed words of the users
participating in the given FL round. This information is a privacy breach in and of itself, and
can be used to mount further attacks to reconstruct original sentences, exploiting the generative
nature of language models [96], [97].

Figure 18. Effect of model architecture on the performance of a word reconstruction attack against Gboard
updates (see later for further details). Simple changes like adding a bias to the final layer allow for perfect recall
of the typed words. Here, each client trains their local model using 64 sentences, a batch size of 32. We plot the
word recall results for a varying number of local epochs.

3https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin
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Figure 18 shows how a simple change such as removing the bias can drastically impact the
attack’s performance. In our experiments, each client trains their local LSTM model on sentences
taken from the stack exchange data dump [98] following the FederatedAveraging algorithm de-
scribed in [99]. The server, then mounts the attack described above on the difference between the
initial shared model and the final aggregate. This attack can also be performed on the gradients
of the final layer weight matrix W , as shown in [95]. However, they consider batch sizes of only 1
example. Crucially, the attack degrades when a greater number of clients is used in Secure Aggre-
gation (SA) when no bias is present, however, when a bias is present, SA appears to provide no
extra benefit in terms of privacy. Ultimately, architectural changes can both enhance and degrade
privacy. Gupta et al. [96] propose the use of pre trained word embeddings, eliminating the gradi-
ents for the final layer. Additionally, removing a bias from the final layer can help in preventing
this type of attack.

5.1.3 Verifiable FL Implementations

Production implementations of FL algorithms are embedded within larger software systems that
include telemetry, remote configuration, device authentication/attestation etc. It is, of course, the
privacy of the system as a whole that is of concern to users. We show below that poor implemen-
tations can easily allow de-anonymisation of devices and users as well as creating new potential
channels for attacks. Our GBoard measurement study also highlights that public documentation
and support for independent evaluation of developed apps by the FL community is important both
to verify privacy claims and to build confidence in users that apps employing FL are indeed safe
to use.

5.1.4 Vulnerabilities in the Gboard FL Implementation

In the subsequent sections, we provide examples of ways one can exploit the telemetry sent by
Gboard’s FL implementation to de-anonymise users and bypass aggregation. We monitor the traffic
sent by an android4 device, using a man-in-the-middle attack implemented using the mitmproxy

[100] tool suite.
Telemetry Allows for De-Anonymisation. In our experiments, we observe that the elig

ibility_eval_checkin_request messages regularly sent by the Google GBoard and Google
Messages apps on the handset to Google server federatedml-pa.googleapis.com include Google
SafetyNet5 device attestation data. The data sent can readily be used for device fingerprinting.
When the aim of Differential Privacy (DP) is to ensure that is difficult to determine whether a
user contributed to the data, the possibility de-anonymisation removes this guarantee, making it
trivial to establish whether a particular user did or did not contribute to model training. These
sort of side channel attacks can erode any privacy guarantees provided by FL hardened with SA
and DP.
Aggregation Bypass and Population Control. In the Google FL protocol, handsets can
execute an eligibility_eval plan and return the response. This includes an initial checkpoint
(model parameter values), a local dataset to use, and a TensorFlow graph the handset should
execute to update the checkpoint and generate a response. This response is not aggregated and is
sent by the handset to the server in subsequent FL checkin_request messages.

4Hardware and software used: Google Pixel 4a, Google Play Services ver. 22.09.20, Google Gboard ver. 12.4.06,
rooted using Magisk. Device Settings: following factory reset, settings are left at their defaults.

5See, e.g., https://developer.android.com/training/safetynet/attestation
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5.1.5 Reducing the Need for Trust

An honest FL participant may believe that they have preserved their privacy by using FL, yet
their data can be readily recovered and tied to them by the coordinating server. This is a direct
result of the inordinate amount of trust clients are asked to place in the FL system. Clients must
trust that the co-ordinating server is faithfully carrying out the FL protocol, clients must trust
that the other clients are genuine, clients must trust that the cryptography behind the Public Key
Infrastructure (PKI) in SA is not compromised, clients must trust the model architecture has not
been designed maliciously, etc.

When the FL system and the model being trained are both operated by a reputable organisation
then perhaps such trust can be justified. However, it requires strong governance and oversight of
that organisation and the avoidance of potential conflicts of interest (such as the organisation also
being a consumer of user data for analytics, advertising etc). When such a level of trust exists then
it also begs the question of why not simply send raw client data to the central server and trust
that it is stored ephemerally and only used for the purposes of model training in combination with
data from sufficiently many other users i.e., the added privacy value of FL seems rather small.

When multiple parties are involved in the FL system, such as with Federated-Learning-as-a-
Service (FLaaS) [101], establishing sufficient trust seems much harder. For example, suppose an
organisation operates FLaas for mobile apps. Then the models to be trained by FL on private
client data may be supplied and used by multiple different app developers with a broad geographic
spread and different regulatory regimes. As we already know from mobile app stores, users then
have only a limited ability to establish developer bona fides and even powerful gatekeepers such
as Google and Apple have difficulty regulating developer behaviour. Hence, even when the FLaas
provider is trusted, the overall FLaas system need not be trustworthy.

We note, however, that some degree of trust is likely to be asked of FL users. Trying to ensure
user privacy when the FL service is actively malicious is probably a hopeless endeavour – the server
may insert synthetic devices, manipulate model weights, architecture, compromise the PKI, and
training process actively during training and it seems hard to defend against all of these while still
providing a useful FL service. The need is to greatly reduce the level of trust asked of users, and
thereby provide a better privacy risk-benefit trade-off to them.

5.1.6 Relevant Resources and Publications

Relevant publications:

• Re-evaluating the Privacy Benefit of Federating Learning, Mohamed Suliman, Douglas Leith,
Anisa Halimi. 1st Workshop on Advancements in Federated Learning at ECML-PKDD
2023 [102].

Relevant software and/or external resources:

• The implementation of our work can be found in https://github.com/namilus/nwp-fed

learning.

5.1.7 Relevance to AI4Media use cases and media industry applications

Federated Learning (FL) has been proposed as a way to do collaborative learning while preserving
privacy. What this means for media companies who are wary of sharing their data with 3rd parties
in order to train a model is that they may do so without fear of potential privacy or copyright
infringement, as their data remains on premises. We have seen that, in practice, FL requires the
3rd parties to place a large amount of trust in one another in order to fully realise the benefits
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of training models in this way. Our work addresses this often overlooked aspect of truly private
FL, and encourages media companies who are thinking of participating in FL to carefully consider
these questions of trust. Do they trust the design of the model and training objective? Do they
trust the FL implementation is free from bugs? How can they reduce the required level of trust?
These questions are vital to any real world instantiation of FL.

5.2 Securing Federated Learning for Audio Event Classification with
Fully Homomorphic Encryption

Contributing partner: FhG-IDMT

We introduce a library designed to enhance Federated Learning with additional privacy guaran-
tees by applying Fully Homomorphic Encryption to the model aggregation stage, thereby prevent-
ing the aggregator from accessing the unencrypted model parameters of the training participants.

5.2.1 Federated Learning

Federated learning is a machine learning approach where several models are trained across multiple
end devices (clients) and are aggregated by a server into a global model. The aggregated model
is then sent back to every client. Instead of exchanging training data, only the model parameters
are exchanged. This eliminates the need to store large amounts of data in a single location and
lets data holders retain control of said data. It was introduced in 2016 in [99] and has since been
applied to variety of applications, including the field of audio classification.

The Federated Learning (FL) approach itself does not specify a particular aggregation method.
In this work, we analyze the Federated Averaging (FedAvg) and the Federated Proximal (Fed-
Prox). The FedAvg algorithm proposed in [99] computes a weighted average of individual model
parameters to produce a final global model.

The local model parameters are weighted with respect to the client’s proportion of the data to
ensure that the local model’s impact is proportional to the amount of information it contributes
to the training process. However, the final aggregated model might not perform as well for clients
that contribute comparatively little data.

5.2.2 FLCrypt Experiments

FLCrypt is our FL framework, which we used for the experiments described below. It is largely
based on open-source libraries. We used a custom version of Flower [103] for the FL setup and
integrated the CKKS functionality of the TenSEAL library to encrypt client model updates before
transmitting them to the server for aggregation. Moreover, we utilized the Hydra framework [104]
to manage configurations for our experiments.

For our customized Flower version, we added an extra payload field to the instructions and
response classes for the client and server to make it easier to send the model parameters back and
forth. For the encryption of model parameters, we utilize the CKKSVector class of TenSEAL.
For this, the model parameters have to be flattened, meaning that the original shape has to be
restored for the model update. This is done to decrease the size of the encrypted model. The FL
functionality is provided by Flower with the only further changes to the framework are adjustments
to the computations of the server-side aggregation in order to handle the encrypted values.

The experiments were all conducted using FLCrypt on the metal ball data set described by [105].
The data set contains audio recordings of metal balls rolling down a steel slide as a part of a bigger
track. It comprises three classes that correspond to different surface coatings of the metal balls,
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one of which is scratched. The audio was recorded using a low-cost microphone and the steel slide
was surrounded with a casing to dampen background noise. This data set was originally created to
improve machine learning applications for industrial sound analysis as there is a scarcity of usable
data in that field. In this context, the data set can be used to develop industrial acoustic quality
control applications based on material conditions with emphasis on fault detection. According to
the original paper, the dataset is relatively easy for the given classification task. A Deep Neural
Network (DNN) baseline accuracy close to 99 % was reported by authors. Due to its simplicity, it
provides a realistic initial target for Internet of Things (IoT) applications with limited computation
power of the edge devices. We use it as a first step in showcasing the effectiveness of applying
Homomorphic Encryption (HE) to audio event detection with the possibility of extending our
approach to more complex use cases in the future.

For our FL experiments, we split the original balanced data set into three separate client
partitions, consisting of 450 training and 57 test samples each. We ensure that each partition
comprises a balanced number of examples corresponding to only two of the three classes, with the
missing one different for each partition. The test sets were all evenly split into 19 samples from
each of the three classes.

The FL runs with HE consistently show a similar accuracy as the unencrypted baseline. The
FedAvg strategy as well FedProx get high accuracies of over 99% on the local client test sets.
The average training loss and accuracy across three runs can be seen in Figure 19a. Compared
to each other, the accuracies of FedAvg and FedProx are the same but model converges much
quicker for FedProx as shown in Figure 19b. Overall, the unencrypted FedAvg baseline model
routinely achieves an accuracy of 1 shown in Figure 19c. Therefore, the drop in performance when
using HE is marginal. This is in line with previous applications of HE to FL in other use cases
of medical image classification [106] or network traffic prediction [107]. The approach in [108]
also achieves an accuracy of over 99% for identifying malicious traffic in an IoT network. This
indicates a general viability of using HE in the context of FL independent from the specific use
case. Furthermore, [106] used an exact HE scheme which does not showcase a notable improvement
in terms of accuracy over our use of the CKKS scheme. This indicates that the approximate nature
of CKKS does not hurt model performance in practical applications while offering more flexibility
regarding its use.

The difference in runtime performance between the HE and the unencrypted setup is significant.
Baseline total execution time is 27 seconds on average across three runs of FL. After incorporating
HE into the training, the overall runtime increases to around 48 seconds for both strategies. A
more detailed runtime breakdown is provided in Table 17. For the individual processes, the values
are given as the average execution time of that process across 20 rounds of FL training. This
includes all clients and the server. Plaintext serialization and deserialization in the baseline setup
are carried out by Flower library and are not described here.

It can be observed that the runtime increase due to the encryption is not symmetric. The
encryption and serialization process take significantly longer than their counterparts. There is also
a large increase in the server’s aggregation time. In general, it can be observed that the encryption
time is the biggest factor in the overall time increase on the client side. On the server side, the
deserialization takes longer than serialization although the reason for this is unclear.

In [106], the run time for 128-bit security and three clients was around 5, 000 seconds using the
BFV scheme of SEAL which is significantly higher than our result. However, since the size of the
model was not specified, it is unclear how much of that difference is due to the different schemes.
In [107], the authors found a runtime increase from around 0.07 seconds for FL with plaintext
to around 15.5 seconds when using the CKKS implementation in TenSEAL for a model with two
layers with 400 neurons respectively. Unfortunately, the number of clients is not specified. Still,
compared to our model with 2, 745 parameters this roughly scales with respect to the number of
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(a) Accuracy and loss of global model for the three clients
using HE for FedAvg.

(b) Accuracy and loss of global model for the three clients
using HE for FedProx.

(c) Baseline accuracy and loss for FedAvg.

Table 17. Comparison of runtime for different processes between encrypted and unencrypted runs.

Process Time unencrypted Time encrypted

(sec) (sec)

Encryption - 0.31

Decryption - 0.031

Serialization - 0.07

Deserialization - 0.02

Server aggregation 0.00066 0.07

Complete run 27 48
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Table 18. Data size in relation to number of parameters.

Input array Size original Size encrypted number of parameters Ratio

(KB) (KB)

(384, 3) 9.3 301 1152 32.3

(768, 3) 18.6 301 2304 16.2

(1536, 3) 37 601 4608 16.2

(3072, 3) 74 902 9216 12.2

(6144, 3) 148 1504 18432 10.2

(12288, 3) 295 2708 36864 9.2

(24576, 3) 590 5414 73728 9.2

(49152, 3) 1180 10828 147456 9.2

(98304, 3) 2359 21658 294912 9.2

Table 19. Projected size of well-known neural networks.

Input array Size original Size encrypted number of parameters

(MB) (MB) (Million)

ResNet50 98 901 25.6

ResNet101 171 1573 44.7

ResNet152 232 2134 60.4

VGG16 528 4858 138.4

VGG19 549 5051 143.7

ConvNeXtSmall 192 1766 50.2

ConvNeXtBase 339 3110 88.5

ConvNeXtLarge 755 6946 197.7

MobileNet 16 147 4.3

NASNetMobile 23 212 5.3

EfficientNetB0 29 267 5.3

EfficientNetB7 256 2355 66.7

model parameters.
To analyze the development of the encrypted model size, we examine a randomly initialized

(768, 3) array of model parameters which corresponds to the largest layer of our model with entries
ranging from zero to one. Unencrypted, it has a size of 18.6 KB. After encryption and serialization,
its size grows to 301 KB. This marks an increase compared to the original array size by a factor
of 32.2. For larger number of model parameters, the size increase settles on a ratio of 9.2. This
matches the linear runtime increase in relation to the number of model parameters found in [109].
The encryption increases the size of the model by an order of magnitude. In total, we obtain an
encrypted size of 4.2 MB for our model compared to an original size of 12.6 KB. This is because
every encrypted model weight has a size of at least 0.3 MB, leading to a disproportionate increase
in size for small models.

An overview of the ciphertext size for different numbers of parameters can be found in Table 18.
From this, we also extrapolate the encrypted size of a selection of well-known neural networks shown
in Table 19.

5.2.3 Conclusion

We have successfully incorporated HE into FL for audio event classification for two different aggre-
gation strategies and showed the effectiveness of our approach. Additionally, we have shown that
FedProx retains advantages over FedAvg under HE. We have identified key reasons for a substantial
runtime increase when using HE for FL that impede its scalability. We identified the number of
model parameters as the main factor that determines the size of the encrypted data and analyzed
how the encryption time develops in relation to it. This already showcases the utility of HE in
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certain settings, especially in our use case of sound classification where model size is moderate.
While our experiments lead us to be optimistic, more work needs to be done analyze and improve
the viability for HE in other practical settings since the linear increase relative to the number of
model parameters might become infeasible for large model sizes, especially due to the rise of large-
scale machine learning and the increasing prevalence of edge devices. Furthermore, the possibility
of side-channel attacks needs to be further investigated and prevented before deployment in real
scenarios.

5.2.4 Relevant Resources and Publications

Relevant publications:

• Fuhrmeister et al.: FLCrypt – Secure Federated Learning for Audio Event Classification using
Homomorphic Encryption (accpepted for IEEE International Symposium on the Internet of
Sounds 2024)

Relevant software and/or external resources:

• You can request evaluation access to FLCrypt by contacting us via https://www.idmt.fra

unhofer.de/en/contact.html.

5.2.5 Relevance to AI4Media use cases and media industry applications

While privacy is a feature of AI applications that only a few use cases will go without, the proposed
approach deals with privacy within Federated Learning systems. Regarding AI4Media, there is no
Use Case directly dealing with Federated Learning. Regarding the broader media industry, the
outlook of not having to share private data (being it usage, user or content data), and therefore
avoiding all the practical hassles of data exchange (usage rights, data exchange contracts, data
privacy laws, . . .) is so promising, that there will be real industry applications for Federated
Learning. On that premise, applications that improve the privacy of Federated Learning are worth
researching and will be relevant in the future as they are already in non-media domains such as
medicine or industrial applications. The recent break-through moment of LLMs and generative
models will also yield new use cases, where a decentralized, federated, training without giving data
away is required.
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6 AI Fairness (Task 4.5)

As machine learning models are fast becoming critical components of every decision making process
essential for our society (mortgage lending, prison sentencing etc), it becomes crucial to guarantee
that these models do not privilege specific groups or individuals at the disadvantage of others.
These models are constructed upon the statistical analysis and properties of training data, which
may contain biases due to existing prejudice and/or inaccurate sampling. Hence, if left unchecked
unwanted biases can emerge from these models with significant societal consequences.

AI Fairness is typically evaluated either on a group or individual level. When addressing group
fairness, a population is divided into groups based on a set of protected attributes (gender, ethnicity,
etc.). A fair ML model within this context is a model which seeks some statistical measure to be
equal across such groups. On the other hand, when addressing individual fairness, ML models seek
to treat individuals similarly regardless of their protected attributes.

Algorithms and metrics designed to address biases in ML models can operate on the training
data itself as well as on the trained model. Moreover, they can also occur at various points in
the machine learning lifecycle whether at a pre-processing, in-processing, or post-processing phase.
T4.5 seeks to apply AI Fairness algorithms and metrics at group and individual levels and at
various points in the AI lifecycle.

Contributions towards the AI Fairness task (T4.5) include work on (i) ensemble post-processing
of LLMs to improve fairness (Section 6.1), and (ii) bias detection in text-to-image generative models
(Section 6.2).

6.1 FairSISA: Ensemble post-processing to improve fairness of unlearn-
ing in LLMs

Contributing partner: IBM

6.1.1 Overview

Training Large Language Models (LLMs) is a costly endeavour in terms of time and computational
resources. The large amount of training data used during the unsupervised pre-training phase
makes it difficult to verify all data and, unfortunately, undesirable data may be ingested during
training. Re-training from scratch is impractical and has led to the creation of the unlearning
discipline where models are modified to “unlearn” undesirable information without retraining.
However, any modification can alter the behaviour of LLMs, especially on key dimensions such as
fairness. This work examines the interplay between unlearning and fairness for LLMs.

6.1.2 Preliminaries

Sharded, Isolated, Sliced, and Aggregated (SISA) Training: SISA [110] is an exact un-
learning method that reduces the computational overhead associated with retraining from scratch.
The SISA framework randomly divides the training dataset D into S disjoint shards D1, . . . ,DS of
approximately equal size. During training, for each shard Dk, a constituent model, denoted as Mk,
is trained. At inference time, S individual predictions from the constituent models are aggregated,
typically, through majority voting. When one or more data samples need to be unlearned, only
the constituent models corresponding to the shards that contain the data sample(s) are retrained.
Fairness for Toxic Text Classification: We consider the task of toxic text classification and
measure model bias in terms of group fairness [111] by following the setup in [112]. In particular,
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we consider certain topics, such as religion or race, as sensitive. If a text sample mentions one of
the sensitive topics (e.g., religion), we say that it belongs to a sensitive group; otherwise, to the
complementary group (no religion). While there are several notions of group fairness, e.g., demo-
graphic parity (see [113], [114]), we consider the notion of Equalized Odds (EO) [115]. Essentially,
equalized odds requires that the model output conditioned on the true label to be independent
of the sensitive attribute. More formally, let Y denote the true label (e.g., toxic text), X denote
the features, and A denote the sensitive attribute (e.g., religion or race). Let Ŷ = fw(X,A) be
the model output, denoted as the predictor. Equalized odds requires that the model predictor Ŷ
has equal true positive rates and false positive rates across the privileged and unprivileged groups,
satisfying the following constraint:

Pr
(
Ŷ = 1 | A = 0, Y = y

)
= Pr

(
Ŷ = 1 | A = 1, Y = y

)
, y ∈ {0, 1}. (13)

Baseline Post-Processing Method for Fairness: To improve the model fairness without
retraining, we explore the use of post-processing methods. We build on the post-processing method
proposed in [115], which we denote as HPS (using the last names of the authors).

The HPS method constructs a derived predictor Ỹ , which only depends on the predicted label
Ŷ and the sensitive attribute A, and satisfies equalized odds while minimizing classification loss.
Specifically, let ℓ : {0, 1}2 → R denote a loss function that takes a pair of labels and returns a real

number. Let us define pya = Pr
(
Ỹ = 1 | Ŷ = y,A = a

)
. Then, the HPS method constructs Ỹ by

solving the following optimization problem:

min
pyỹ

E
[
ℓ(Ỹ , Y )

]
s.t. Pr

(
Ỹ = 1 | A = 0, Y = 0

)
= Pr

(
Ỹ = 1 | A = 1, Y = 0

)
,

Pr
(
Ỹ = 1 | A = 0, Y = 1

)
= Pr

(
Ỹ = 1 | A = 1, Y = 1

)
,

0 ≤ pyỹ ≤ 1.

We denote the derived predictor obtained by solving the above optimization problem as HPS(Ŷ ).
Next, we adapt the HPS method to design post-processing methods for the ensemble of models
produced by SISA.

6.1.3 FairSISA: Ensemble Post-Processing for SISA

Let Ŷ1, Ŷ2, . . . , ŶS denote the predictions from the SISA constituent models. We consider three
ways to perform post-processing for SISA.
Aggregate then post-process: The most natural way to apply post-processing to SISA is
after aggregating the predictions from the constituent models. We focus on the majority voting
aggregation rule since it is demonstrated to perform well [110]. We denote majority voting as

Maj
(
Ŷ1, Ŷ2, . . . , ŶS

)
= arg max

y∈{0,1}
ny, where ny =

∣∣∣{i ∈ [S] : Ŷi = y}
∣∣∣ . (14)

Then, the derived predictor obtained by first aggregating and then post-processing can be defined

as HPS
(
Maj

(
Ŷ1, Ŷ2, . . . , ŶS

))
.

Post-process then aggregate: Another natural way to apply post-processing to SISA is to first
post-process the label from each constituent model and then aggregate the post-processed predic-
tions. Again, focusing on the majority voting aggregation rule, the derived predictor obtained by

first post-processing and then aggregating can be defined as Maj
(
HPS(Ŷ1),HPS(Ŷ2), . . . ,HPS(ŶS)

)
.

Final toolset in robust, explainable, fair, and privacy-preserving AI 65 of 87



Ensemble post-processing: Instead of aggregating the predictions before or after post-processing
with a specific aggregation rule (such as majority voting), we design a post-processing method that
can inherently aggregate the predictions. In particular, we generalize the HPS optimization prob-
lem to handle ensemble predictions. Recall that ℓ : {0, 1}2 → R denotes a loss function that takes
a pair of labels and returns a real number. For a length-S binary vector ȳ ∈ {0, 1}S and a ∈ {0, 1},

let us define pȳa = Pr
(
Ỹ = 1 | Ŷ1 = ȳ1, Ŷ2 = ȳ2, . . . , ŶS = ȳS , A = a

)
. We propose an ensemble

post-processing method that constructs Ỹ by solving the following optimization problem:

min
pyỹ

E
[
ℓ(Ỹ , Y )

]
s.t. Pr

(
Ỹ = 1 | A = 0, Y = 0

)
= Pr

(
Ỹ = 1 | A = 1, Y = 0

)
,

Pr
(
Ỹ = 1 | A = 0, Y = 1

)
= Pr

(
Ỹ = 1 | A = 1, Y = 1

)
,

0 ≤ pyỹ ≤ 1.

6.1.4 Evaluation

We perform an empirical evaluation using two state-of-the-art models (BERT, DistilGPT2) on a
representative dataset (HateXplain). HateXplain [116] is a benchmark hate speech dataset that
consists of 20K posts from Twitter and Gab. The dataset has fine-grained annotations for religion,
race, and gender. We use coarse-grained groups as sensitive groups (e.g., mention of any religion),
as opposed to the finer-grained annotations (e.g., Hindu), similar to [112]. This is because, for
HateXplain, most subgroups account for significantly less proportion of the data, and there is
considerable overlap between subgroups. We focus on race as a sensitive attribute. We combine
the annotations for offensive and hate speech into one class of toxic text, similar to [112].

Figure 20. Accuracy-fairness trade-off for SISA framework.

First, we investigate how SISA training procedure influences the performance-fairness rela-
tionship by considering S = 1, 3, 5, and 7 shards. Note that S = 1 shard corresponds to the
conventional single model fine-tuning paradigm. In Figure 20, we demonstrate the performance as
measured by accuracy on the y-axis (higher accuracy is better) and the group fairness as measured
by equalized odds (EO) on the x-axis (lower EO is better). We observe that, for both models,
the accuracy decreases with the number of shards, which is consistent with the observation in
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[110] for image-domain data. In contrast, EO values vary widely for different number of shards.
Importantly, the SISA framework can indeed degrade the fairness (with higher EO values) for both
models. For instance, for the DistilGPT2 model, SISA results in worse fairness (higher EO values)
than the case of a conventional single model. These results strongly suggest that it is important
to investigate bias mitigation methods for the SISA framework.

(a) BERT (b) DistilGPT2

Figure 21. Comparison of post-processing methods for SISA.

Next, we compare the three post-processing methods for bias mitigation from Section 6.1.3
for the SISA framework. In Figure 21, we plot accuracy vs. equalized odds (EO). Amongst the
three methods, Post-process then Aggregate method generally achieves the best trade-off between
the accuracy and EO, whereas Aggregate then Post-Process method generally achieves the worst
trade-off between the accuracy and EO. The Ensemble Post-Process method, in general, achieves
the highest accuracy for a moderate EO, which is consistent with the theory that the method is
optimal in terms of accuracy (the objective function of the optimization problem (6.1.3)).

6.1.5 Relevant Resources and Publications

Relevant publications:

• S. Kadhe, A. Halimi, A. Rawat, and N. Baracaldo. “FairSISA: Ensemble Post-Processing to
Improve Fairness of Unlearning in LLMs”, Socially Responsible Language Modelling Research
workshop in conjunction with NeurIPS (SoLaR), 2023 [117].
Zenodo record: https://zenodo.org/records/11581556.

6.1.6 Relevance to AI4Media use cases and media industry applications

Our approach is relevant to various media industry use cases given its focus on removing sensitive
or undesirable information via unlearning while ensuring that the model is still fair. This approach
can help journalists and researchers have access to LLMs that generate high-quality content while
ensuring that all subjects are treated fairly. Unlearning leads to better aligned models and improved
performance by removing intentionally malicious, harmful or toxic data, or an undesirable subset
of data, which is crucial in content moderation.
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6.2 Open-set Bias Detection in Generative Models

Contributing partner: UNITN

6.2.1 Introduction

Text-to-Image (T2I) generation has become increasingly popular, thanks to its intuitive condition-
ing and the high quality and fidelity of the generated content [118]–[122]. Several works extended
the base T2I model, unlocking additional use cases, including personalization [123], [124], image
editing [125]–[128], and various forms of conditioning [129]–[131]. This rapid progress urges to
investigate other key aspects beyond image quality improvements, such as their fairness and po-
tential bias perpetration [132]–[134]. It is widely acknowledged that deep learning models learn
the underlying biases present in their training sets [135]–[137], and generative models are no ex-
ception [132]–[134], [138].

OpenBias (ours)

Closed-set

"A person using
a laptop"

Pre-defined biases

Bias proposals

"A person using
a laptop"

Bias assessment

Male
...

Apple

Open-set biases

Gender
...

Laptop brand

Bias specific
Classifier Male

Figure 22. OpenBias discovers biases in T2I models within an open-set scenario. In contrast to previous
works [132], [133], [139], our pipeline does not require a predefined list of biases but proposes a set of novel
domain-specific biases.

Ethical topics such as fairness and biases have seen many definitions and frameworks [113];
defining them comprehensively poses a challenge, as interpretations vary and are subjective to the
individual user. Following previous works [133], [140], a model is considered unbiased regarding a
specific concept if, given a context t that is agnostic to class distinctions, the possible classes c ∈ C

exhibit a uniform distribution. In practice, for a T2I model, this reflects to the tendency of the
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generator to produce content of a certain class c (e.g., “man”), given a textual prompt t that does
not specify the intended class (e.g., “A picture of a doctor”).

Several works studied bias mitigation in pre-trained models, by introducing training-related
methods [141]–[144] or using data augmentation techniques [145], [146]. Nevertheless, a notable
limitation of these approaches is their dependence on a predefined set of biases, such as gender,
age, and race [133], [134], as well as specific face attributes [132]. While these represent perhaps the
most sensitive biases, we argue that there could be biases that remain undiscovered and unstudied.

Considering the example in Fig. 22, the prompt “A person using a laptop” does not specify the
person’s appearance and neither the specific laptop nor the scenario. While closed-set pipelines
can detect well-known biases (e.g., gender, race), the T2I model may exhibit biases also for other
elements (e.g., laptop brand, office). Thus, an open research question is: Can we identify arbitrary
biases present in T2I models given only prompts and no pre-specified classes? This is challenging
as collecting annotated data for all potential biases is prohibitive.

Bias Proposals

Person gender
Train color

Vehicle Type
...

Person Race

Classes 
Captions Questions

Person Race

What is the race of the person?
...

What is the race of the person throwing a Frisbee?

Target
Generative Model

G

Synthetic Images

VQA

Class 1 Class 2 ... Class 

Bias 

A chef in a kitchen standing next to jars
...

    A kid on a beach throwing a Frisbee

    

Bias Assessment

Ranking

...

LLM

Caucasian
African American

...
Hispanic

Bias Quantification

    

A chef in a kitchen standing next to jars
A person that is posing by a plane

A large round cake rests on a glass plate
...

A baby eating in a baby seat
A boy with a book sitting on a toilet

A man is playing tennis on a tennis court

            

...

Figure 23. OpenBias pipeline. Starting with a dataset of real textual captions (T), we leverage a Large Language
Model (LLM) to build a knowledge base B of possible biases that may occur during the image generation process.
In the second stage, synthesized images are generated using the target generative model conditioned on captions
where a potential bias has been identified. Finally, the biases are assessed and quantified by querying a VQA
model with caption-specific questions extracted during the bias proposal phase.

Train color

“A train zips down the railway in the
sun”

Laptop brand

“A photo of a person on a laptop in a
coffee shop”

Horse breed

“A cop riding a horse through a city
neighborhood”

Figure 24. Novel biases discovered on Stable Diffusion XL [122] by OpenBias.
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6.2.2 Methodology

Toward this goal, we propose OpenBias (see Figure 23), the first pipeline that operates in an open-
set scenario, enabling to identify, recognize, and quantify biases in a specific T2I model without
constraints (or data collection) for a specific predefined set. Specifically, we exploit the multi-modal
nature of T2I models and create a knowledge base of possible biases given a collection of target
textual captions, by querying a Large Language Model (LLM). In this way, we discover specific
biases for the given captions. Next, we need to recognize whether these biases are actually present
in the images. For this step, we leverage available Visual Question Answering (VQA) models,
directly using them to assess the bias presence. By doing this, we overcome the limitation of using
attributes-specific classifiers as done in previous works [132], [133], [147], which is not efficient nor
feasible in an open-set scenario. Our pipeline is modular and flexible, allowing for the seamless
replacement of each component with newer or domain-specific versions as they become available.
Moreover, we treat the generative model as a black box, querying it with specific prompts to mimic
end-user interactions (i.e., without control over training data and algorithm). We test OpenBias
on variants of Stable Diffusion [121], [122] showing human-agreement, model-level comparisons,
and the discovery of novel biases.

6.2.3 Experiments

6.2.3.1 Datasets. We study the bias in two multimodal datasets Flickr 30k [148] and
COCO [149]. Flickr30k [148] comprises 30K images with 5 caption per image, depicting images
in the wild. Similarly, COCO [149] is a large-scale dataset containing a diverse range of images
that capture everyday scenes and objects in complex contexts. We filter this dataset, creating a
subset of images whose caption contains a single person. This procedure results in roughly 123K
captions. Our choice is motivated by building a large subset of captions specifically tied to people.
This focus on the person-domain is crucial as it represents one of the most sensitive scenarios
for exploring bias-related settings. Nevertheless, it is worth noting that the biases we discover
within this context extend beyond person-related biases to include objects, animals, and actions
associated with people.

Child gender

“Toddler in a baseball cap on a
wooden bench”

Child race

“Small child hurrying toward a bus on
a dirt road”

Person attire

“The lady is sitting on the bench
holding her handbag”

Figure 25. Novel person-related biases identified on Stable Diffusion XL [122] by OpenBias.
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Model
Gender Age Race

Acc. F1 Acc. F1 Acc. F1

CLIP-L [151] 91.43 75.46 58.96 45.77 36.02 33.60

OFA-Large [152] 93.03 83.07 53.79 41.72 24.61 21.22

mPLUG-Large [153] 93.03 82.81 61.37 52.74 21.46 23.26

BLIP-Large [154] 92.23 82.18 48.61 31.29 36.22 35.52

Llava1.5-7B [155], [156] 92.03 82.33 66.54 62.16 55.71 42.80

Llava1.5-13B [155], [156] 92.83 83.21 72.27 70.00 55.91 44.33

Table 20. VQA evaluation on the generated images using COCO captions. We highlight in gray the chosen

default VQA model.

6.2.3.2 Quantitative Results Our open-set setting harnesses the zero-shot performance of
each component. As in [133], we evaluate OpenBias using FairFace [150], a well-established classifier
fairly trained, as the ground truth on gender, age, and race.

Model
Flickr 30k [148] COCO [149]

gender age race gender age race

Real 0 0.032 0.030 0 0.041 0.028

SD-1.5 [121] 0.072 0.032 0.052 0.075 0.028 0.092

SD-2 [121] 0.036 0.069 0.047 0.060 0.045 0.105

SD-XL [122] 0.006 0.028 0.180 0.002 0.027 0.184

Table 21. KL divergence (↓) computed over the predictions of Llava1.5-13B and FairFace on generated and real
images.

Agreement with FairFace We compare the predictions of multiple SoTA Visual Question An-
swering models with FairFace. Firstly, we assess the zero-shot performance of the VQA models
on synthetic images, performing our comparisons using images generated by SD XL. The evalua-
tion involves assessing accuracy and F1 scores, which are computed against FairFace predictions
treated as the ground truth. The results are reported in Table 20. Llava1.5-13B emerges as the
top-performing model across different tasks, consequently, we employ it as our default VQA model.

Next, we evaluate the agreement between Llava and FairFace [150] on different scenarios. Specif-
ically, we run the two models on real and synthetic images generated with Stable Diffusion 1.5,
2, and XL. We measure the agreement between the two as the Kullback–Leibler (KL) Divergence
between the probability distributions obtained using the predictions of the respective model. We
report the results in Table 21. We can observe that the models are highly aligned, obtaining low
KL scores, proving the VQA model’s robustness in both generative and real settings.

6.2.3.3 Qualitative Results We show examples of biases discovered by OpenBias on Stable
Diffusion XL. We present the results in a context-aware fashion and visualize images generated
from the same caption where our pipeline identifies a bias. We organize the results in three sets
and present unexplored biases on objects and animals, novel biases associated with persons, and
well-known social biases. We highlight biases discovered on objects and animals in Fig. 24. For
example, the model tends to generate “yellow” trains or “quarter horses” even if not specified in
the caption. Furthermore, the model generates laptops featuring a distinct “Apple” logo, showing
a bias toward the brand.

Next, we display novel biases related to persons discovered by OpenBias. For instance, we
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Person gender

“A traffic officer leaning on a no turn
sign”

Person race

“A man riding an elephant into some
water of a creek”

Person age

“A woman riding a horse in front of a
car next to a fence”

Figure 26. Person-related biases found on Stable Diffusion XL [122] by OpenBias.

unveil unexplored biases such as the “person attire”, with the model often generating people in a
formal outfit rather than more casual ones. Furthermore, we specifically study “child gender” and
“child race” diverging from the typical examination centered on adults. For example, in Fig. 25
second column, we observe that the generative model links a black child with an economically
disadvantaged environment described in the caption as “a dirt road”. The association between
racial identity and socioeconomic status perpetuates harmful stereotypes and proves the need to
consider novel biases within bias mitigation frameworks. Lastly, we show qualitative results on
the well-studied and sensitive biases of “person gender”, “race”, and “age”. In the first column of
Fig. 26, Stable Diffusion XL exclusively generates “male” officers, despite the presence of a gender-
neutral job title. Moreover, it explicitly depicts a “woman” labeled as “middle-aged” when engaged
in horseback riding. Finally, we observe a “race” bias, with depictions of solely black individuals
for “a man riding an elephant”. This context-aware approach ensures a thorough comprehension
of emerging biases in both novel and socially significant contexts. These results emphasize the
necessity for more inclusive open-set bias detection frameworks.

6.2.4 Conclusion

The main contributions of this work are as follows:

• To the best of our knowledge, we are the first to study the problem of open-set bias detection
at large scale without relying on a predefined list of biases. Our method discovers novel
biases that have never been studied before.

• We propose OpenBias, a modular pipeline, that, given a list of prompts, leverages a Large
Language Model to extract a knowledge base of possible biases, and a Vision Question Answer
model to recognize and quantify them.

• We test our pipeline on multiple text-to-image generative models: Stable Diffusion XL, 1.5,
2 [121], [122]. We assess our pipeline showing its agreement with closed-set classifier-based
methods and with human judgement.
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6.2.5 Relevant publications

• M. D’Incà, E. Peruzzo, M. Mancini, D. Xu, V. Goel, X. Xu, Z. Wang, H. Shi, and N. Sebe,
OpenBias: Open-set Bias Detection in Generative Models, CVPR 2024 [157]
Zenodo record: https://zenodo.org/records/11303876

• M. D’Incà, C. Tzelepis, Y. Patras, and N. Sebe, Improving Fairness using Vision-Language
Driven Image Augmentation, WACV 2024 [146]
Zenodo record: https://zenodo.org/records/11303771

6.2.6 Relevant software/datasets/other outcomes

The Pytorch implementations can be found in:

• https://github.com/Picsart-AI-Research/OpenBias

• https://github.com/Moreno98/Vision-Language-Bias-Control

6.2.7 Relevance to AI4Media use cases and media industry applications

OpenBias could be relevant to UC1 as it tackles disinformation detection and discovery of new
biases. The results of our evaluation would also be relevant to UC4 “AI for Social Sciences and
Humanities” as the impact of deploying an AI system “in-the-wild” without concern for fair treat-
ment of subjects, may introduce biases and scenarios in which certain people are treated unfairly
or are discriminated against. As a result, this work is also relevant to UC2 “AI for News”, as a
tool which can help journalists discern authentic content from deepfakes, must also ideally be fair
and unbiased, which this work strives to achieve.
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7 Organisation of events for Trustworthy AI

In addition to the scientific and technical work of WP4, the following events on different aspects
of Trustworthy AI were organised by the consortium:

1. Theme Development Workshop (TDW) on Trusted AI – The Future of Creating
Ethical & Responsible AI Systems,6 an online workshop co-organised with the ICT48+3
NoEs on 13 September 2023, which included the following sessions organised by AI4Media
partners:

• AI explainability for vision tasks. This session discussed the present and future of
AI explainability for visual data classifiers and other vision tasks, how explanations can
be presented to the users, and what we can expect to understand from these explana-
tions.

• Rigorous vs empirical AI privacy. This session discussed the relevance of epsilon
as a definitive measure of privacy loss in the context of complex algorithms implement-
ing differential privacy and the proliferation of empirical measurements of privacy via
attacks.

• AI Ethics: from principles to practice. Putting “ethical” and“responsible”
AI into action. The session focused on operationalizing the AI ethical guidelines
and principles and reflected on the shifting approach from high-level ethical principles
towards legally binding obligations (e.g. in the AI Act) and practical tools (e.g. the
Human Rights Impact Assessments

• Ethical considerations and new challenges of Generative AI. This session ex-
plored the risks and challenges raised by Generative AI from an interdisciplinary per-
spective (legal, ethical, societal, technical, and cybersecurity).

A report summarising the findings of the different sessions was produced.7

2. Assessing and Enhancing Fairness in AI Systems,8 a session in the 4th AI Community
Workshop 2024 & AIDA Symposium,9 in Thessaloniki, Greece on 26 June 2024. The session
focused on the following themes: (1) interdisciplinary initiatives that seek to make AI fairer,
such as initiatives to reduce dataset biases by design, (2) effects of biases in high-impact AI
applications (face recognition, recommenders, automatic scoring, media analysis), and (3)
representational biases in large multimodal and language models. The session recording is
available in the AI4Media YouTube channel.10

6https://www.vision4ai.eu/tdw-trusted-ai/
7https://www.vision4ai.eu/wp-content/uploads/2024/04/Full-Report-on-the-key-findings-from-the-T

heme-Development-Workshop-Trusted-AI_-The-Future-of-Creating-Ethical-Responsible-AI-Systems_-1.pdf
8https://www.vision4ai.eu/community-workshop-2024/#pw5
9https://www.vision4ai.eu/community-workshop-2024/

10https://www.youtube.com/watch?v=Of78-Q26P_w&ab_channel=AI4MediaProject
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8 Conclusions

This deliverable is the concluding piece of technical work towards Trustworthy AI for the AI4Media
European Horizon project. The work herein adds to the already considerable volume and quality
of work presented previously as part of Deliverables 4.1 and 4.5. In total, some 50 pieces of work
have been presented to this end, with contributions from over ten partners across Europe over
the last four years. Covering AI Robustness, Explainability, Privacy and Fairness, the contents of
these deliverables will be a strong reference point for future research, development and deployment
of trustworthy AI in the media sector for years to come.

Over the course of the project, many novel works have been presented across the four primary
Trustworthiness pillars.

• In AI Robustness, new defences methods and attacks were developed concerning adversarial
robustness, including work on images and videos, LLMs, and federated learning.

• In AI Explainability, work was completed on a range of data, including text, image, video
and audio, as well as multi-modal AI systems.

• In AI Privacy, a host of novel contributions were made, including using differential privacy,
unlearning, homomorphic encryption, and more traditional methods like de-identification
and k-anonymity.

• Finally, in AI Fairness, the fairness of neural networks was of primary concern, includ-
ing some cross-pollination with the privacy task and the link between privacy, fairness and
unlearning.

A number of these highlights were included in the AI4Media Technological Highlights booklet on
Trustworthy AI.11

In the fast-paced world of AI research and development, nothing ever stands still. In following
on from the great volume of work produced as part of Trustworthy AI in AI4Media, a number of key
challenges need continued addressing and attention. Particularly relevant to the media industry
is that researchers continue to develop tools and algorithms that are easy and user-friendly to
consume, particularly for AI non-experts, such as media professionals, whose day-to-day job is to
produce media. This ease-of-use should extend to wide applicability across types of models, data
and systems architectures, to truly democratise AI and trustworthy AI particularly.

It’s particularly important for our non-expert users to offer informed and understandable infor-
mation about the tradeoffs of applying the various trustworthy AI interventions. For example, in
AI Privacy, methods such as differential privacy and k-anonymity result in a drop in accuracy as a
tradeoff for the privacy protection. While this tradeoff may be intuitive to researchers involved in
the field, correctly communicating that to non-experts is challenging and requires attention going
forward.

When developing suites of tools, like the AI4Media partners have done, it’s also important to be
aware of the law of unintended consequences when combining different tools from trustworthiness
arsenal. Off-the-shelf implementation of, e.g., a privacy mitigation, may inadvertently hamper
that model’s, e.g., fairness, or vice versa. Developing an understanding around combining tools
will be important as more of these tools are developed and deployed in the wild. In this deliverable,
related work was detailed in Sections 4.3 and 6.1.

Finally, since the start of this AI4Media project in September 2020, a whole new area of AI
research has shot into life. The advent of Large Language Models as a daily part of our lives has

11https://www.ai4media.eu/wp-content/uploads/2024/08/BookletofTechnologicalHighlights_WP4.pdf
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happened almost overnight. While many tools developed for more classical AI models an still be
applied to LLMs, an entire new branch of research has appeared in the blink of an eye. Even
within AI4Media, many papers have already been presented on LLMs, but it’s clear the challenges
of these large models are vast and intricate from a trustworthiness perspective, and will serve as a
beacon for research in the years and decades to come.
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[54] P. Bergmann, S. Löwe, M. Fauser, D. Sattlegger, and C. Steger, “Improving unsuper-
vised defect segmentation by applying structural similarity to autoencoders,” arXiv preprint
arXiv:1807.02011, 2018.

[55] L. Cultrera, L. Seidenari, and A. Del Bimbo. “Wildcapture.” (2024), [Online]. Available:
https://www.ai4europe.eu/research/ai-catalog/wildcapture (visited on 09/06/2024).

[56] S. Beery, G. Van Horn, and P. Perona, “Recognition in terra incognita,” in Proceedings of
the European Conference on Computer Vision (ECCV), Sep. 2018.

Final toolset in robust, explainable, fair, and privacy-preserving AI 80 of 87



[57] J. Van Amersfoort, L. Smith, Y. W. Teh, and Y. Gal, “Uncertainty estimation using a
single deep deterministic neural network,” in International conference on machine learning,
PMLR, 2020, pp. 9690–9700.

[58] J. Liu, Z. Lin, S. Padhy, D. Tran, T. Bedrax Weiss, and B. Lakshminarayanan, “Simple and
principled uncertainty estimation with deterministic deep learning via distance awareness,”
Advances in Neural Information Processing Systems, vol. 33, pp. 7498–7512, 2020.

[59] S. Fort, J. Ren, and B. Lakshminarayanan, “Exploring the limits of out-of-distribution
detection,” Advances in Neural Information Processing Systems, vol. 34, pp. 7068–7081,
2021.

[60] S. Cao and Z. Zhang, “Deep hybrid models for out-of-distribution detection,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 4733–
4743.

[61] L. Cultrera, L. Seidenari, and A. Del Bimbo, “Leveraging visual attention for out-of-
distribution detection,” in Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, 2023, pp. 4447–4456.

[62] P. De Haan, D. Jayaraman, and S. Levine, “Causal confusion in imitation learning,” Ad-
vances in Neural Information Processing Systems, vol. 32, 2019.
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[77] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy, “End-to-end driving via
conditional imitation learning,” In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1–9, 2018.

[78] A. Sauer, N. Savi-nov, and A. Geiger, “Conditional affordance learning for driving in urban
environments,” in Conference on Robot Learning (CoRL), 2018.

[79] L. Cultrera, F. Becattini, L. Seidenari, P. Pala, and A. Del Bimbo, “Addressing limitations
of state-aware imitation learning for autonomous driving,” IEEE Transactions on Intelligent
Vehicles, 2023.

[80] J. Zhu and M. Blaschko, “R-gap: Recursive gradient attack on privacy,” Proceedings ICLR
2021, 2021.

[81] J. Deng, Y. Wang, J. Li, C. Wang, C. Shang, H. Liu, S. Rajasekaran, and C. Ding, “Tag:
Gradient attack on transformer-based language models,” in Findings of the Association for
Computational Linguistics: EMNLP 2021, 2021, pp. 3600–3610.

[82] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting unintended feature
leakage in collaborative learning,” in 2019 IEEE symposium on security and privacy (SP),
IEEE, 2019, pp. 691–706.

[83] H. Ren, J. Deng, and X. Xie, “Grnn: Generative regression neural network—a data leakage
attack for federated learning,” ACM Trans. Intell. Syst. Technol., vol. 13, no. 4, May 2022,
issn: 2157-6904. doi: 10.1145/3510032. [Online]. Available: https://doi.org/10.1145/
3510032.

[84] H.-M. Chu, J. Geiping, L. H. Fowl, M. Goldblum, and T. Goldstein, “Panning for gold in
federated learning: Targeted text extraction under arbitrarily large-scale aggregation,” in
The Eleventh International Conference on Learning Representations, 2023. [Online]. Avail-
able: https://openreview.net/forum?id=A9WQaxYsfx.

[85] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in Advances in Neural Informa-
tion Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox,
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