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1. Executive Summary

This deliverable presents the research outcomes obtained between M13 and M36 as a result of the
activities carried out in Task 3.1 (Lifelong and On-line Learning), Task 3.2 (Manifold Learning
and Disentangled Feature Representation), Task 3.3 (Transfer Learning), Task 3.6 (Deep Quality
Diversity), and Task 3.7 (Learning to Count) of WP3 (New Learning Paradigms & Distributed
AI). All activities address problems that are central in the Machine Leaning community and with
methodologies that are at the forefront of the developments in the field. This is reflected by the
fact that a large number of the works presented here have resulted in publications in some of the
most prestigious and authoritative international journals and conferences in the field. Beyond this,
and to increase the impact in the field, several of the works provide software. We make explicit
references to the corresponding publications and/or software provided by each partner and establish
connections of the presented work with the WP8 Use Cases.

Below, we give a concise motivation and overview of the work in each task – more detailed
explanations are found in the relevant sections.

• The lifelong and on-line learning (Task 3.1) address the problem of training models
which evolve gradually as new data are ingested. This is central to the media industry since
new concepts and events occur continually and the underlying Machine Learning models
used for their automatic analysis need to be updated continually to ensure an up-to-date
processing. This poses certain challenges since it is necessary to ensure a balance between
stability and plasticity, two properties which account for the performance obtained for past
and new data at each stage of the lifelong or on-line learning processes.

More specifically, the contributions presented in this deliverable include: (a) a method for
Class-Incremental Learning (CIL) without memory by creating pseudo-features for past classes
to improve their representation and separability, (b) the adaptation of incremental learning
strategies to specific use cases, (c) a new decentralized inference strategy for AI agents, (d)
knowledge quantification metrics which unveil what deep neural networks learn during their
training, (e) a teacher-student network framework which supports “learning by education”,
focusing on multiple scenarios with dynamic tasks and goals, (f) a comprehensive survey
of Curriculum Learning (CL), (g) an innovative Novel Class Discovery (NCD) algorithm
which is able to learn novel classes in absence of labelled data, (h) studying the compatibility
of representations learned for data streams and a new distillation method for continual
representation learning.

Ongoing work for Task 3.1 considers (i) investigating the advantages and limitations of
using large pre-trained models in continual learning, (ii) investigating Generalized Category
Discovery (GCD) to automatically cluster partially labeled data, (iii) models that combine
and unify Out-of-Distribution (OOD) detection, incremental/continual/lifelong learning, and
neural distillation, and (iv) working on a novel learning protocol in which a large model (i.e.,
foundation model) undergoing Continual Learning will be replaced by an improved one that
has been learned from scratch in a compatible way elsewhere (e.g., on a remote server).

• The manifold learning and disentangled feature representation (Task 3.2) addresses
the problem of learning representations of the data that are meaningful for performing
generative and discriminative tasks. This includes generating easily synthetic data, such as
faces with the desired expression, manipulating images of people so as not to be identifiable
and finding better metrics for comparing images so as to perform search and retrieval.

More specifically, the contributions presented in this deliverable include: (a) the study of the
latent and intermediate spaces of pre-trained GANs for discovering interpretable/controllable
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generative directions, (b) the incorporation of the remarkable ability of the pre-trained
StyleGAN2 and the versatility of its latent space in generating and editing highly realistic
faces in order to address the problem of data anonymization, (c) a survey of the literature
of manifold learning and its applications in multimedia, (d) the study of fusion strategies of
latent space manifolds of multiple fine-tuned models, such as pretrained visual foundation
models, (e) a solution to the task of generating dynamic 3D facial expressions from a neutral
3D face and an expression label, (f) a metric learning approach in hyperbolic spaces.

Ongoing work for Task 3.2 considers (i) focusing on Visual-Language models and ways of
improving their discriminative ability, (ii) improving OOD performance of neural network
models with manifold mixing model soups, (iii) working on generative models on non-linear
(manifold) domains focusing on models capable of generating in the combined spatial-temporal
domain, and (iv) continuing investigating the underlying structure of the latent spaces of
deep generative models with the goal of performing semantically meaningful latent traversals.

• The transfer learning (Task 3.3) addresses the problem of reusing previously generated
models for tasks that are different than the original ones, tackling the problem of catastrophic
forgetting. Considering the huge amount of data, human effort, and computational power
needed to train these models, being able to reuse them is of paramount importance.

More specifically, the contributions presented in this deliverable include: (a) an extensive
experimental evaluation of Transfer Learning, exploring its trade-offs with respect to per-
formance, environmental footprint, human hours, and computational requirements, (b) a
novel concept of source-free open compound domain adaptation Source-Free Open Compound
Domain Adaptation (SF-OCDA), (c) a library of self-supervised methods for visual repre-
sentation learning, (d) a method addressing the problem of Source-Free Domain Adaptation
(SFDA) by quantifying the uncertainty in the source model predictions and utilizing it to
guide the target adaptation.

Ongoing work for Task 3.3 considers (i) the incorporation of source-target transferability
metrics instead of a manual classification of the target datasets, (ii) the application of Test-
Time Domain Adaptation in Semantic Segmentation (TTDA-Seg) where both efficiency and
effectiveness are crucial, (iii) diversifying training datasets in a programmatic manner using
pre-trained foundation models, and (iv) assessing transfer learning abilities in the context of
heterogeneous domains, with a specific focus on the domains of Vision and Language.

• The deep quality diversity (Task 3.6) studies ways of handling deceptive search spaces
by finding a maximally diverse collection of individuals (with respect to a space of possible
behaviors) in which each member is as high performing as possible.

More specifically, the contributions presented in this deliverable include: (a) work on using
learned representations through deep learning as a method for creating an intrinsic definition
of diversity, (b) a novel AI Art generator with capability of producing diverse visual outputs,
(c) a direct extension of previous work where rather than just evolving the latent representation
of images, they also evolve its corresponding text prompt to generate game artworks paired
with a title and description, (d) work on addressing the issue of controllability on quality
diversity algorithms, (e) exploring the potential of neuroevolution in Preference Learning
(PL) tasks with subjective, unreliable labels such as those found in affective computing.

Ongoing work for Task 3.6 considers (i) carrying out promising experiments following up
on existing activities intending for a high-impact journal publication around Computational
Creativity, and (ii) co-organizing (UNITN and UM) “Computer Vision for Games and Games
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for Computer Vision (CVG)” workshop, to be held on November 23, 2023, as part of the
British Machine Vision Conference (BMVC) in Aberdeen, UK.

• Learning to count (Task 3.7) addresses the problem of training (under the supervised
learning paradigm) estimators of quantities. The main categories of sub-tasks falling under this
problem are Learning to Quantify (LQ), which is concerned with training unbiased estimators
of class prevalence (i.e., learning to estimate, given a sample of objects, the percentage of
objects that belong to a given class), and “Learning to count objects”, which concerns learning
to estimate the number of objects (which may be inanimate objects, such as cars, but may
also be animate objects, such as people or animals) in visual media, such as still images or
video frames.

More specifically, the contributions presented in this deliverable include: (a) an open-source
framework for LQ written in Python (QuaPy), (b) work on Ordinal Quantification (OQ), (c)
a systematic comparison of LQ methods on the task of tweet sentiment quantification, and
(d) a study of the multi-label quantification problem.

Ongoing work for Task 3.7 considers (i) the further development of deep neural networks
for LQ by studying the suitability to this task of permutation-invariant operators for set
processing, (ii) the application of learning to quantify for estimating the effectiveness of a
classifier when applied to unlabelled sets that exhibit dataset shift with respect to the data
the classifier has been trained on, and (iii) the problem of tailoring quantification approaches
to the particular type of shift that the set of unlabelled data exhibits.

In summary, the work presented in this deliverable has resulted in:

• 19 conference articles (CVPR, ICCV, ECCV, ICLR, ...) and 7 journal articles (TPAMI,
JMLR, IJCV, TOMM, TOG, TCSVT, TKDD),

• 35 articles (articles and datasets) available in AI4Media’s Zenodo collection, and

• 21 open-source software and tools publicly available (e.g., in GitHub).

The remainder of this deliverable is structured as follows. In Section 2, we introduce each
WP3 task and we give an overview of the contributions of each partner. In Section 3, we provide
concise descriptions of the presented works, while detailed descriptions of contributions are given
for each task in Section 4 (Task 3.1), Section 5 (Task 3.2), Section 6 (Task 3.3), and Section 7
(Task 3.6), and Section 8 (Task 3.7). All the methods presented in this deliverable can be applied
to media-related areas and applications. Indeed after describing each method, we also present their
relevance to WP8 Use Cases. Finally, Section 9 concludes the deliverable by summarizing the work
covered as well as presenting the ongoing work regarding each task addressed in this deliverable.
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2. Introduction

The goal of WP3 is to investigate new learning paradigms, looking beyond current achievements in
deep learning and focusing among other on topics such as lifelong and continuous learning, manifold
and transfer learning, deep quality diversity, and learning to count. In the following, we briefly
discuss the challenges related to each of these research topics.

Whilst standard deep learning methods typically assume that all the required training data are
readily available, this often poses an unrealistic condition in practice, since real world application-
related data often arrive in streams, while their characteristics may vary over time. Lifelong
learning and on-line learning are two closely related research areas that aim to train models
which evolve gradually as new data are ingested. Advances in these fields are in dire need in
AI4Media in order to keep up with the dynamic nature of news and media content, since new events
appear constantly in them and the models used for their automatic analysis need to be updated
regularly to ensure an up-to-date processing. The lifelong and on-line learning contribution of the
AI4media partners are related to the practical cases in which: (1) access to past data is limited or
impossible, (2) computation needs should be as close to constant as possible and (3) learning of
new data needs to be fast. The current contributions of the AI4Media project regarding lifelong
and online learning methodologies are given in Section 4. In total, four papers were accepted to be
presented in peer-reviewed conferences, three papers were accepted to peer-reviewed journals and
two papers are currently under review.

Finding meaningful representation schemes for both generative and discriminative learning tasks
has gradually risen as a remarkably important research area, where manifold and disentangled
feature representation learning methods have contributed significantly during the recent years.
In the generative regime, exploring the structure of generative methods (such as GANs), by
discovering semantic paths in their latent space that govern the generation process, has proven to be
crucial in understanding and controlling image generation. On the other hand, in the discriminative
regime, learning meaningful feature representations, along with more appropriate metrics (i.e., that
model data manifolds better), lead to better, more discriminative features, and, thus, improve
the performance in tasks such as image retrieval. Advances in those fields (i.e., generative and
discriminative learning) are particularly useful in media generation and visual content analysis and,
thus, in AI4Media use cases, while they are also relevant with WP4 (explainable and interpretable
AI). For instance, generative approaches can help towards protecting the identity of individuals
depicted in media content (e.g., anonymization of faces appearing in news images/videos), while
learning better features of visual content can improve crucial tools in media content analysis, such
as, content-based image retrieval, near-duplicate detection, face recognition, person re-identification,
zero-shot, and few-shot learning. The current contributions of the AI4Media project regarding
manifold learning and disentangled feature representation methodologies are given in Section 5.
In total, five papers were accepted to be presented in peer-reviewed conferences and two papers
(including a survey paper) are currently under review.

Taking into consideration the vast amount of data, human labour, and computational power
that is needed in training modern Deep Learning models, during the recent years, practitioners
and researchers have devised Transfer Learning techniques that allow to reuse and benefit from
previously generated models for various purposes. This is particular useful to the media industry
and the use cases of AI4Media, since transfer learning methods provide solutions to analyze/adapt
the visual content (by virtue of being able to generalize under domain-gap), discover new visual
content, and adapt accordingly. Beyond practical reasons, Transfer Learning poses an important
scientific challenge, as it forces researchers to explore the internal knowledge representation of deep
models and unveil their structure and how learning is being conducted before being able to reuse
them for diverse purposes. Advances in this field have potential relevance for key aspects of Deep
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Learning, not only explainability and interpretability, but also efficiency and footprint reduction,
as well as deployment of AI powered systems in real world scenarios. These are relevant to other
work packages of AI4Media – i.e., regarding explainable and interpretable AI (WP4) and learning
from scarce real-world data (WP5). The current contributions of the AI4Media project regarding
transfer learning methodologies are given in Section 6. One paper was accepted to be presented in
a peer-reviewed conference and two papers were accepted to peer-reviewed journals.

Finding a maximally diverse collection of individuals (regarding a space of possible behaviors)
in which each member is performing as high as possible is an important research field finding
applications, among other areas, in media content that have strict quality requirements (such as
games). Quality-Diversity (QD) methods have been recently appeared in the Evolutionary
Computation (EC) literature as a way of handling such deceptive search spaces. Drawing inspiration
from natural evolution, which – unlike the objective-based optimization tasks to which EC is typically
applied – is primarily open-ended, QD algorithms re-introduce a notion of localized quality among
individuals with the same behavioral characteristics. QD algorithms aim to obtain balance between
their individuals’ quality and their population’s diversity, and thus media content with strict quality
requirements, such as games that are start-to-end playable, are the ideal ground for advancing
quality-diversity. The developed QD methods are useful in the media industry and the AI4Media use
cases by providing tools for (i) generating diverse content without requiring ad-hoc designer-specified
directions for this diversity, and (ii) modelling the subjective human game players experiences so as
to dynamically adapt the game according to the predicted user’s engagement or arousal levels. The
current contributions of the AI4Media project regarding deep quality diversity methodologies are
given in Section 7. In total, 4 papers were accepted to be presented in peer-reviewed conferences.

Datasets that are being used by the research community and the industry for training machine
learning models typically exhibit shift, i.e., the joint distribution of the independent and the
dependent variables is not the same in the training data and in the unlabelled data for which
predictions must be obtained. When this occurs, estimating the prevalence of the classes of interest
in the unlabelled data is difficult, since “traditional” learning methods assume these prevalence
values to stay approximately constant. “Learning to Count” is concerned with developing
techniques for estimating quantities in unlabelled data possibly affected by dataset shift, where
these quantities can be the prevalence values (i.e., relative frequencies) of the classes of interest (as
needed in applications such as monitoring consensus for a certain policy or political candidate in
social media) or the number of physical objects in instances of visual media (such as estimating car
park occupancy from surveillance camera images, or monitoring traffic volumes from road cameras).
The contributions of the AI4Media project regarding learning-to-count methodologies are given
in Section 8. In total, 2 papers were accepted to be presented in peer-reviewed conferences and 2
papers were accepted for publication in international journals; a book was also published on this
topic.

To summarize, the contributions presented in this deliverable address problems that are central
in the Machine Learning community, providing methodologies that are at the forefront of the
developments in the field. The activities of the partners led to a significant number of high-quality
and diverse works that have been published in some of the most prestigious and authoritative
international journals and conferences in the field.
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3. Concise descriptions of the presented works

In the following, we briefly summarise the outcomes of each WP3 task for the period M13-M36.
These works are then presented in detail in sections 4-8.

3.1. Lifelong and on-line learning (Task 3.1)

3.1.1. Introduction

Standard deep learning methods assume that all training data are available at once. This hypothesis
is often unrealistic since application-related data arrive in streams, and their characteristics shift
over time. Lifelong learning and on-line learning are two closely related research topics whose
purpose is to train models which evolve gradually as new data are ingested. This learning process
is challenging because it is necessary to ensure a balance between stability and plasticity, two
properties which account for the performance obtained for past and new data at each stage of the
lifelong or on-line learning processes. Advances in these fields are particularly needed in AI4Media
in order to keep up with the dynamic nature of media content (e.g., breaking news). New concepts
and events occur continually in them and the underlying models used for their automatic analysis
need to be updated continually to ensure an up-to-date processing.

We report the research outcomes of Task 3.1 in detail in Section 4.

3.1.2. Overview

The partners involved in Task 3.1 tackle different open challenges in lifelong and on-line learning. The
contributions are summarized below and then discussed in more detail in the following subsections.

In Subsection 4.1, CEA introduces a method for CIL without memory by creating pseudo-
features for past classes to improve their representation and separability. The method is inspired
by transfer learning, and compares favorably with more complex algorithms which update their
representations at each incremental step.

In Subsection 4.2, CEA studies the adaptation of incremental learning strategies to specific use
cases. Such an adaptation is needed because incremental learning scenarios are very diversified,
and none of the existing methods outperforms all others in all cases.

In Subsection 4.3, AUTH proposes a new decentralized inference strategy for AI agents. The
method is inspired by the human decision making process, which is driven by interactions between
persons. The method is based on a Quality of Inference (QoI) consensus protocol, which formalizes
a common inference rule which is applied by each agent.

In Subsection 4.4, AUTH studies knowledge quantification metrics, which unveil what DNNs
learn during their training. The main properties of existing metrics are analyzed to highlight their
advantages and limitations. The applicability of the metrics to different architectures, modalities
and tasks is emphasized.

In Subsection 4.5, AUTH introduces a teacher-student network framework which supports
”learning by education” which focuses on multiple scenarios with dynamic tasks and goals. The
framework enables dynamic interactions between all agents, whose roles as students or teachers
can change over time. The proposed education process is iterative to enable gradual acquisition of
knowledge.

In Subsection 4.6, UNITN summarizes a comprehensive survey of CL, a training methodology
whose underlying hypothesis is that samples should be ordered from easy to hard during training.
The study presents existing methods and underlines that sample ordering and adequate pacing are
not straightforward. It also describes promising future research directions.
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In Subsection 4.7, UNITN introduces an innovative NCD algorithm which is able to learn novel
classes in absence of labelled data, while preserving performance of base classes. The proposed
algorithm mixes feature replay and distillation with self training. It compares very favorably with
existing methods which tackle the same problem in two challenging evaluation settings.

In Subsection 4.8, UNIFI studies the compatibility of representations learned for data streams.
The proposed method leverages the stationarity of internal representations in order to make the
features learned in different step comparable. The method is evaluated with excellent results for
face verification, re-identification and retrieval tasks.

In Subsection 4.9, UNIFI proposes a second algorithm for learning compatible representation
for dynamic data. This algorithm is based on a mix of rehearsal and feature stationarity, which is
encouraged at global and local levels. The method compares favorably with respect to a number of
recent incremental learning methods.

In Subsection 4.10, UNIFI introduces a new distillation method for continual representation
learning. The objective is to align current and previous features of the same class while separating
features of different classes. The method makes an innovative use of contrastive loss, and obtains
strong performance for fine-grained classification datasets.

3.2. Manifold learning and disentangled feature representation (Task
3.2)

3.2.1. Introduction

In recent years, manifold and disentangled feature representation learning have risen as a prominent
research area addressing the problem of finding meaningful representation schemes for both the
generative and the discriminative learning paradigms. In the generative regime, studying the
structure of latent spaces of generative methods (such as GANs) by discovering semantic paths
that govern the generation process, has proven to be very useful in understanding and controlling
image generation. For instance, by discovering interpretable or controllable generative paths for
manipulating the generation process (e.g., image editing) [1–3]. In the discriminative regime,
learning meaningful feature representations, along with metrics that model data manifolds better
(i.e., by adopting the hyperbolic geometry instead of the widely used Euclidean modeling [4]), lead
to better, more discriminative features, and, thus, improve significantly the performance in visual
understanding tasks (such as image retrieval). Advances in both generative and discriminative
regimes are particularly useful in media generation and visual content analysis.

We report the research outcomes of Task 3.2 in detail in Section 5.

3.2.2. Overview

Within this task partners are contributing in fundamental aspects of manifold learning and disen-
tangled feature representation, coordinating so that their advances can contribute to one another,
and with the use cases of the project in mind. To further detail this collaboration, let us first
summarize the contributions of partners.

In Subsection 5.1, QMUL studies how to discover, in an unsupervised and model-agnostic
manner, interpretable and disentangled paths in the latent space of a pre-trained GAN. That is,
paths in the latent space sampling across which is expected to lead to image generations that differ
only in a few factors (e.g., changing the expression of a face, the rotation of an object, etc). For
doing so, they model non-linear paths using RBF-based warping functions, which by warping the
latent space, endow it with vector fields (i.e., their gradients). Then the latter are used to traverse
the latent space across the paths determined by the aforementioned vector fields for any given
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latent code. Each warping function gives rise to a family of non-linear paths. This work proposes
to learn a set of such warping functions, i.e., a set of such non-linear path families, so as the image
transformations that they produce are distinguishable to each other by a discriminator network.

In Subsection 5.2, QMUL studies the structure of feature spaces of pre-trained GANs, that is,
intermediate representations of the GAN generators instead of their latent spaces, in an architecture-
agnostic approach that jointly discovers factors representing spatial parts and their appearances in
an entirely unsupervised fashion. These factors are obtained by applying a semi-nonnegative tensor
factorization on the feature maps, which in turn enables context-aware local image editing with
pixel-level control. In addition, they show that the discovered appearance factors correspond to
saliency maps that localize concepts of interest, without using any labels. Experiments on a wide
range of GAN architectures and datasets show that, in comparison to the State of the Art (SOTA),
the proposed method is far more efficient in terms of training time and, most importantly, provides
much more accurate localized control.

In Subsection 5.3, QMUL and UNITN incorporate the remarkable ability of the pre-trained
StyleGAN2 and the versatility of its latent space in generating and editing highly realistic faces in
order to address the problem of face anonymization. By contrast to the existing literature, this
is the first work that anonymizes the identities of those depicted in a facial dataset, while at the
same time it retains the facial attributes of the original images in the anonymized counterparts, the
preservation of which is of paramount importance for their use in downstream tasks. For doing
so, this work presents a task-agnostic anonymization procedure that directly optimises the images’
latent representation in the latent space of a pre-trained GAN. By optimizing the latent codes
directly, the proposed framework ensures both that the identity is of a desired distance away from
the original (with an identity obfuscation loss), whilst preserving the facial attributes (using a
novel feature-matching loss in FaRL’s deep feature space). Through a series of both qualitative
and quantitative experiments it is shown that the proposed method is capable of anonymizing the
identity of the images whilst–crucially–better-preserving the facial attributes.

In Subsection 5.4, JR surveys the literature of manifold learning and its applications in multi-
media. Deep Learning has been the dominant paradigm for the automatic analysis of multimedia
data (e.g. images, video or 3D data) for tasks such as classification or detection. However, classic
neural networks are restricted to data lying in vector spaces, while data residing in smooth non-
Euclidean spaces arise naturally in many problem domains (e.g., a 360◦ camera actually captures a
spherical image, not a rectangular image). This survey focuses on manifolds, especially Riemannian
manifolds, which are well suited for generalizing a vector space because they are locally Euclidean
and differentiable.

In Subsection 5.5, JR studies fusion strategies of latent space manifolds of multiple finetuned
models, such as pretrained visual foundation models (CLIP [5] or CoCa [6]). To do so, they propose
the manifold mixing model soup (ManifoldMixMS) algorithm, which, instead of simple averaging, it
uses a more sophisticated strategy to generate the fused model. Specifically, it partitions a neural
network model into several latent space manifolds (which can be individual layers or a collection of
layers). Afterwards, from the pool of finetuned models available after hyperparameter tuning, the
most promising ones are selected and their latent space manifolds are mixed together individually.
The optimal mixing coefficient for each latent space manifold is calculated automatically via invoking
an optimization algorithm. Experiments show that the fused model gives significantly better OOD
performance when finetuning a CLIP model for image classification.

In Subsection 5.6, UNIFI proposes a solution to the task of generating dynamic 3D facial
expressions from a neutral 3D face and an expression label by solving the following two sub-
problems: (i) modeling the temporal dynamics of expressions, and (ii) deforming the neutral mesh
to obtain the expressive counterpart. This method represents the temporal evolution of expressions
using the motion of a sparse set of 3D landmarks that is learnt to generate by training a manifold-
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valued GAN (Motion3DGAN). To better encode the expression-induced deformation and disentangle
it from the identity information, the generated motion is represented as per-frame displacement from
a neutral configuration. To generate the expressive meshes, the method trains a Sparse2Dense mesh
Decoder (S2D-Dec) that maps the landmark displacements to a dense, per-vertex displacement.
This allows for learning how the motion of a sparse set of landmarks influences the deformation of
the overall face surface, independently from the identity. Experimental results on the CoMA and
D3DFACS datasets show that the proposed solution brings significant improvements with respect
to previous solutions in terms of both dynamic expression generation and mesh reconstruction,
while retaining good generalization to unseen data.

In Subsection 5.8, UNITN studies the problem of metric learning; that is, the problem of
learning highly discriminative models encouraging the embeddings of similar classes to be close in
the chosen metrics and pushed apart for dissimilar ones. Whilst the common recipe is to use an
encoder to extract embeddings and a distance-based loss function to match the representations
(typically the Euclidean distance), in this work a new hyperbolic-based model for metric learning
is proposed (using a vision transformer with output embeddings mapped to hyperbolic space).
These embeddings are directly optimized using modified pairwise cross-entropy loss, while the
proposed method is evaluated with six different formulations on four datasets achieving the new
state-of-the-art performance.

3.3. Transfer learning (Task 3.3)

3.3.1. Introduction

Transfer Learning is an emerging field among Deep Learning practitioners that seeks to reuse and
exploit previously generated models for different purposes. Considering the huge amount of data,
human effort and computational power needed to train these models, being able to reuse them is of
paramount importance. Beyond practical reasons, Transfer Learning poses a scientific challenge
of relevance, as it forces researchers to question the internal knowledge representation of deep
models. Indeed, to understand how to reuse deep representations, one must first understand how
are these representations learned, and how are they internally structured. Advances in this field
have potential relevance for key aspects of Deep Learning, such as explainability and interpretability,
efficiency and footprint reduction, and real world deployment of AI powered systems. We report
the research outcomes of Task 3.3 in detail in Section 6

3.3.2. Overview

Within this task partners are contributing in fundamental aspects of Transfer Learning, coordinately
so that their advances can contribute to one another, and with the use cases of the project in mind.
To further detail this collaboration, let us first summarize the contribution of partners.

In Subsection 6.1, BSC conducts an experimental evaluation of Transfer Learning, exploring its
trade-offs with respect to performance, environmental footprint, human hours, and computational
requirements. They provide results that highlight the cases were a cheap Feature Extraction (FE)
approach is preferable, and the situations where an expensive fine-tuning effort may be worth the
added cost. Finally, they propose a set of guidelines on the use of Transfer Learning.

In Subsection 6.2, UNITN introduces the novel concept of source-free open compound domain
adaptation (SF-OCDA), which they study in the task of semantic segmentation. While SF-OCDA
is more challenging than the traditional domain adaptation, it is yet more practical. It jointly
considers (1) the issues of data privacy and data storage and (2) the scenario of multiple target
domains and unseen open domains. In SF-OCDA, only the source pre-trained model and the target
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data are available to learn the target model. The model is evaluated on the samples from the target
and unseen open domains. To solve this problem, this work proposes an effective framework by
separating the training process into two stages: (1) pre-training a generalized source model and (2)
adapting a target model with Self-supervised Learning (SSL). In this framework, Cross-Patch Style
Swap (CPSS) is proposed to diversify samples with various patch styles in the feature-level, which
can benefit the training of both stages. First, CPSS can significantly improve the generalization
ability of the source model, providing more accurate pseudo-labels for the latter stage. Second, CPSS
can reduce the influence of noisy pseudo-labels and also avoid the model overfitting to the target
domain during self-supervised learning, consistently boosting the performance on the target and
open domains. Experiments demonstrate that the proposed method produces state-of-the-art results
on the C-Driving dataset. Furthermore, it also achieves the leading performance on CityScapes for
domain generalization.

In Subsection 6.3, UNITN presents solo-learn, a library of self-supervised methods for visual
representation learning. Implemented in Python, using Pytorch and Pytorch lightning, the library
fits both research and industry needs by featuring distributed training pipelines with mixed-precision,
faster data loading via Nvidia DALI, online linear evaluation for better prototyping, and many
additional training tricks. The goal of this work is to provide an easy-to-use library comprising
a large amount of SSL methods, that can be easily extended and fine-tuned by the community.
solo-learn opens up avenues for exploiting large-budget SSL solutions on inexpensive smaller
infrastructures and seeks to democratize SSL by making it accessible to all.

In Subsection 6.4, UNITN studies the problem of SFDA, whose aim is to adapt a classifier to
an unlabelled target data set by only using a pre-trained source model. In order to address the
unreliability of the predictions on the target data (due to the absence of the source data and the
domain shift), this work proposes quantifying the uncertainty in the source model predictions and
utilizing it to guide the target adaptation. For this, a probabilistic source model is constructed by
incorporating priors on the network parameters inducing a distribution over the model predictions.
Uncertainties are estimated by employing a Laplace approximation and incorporated to identify
target data points that do not lie in the source manifold and to down-weight them when maximizing
the mutual information on the target data. Unlike other existing works, the proposed probabilistic
treatment is computationally lightweight, decouples source training and target adaptation, and
requires no specialized source training or changes of the model architecture.

3.4. Deep quality diversity (Task 3.6)

3.4.1. Introduction

Quality-Diversity (QD) algorithms have been recently introduced to the EC literature as a way
of handling deceptive search spaces. The goal of these algorithms is “to find a maximally diverse
collection of individuals (with respect to a space of possible behaviors) in which each member is as
high performing as possible” [7]. The inspiration for such approaches is natural evolution which is
primarily open-ended—unlike the objective-based optimization tasks to which EC is often applied.
While the rationale of open-ended evolution has been previously used as an argument for genetic
search for pure behavioral novelty, QD algorithms re-introduce a notion of (localized) quality among
individuals with the same behavioral characteristics. QD algorithms attempt to balance between
their individuals’ quality and their population’s diversity, and thus media content which have strict
quality requirements, such as games that are playable from start to finish, are the ideal arena for
advancing quality-diversity.

The aim of Task 3.6 is to couple deep neural network architectures with divergent search for
transforming exploration, aiming for both diverse and high quality outcomes. Experiments in this
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deep-learning-based QD (deepQD) search approach during the reported period are aligned on two
main directions:

D1 improve the definition of diversity based on learnt representations.

D2 promote diversity and quality in existing deep learning generative architectures for media.

We report the research outcomes of Task 3.6 in detail in Section 7.

3.4.2. Overview

We present three main contributions split along the core directions (D1, D2) described above, as
well as two complementary directions on quality diversity evolution (Section 7.4) or neuroevolution
without diversity preservation (Section 7.5), which can be merged at later stages with deepQD.

In Subection 7.1, UM describes their work on using learned representations through deep learning
as a method for creating an intrinsic definition of diversity. In their approach, UM explore the
use of adaptive novelty search in the latent space, which is determined by an AutoEncoder (AE)
that is periodically retrained on novel data generated during previous iterations of the algorithm.
They extend this concept into the 3D domain for the first time by implementing a Minecraft
building generator based on the DeLeNoX [8] algorithm using CPPN-NEAT [9]. Furthermore, UM
conducted an extensive study of different methods for retraining the autoencoder during evolution,
and shedding light on its impact onto effectively measuring novelty and producing interesting
content. This software has been open-sourced and is publicly available via GitHub under a creative
commons (CC0-1.0) license.

In Subsection 7.2, UM implements a novel AI Art generator with capability of producing diverse
visual outputs. They achieve this by applying a QD evolutionary search using Novelty Search with
Local Competition (NSLC) in interim phases of a GAN process, and observe the impact it has on its
creative process and produced content. Specifically, this involves a refinement cycle, using VQGAN
latent vector back-propagation to turn random noise into desired images, and an exploration cycle,
applying NSLC [10] to the latent vector. Their results show that this approach achieves a small
increase in diversity compared to a typical GAN approach, but opens up interesting areas for future
research on the diversification of generation images. UM also explored different diversity metrics for
the generated images, with chromatic diversity being the most reliable despite its simplicity, and
highlight other potential measures for future research such as LPIPS and image compressibility.

Subsection 7.3 is a direct extension of UM’s work in Section 7.2 where, rather than just evolving
the latent representation of images, they also evolve its corresponding text prompt to generate
game artworks paired with a title and description. UM also proposes an enhancement to the
MAP-Elites algorithm [11] when applied to multiple modalities, called MAP-Elites with Transverse
Assessment (MEliTA). In this experiment, a pair of fine-tuned GPT-2 models create hypothetical
game titles and descriptions from a Steam games catalogue, and a Stable Diffusion model generates
corresponding cover images to form an initial population. This population is then refined through
MEliTA, which uses an Upper Confidence Bound (UCB) selection strategy [12], mutations of both
text and image elements, and considers mutual influence between image and text modalities. This
ongoing research confirms the usefulness of MAP-Elites for preserving diversity, even in multi-modal
creative tasks. Early experiments show that MEliTA offers a marginal advantage to conventional
MAP-Elites, with low computational overhead, and is being expanded to more modalities in an
effort to further optimize this approach.

In Subsection 7.4, UM carried out extensive research on addressing the issue of controllability
on QD algorithms. They introduce a novel algorithm for Interactive Evolutionary Computation
(IEC) called User Controller MAP-Elites (UC-ME), which provides the user with a higher degree of
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control whilst minimizing their fatigue. They achieve this by adjusting the MAP-Elites algorithm to
focus on a small area of the feature map, present design options from this area to the user, and then
shift focus based on the user’s selection. This approach is tested on the complex and constrained
task of generating architectural layouts. The researchers at UM show that, when compared to
unguided MAP-Elites, UC-ME is able to find individuals more directly aligned with the user’s
preferences whilst still covering large regions of the feasible problem space. While UC-ME is not
strictly applied to deep QD problems, it can be extended to operate on latent representations (as
e.g. in Section 7.3) or to use learnt characterizations of diversity that the user can further control
(as e.g. in Section 7.1).

In Subsection 7.5, the UM researchers focus on exploring the potential of neuroevolution in PL
tasks with subjective, unreliable labels such as those found in affective computing. They introduce
a novel algorithm called RankNEAT, which is built on the efficient RankNet architecture [13] and is
enhanced through neuroevolution. They put RankNEAT to test against the vanilla RankNet in the
task of player affect modeling across three games, using arousal-annotated gameplay videos from
the AGAIN dataset. The results indicate that RankNEAT outperforms RankNet in training PL
models of arousal in most of the conducted experiments, suggesting its viability as a PL paradigm.
Furthermore, this research opens up opportunities expanding its quality-driven optimization with
a diversification mechanism, which could advance affect modelling and extend the application of
deepQD beyond generative domains. While research on RankNEAT is not yet combined with
deep QD (as it operates on optimization as minimized error), it can be expanded with additional
diversity characteristics in future iterations of T3.6 tasks.

3.5. Learning to count (Task 3.7)

3.5.1. Introduction

“Learning to Count” is a task having to do with supervised learning approaches for training estimators
of quantities. There are two classes of problems that are being addresses in this task, and that may
be usefully viewed as forming two different subtasks, i.e.,

• “Learning to quantify” (LQ – a.k.a. quantification). This subtask is concerned with training
unbiased estimators of class prevalence via supervised learning, i.e., learning to estimate, given
a sample of objects, the percentage of objects that belong to a given class. This task originates
with the observation that “Classify and Count (CC)”, the trivial method of obtaining class
prevalence estimates, is often a biased estimator, and thus delivers suboptimal quantification
accuracy. This bias is particularly strong when the data exhibits dataset shift, i.e., when
the joint distribution of the dependent and the independent variables is not the same in the
training data and in the unlabelled data for which predictions must be issued. Quantification
is important for several applications, e.g., gauging the collective satisfaction for a certain
product from textual comments, establishing the popularity of a given political candidate
from blog posts, predicting the amount of consensus for a given governmental policy from
tweets, or predicting the amount of readers who will find a product review helpful.

• “Learning to count objects”. This subtask has to do with using machine learning approaches
in order to train estimators of the number of objects (which may be inanimate objects, such
as cars, but may also be animate objects, such as people or animals) in visual media, such as
still images or video frames. Example applications of these techniques are, e.g., counting the
number of cars in a video frame (in order to estimate traffic volume or car park occupancy),
or counting the number of people in a still image (say, in order to estimate the amount of
people taking part in a rally).
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We report the research outcomes of Task 3.7 in detail in Section 8.

3.5.2. Overview

We here present five main contributions. All these contributions have to do with the first subtask
(“Learning to quantify”), since the contributions concerning the second subtask (“Learning to count
objects”) intersect Task 5.3 (“Learning with scarce data”) and will thus be reported in the WP5
deliverables related to Task 5.3.

In Section 8.1 CNR describes QuaPy, an open-source framework for LQ written in Python. QuaPy
provides implementations of a number of baseline methods and advanced quantification methods, of
routines for quantification-oriented model selection, of several broadly accepted evaluation measures,
and of robust evaluation protocols routinely used in the field. QuaPy also makes available datasets
commonly used for testing quantifiers, and offers visualization tools for facilitating the analysis and
interpretation of the results. The software is open-source and publicly available under a BSD-3
licence via GitHub, and can be installed via pip.

In Section 8.2, CNR describes their work on OQ, i.e., the case in which a total order is defined on
the set of n > 2 classes for which quantification is to be performed. In this work, CNR researchers
give three main contributions to this field. First, they create and make available two datasets
for OQ research that overcome the inadequacies of the previously available ones. Second, they
experimentally compare, on the above datasets, the most important OQ algorithms proposed in
the literature thus far. To this end, for the first time they bring together algorithms that had been
proposed by authors from very different research fields (e.g., data mining and astrophysics), and
who were thus unaware of each other’s developments. Third, they propose three OQ algorithms,
based on the idea of preventing “ordinally implausible” estimates through regularization. Their
experiments show that these algorithms outperform the existing ones.

In Section 8.3, CNR describes their analysis of a previous work [14] where a systematic comparison
of LQ methods on the task of tweet sentiment quantification was carried out. In hindsight, they
observe that the experimentation carried out in that work was weak, and that the reliability of the
conclusions that were drawn from the results of [14] is thus questionable. They thus re-evaluate
those quantification methods (plus a few more modern ones) on exactly the same datasets, this time
following a now consolidated and robust experimental protocol (which also involves simulating the
presence, in the test data, of class prevalence values very different from those of the training set).
This experimental protocol (even without counting the newly added methods) involves a number
of experiments 5,775 times larger than that of the original study. Due to the above-mentioned
presence, in the test data, of samples characterised by class prevalence values very different from
those of the training set, the results of the new experiments are dramatically different from those
presented in [14], and provide a different, much more solid understanding of the relative strengths
and weaknesses of different sentiment quantification methods.

In Section 8.4, CNR researchers observe that, while many quantification methods have been
proposed in the past for binary problems and, to a lesser extent, single-label multiclass problems,
the multi-label setting (i.e., the scenario in which the classes of interest are not mutually exclusive)
remains by and large unexplored. A straightforward solution to the multi-label quantification
problem could simply consist of recasting the problem as a set of independent binary quantification
problems. However, CNR researchers observe that such a solution is simple but näıve, since the
independence assumption upon which it rests is, in most cases, not satisfied. In these cases, knowing
the relative frequency of one class could be of help in determining the prevalence of other related
classes. They thus propose the first truly multi-label quantification methods, i.e., methods for
inferring estimators of class prevalence values that strive to leverage the stochastic dependencies
among the classes of interest in order to predict their relative frequencies more accurately. They

Intermediate Outcomes of New Learning Paradigms Research 24 of 197



show empirical evidence that natively multi-label solutions outperform the naive approaches by a
large margin.

Finally, in Section 8.5 CNR describes other contributions related to LQ made in the reporting
period.
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4. Lifelong and on-line learning (Task 3.1) – detailed descrip-
tion

Contributing partners: CEA, AUTH, UNITN, UNIFI

Standard deep learning methods assume that all training data are available at once. This
hypothesis is often unrealistic since application-related data arrive in streams, and their charac-
teristics shift over time. Lifelong learning and on-line learning are two closely related research
topics whose purpose is to train models that constantly evolve as new data are ingested. This
poses certain challenges in the learning process since balance between stability and plasticity needs
to be guaranteed, two crucial properties that account for the performance obtained for past/new
data at each stage of the lifelong or on-line learning stages. Advances in these fields are needed in
AI4Media in order to keep pace with the dynamic nature of news and media content. New concepts
and events occur continually in them and the underlying models used for their automatic analysis
need to be updated continually to ensure an up-to-date processing.

4.1. FeTrIL: Feature Translation for Exemplar-Free Class-Incremental
Learning

Contributing partners: CEA

4.1.1. Introduction and methodology

Incremental learning [15] was introduced to reduce the memory and computational costs of machine
learning algorithms. The main problem faced by CIL methods is catastrophic forgetting [16,17],
the tendency of neural nets to underfit past classes when ingesting new data. Many recent
solutions [18–22], based on deep nets, use replay from a bounded memory of the past to reduce
forgetting. However, replay-based methods make a strong assumption because past data are
often unavailable [23]. Also, the footprint of the image memory can be problematic for memory-
constrained devices [24]. Exemplar-Free Class-Incremental Learning (EFCIL) methods recently
gained momentum [25–28]. Most of them use distillation [29] to preserve past knowledge, and
generally favor plasticity. New classes are well predicted since models are learned with all new
data and only a representation of past data [30–32]. A few EFCIL methods [33,34] are inspired by
transfer learning [35, 36]. They learn a feature extractor in the initial state, and use it as such later
to train new classifiers. In this case, stability is favored over plasticity since the model is frozen [30].

We introduce FeTrIL, a new EFCIL method which combines a frozen feature extractor and a
pseudo-feature generator to improve incremental performance. New classes are represented by their
image features obtained from the feature extractor. Past classes are represented by pseudo-features
which are derived from features of new classes by using a geometric translation process. This
translation moves features toward a region of the features space which is relevant for past classes.
The proposed pseudo-feature generation is adapted for EFCIL since it is simple, fast and only
requires the storage of the centroids for past classes. FeTrIL is illustrated with a toy example in
Figure 1.

4.1.2. Experimental results

4.1.2.1. Experimental Setup
Datasets. We have used four datasets to run exemplar-free CIL experiments: CIFAR-100 [37]
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Figure 1. Illustration of the proposed pseudo-feature generation procedure. This toy example includes an initial state
(3 classes) and two IL states (1 new class per state) in subfigures (a), (b) and (c). Subfigure (d) provides the actual
features of all classes that would be available for a classical learning. The illustration uses a 2D projection of actual
features. Pseudo-features of past classes are generated by geometric translation of features of the new class added in
each state with the difference between the centroids of the target past class and of the new class. While imperfect,
the pseudo-feature generator produces a usable representation of past classes. Best viewed in color.

which includes 100 classes, TinyImageNet [38] which includes 200 ImageNet subclasses, ImageNet-
Subset with 100 classes of ILSVRC [39], and the full ILSVRC with 1000 classes.

EFCIL scenarios. We use a classical EFCIL protocol from [27,28,32]. The number of classes
in the initial state is larger, and the rest of the classes are evenly distributed between incremental
states. CIFAR-100 and ImageNet-Subset are tested with: (1) 50 initial classes and 5 IL states of 10
classes, (2) 50 initial classes and 10 IL states of 5 classes, (3) 40 initial classes and 20 states of 3
classes, and (4) 40 initial classes and 60 states of 1 class.

Metric. The average incremental accuracy, widely used in CIL [20, 30], is the main evaluation
measure. For comparability with [27,28,32], it is computed as the average accuracy of all states,
including the initial one.

Implementation details. Following [20,27,28,32], we use ResNet-18 [40] in all experiments.
FeTrIL initial training is done uniquely with images of initial classes to ensure comparability with
existing methods. The feature extractor is trained in the initial state and then frozen for the
reminder of the IL process. We implement a supervised training with cross-entropy loss, SGD
optimization, a batch size of 128, for a total of 160 epochs. The initial learning rate is 0.1, and it is
decayed by 0.1 after every 50 epochs.

4.1.2.2. Comparison to State-of-the-art Methods
We use the following EFCIL methods in evaluation: LwF-MC [20], DeeSIL [33], LUCIR [19],

SDC [25], PASS [28], IL2A [27], SSRE [32]. These methods cover a variety of EFCIL approaches,
and some of them were proposed recently.

The results from Table 2 show that FeTrIL outperforms all compared methods in 11 tested
configurations out of 12. It is also close to the best in the remaining one. The second best results
are obtained with the very recent SSRE method [32]. FeTrIL and SSRE accuracies are close
to each other for CIFAR-100, but our model is better for the other datasets. PASS [28] and
IL2A [27], two other recent EFCIL methods, have lower average performance. We note that EFCIL
performance boost was recently reported, with methods such as PASS, IL2A, SSRE. These methods
combine knowledge distillation and sophisticated mechanisms for dealing with the stability-plasticity
dilemma. In contrast, our method uses a fixed feature extractor and a lightweight pseudo-feature
generator. FeTrIL only optimizes a linear classification layer, while compared recent methods
use backpropagation of the entire model, and need much more computational resources and time
to perform the IL process. Performance of the ILSVRC dataset is also very interesting. While
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CIL Method
CIFAR-100 TinyImageNet ImageNet-Subset ImageNet

T=5 T=10 T=20 T=60 T=5 T=10 T=20 T=100 T=5 T=10 T=20 T=60 T=5 T=10 T=20

LwF-MC∗ [20] (CVPR’17) 45.9 27.4 20.1 x 29.1 23.1 17.4 x - 31.2 - x - - -

LUCIR (CVPR’19) 51.2 41.1 25.2 x 41.7 28.1 18.9 x 56.8 41.4 28.5 x 47.4 37.2 26.6

SDC∗ [25] (CVPR’20) 56.8 57.0 58.9 x - - - x - 61.2 - x - - -

PASS∗ [28] (CVPR’21) 63.5 61.8 58.1 x 49.6 47.3 42.1 x 64.4 61.8 51.3 x - - -

IL2A∗ [27] (NeurIPS’21) 66.0 60.3 57.9 x 47.3 44.7 40.0 x - - - x - - -

SSRE∗ [32] (CVPR’22) 65.9 65.0 61.7 x 50.4 48.9 48.2 x - 67.7 - x - - -

DeeSIL [33] (ECCVW’18) 60.0 50.6 38.1 x 49.8 43.9 34.1 x 67.9 60.1 50.5 x 61.9 54.6 45.8

DSLDA [41] (CVPRW’20) 64.0 63.8 60.8 60.5 53.1 52.9 52.8 52.6 71.3 71.2 71.0 70.8 64.0 63.8 63.6

FeTrIL 66.3 65.2 61.5 59.8 54.8 53.1 52.2 50.2 72.2 71.2 67.1 65.4 66.1 65.0 63.8

Table 2. Average top-1 incremental accuracy in EFCIL with different numbers of incremental steps. FeTrIL results
are reported with pseudo-features translated from the most similar new class. ”-” cells indicate that results were not
available (see supp. material for details). ”x” cells indicate that the configuration is impossible for that method.
Best results - in bold, second best - underlined.

direct comparison to PASS or SSRE is impossible since these methods were not tested at scale,
ILSVRC results show that the simple method proposed here is effective for a high range of classes.
Interestingly, ILSVRC performance is stabler compared to smaller datasets since the pool of new
classes available for pseudo-features generation is larger.

Comparison to a transfer-learning baseline. DeeSIL [33] is a simple application of transfer
learning to EFCIL. It has no class separability mechanism across different incremental states since
classifiers are learned within each state. The important performance gain brought by FeTrIL
highlights the importance of class separability.

Behavior for minimal incremental updates. Compared EFCIL methods can only be
updated with a minimum of two classes per CIL state since they use discriminative classifiers, which
require both positive and negative samples. This is possible with FeTrIL because pseudo-features
can all originate from a single new class. Results in the right columns of CIFAR-100, TinyImageNet
and ImageNet-Subset from Table 2 show that the accuracy obtained in with one class increments is
close to that observed for T = 20. This highlights the robustness of FeTrIL with respect to frequent
updates.

4.1.3. Conclusion

The main contributions of this work are to:

• Introduce of a simple and scalable method for EFCIL which is based on pseudo-features
generation.

• Perform extensive experiments which show the effectiveness of FeTrIL compared to existing
methods whose computational requirements are order of magnitudes higher.

• Confirm previous findings [30,42] regarding the strong performance of transfer-learning-based
methods in EFCIL compared to the majority of existing methods which use a combination of
fine-tuning and distillation. This is important in the current AI context, since foundation
models can be easily leveraged by methods such as FeTrIL.

4.1.4. Relevant publications

• Petit, G., Popescu, A., Schindler, H., Picard, D., and Delezoide, B. (2023). Fetril: Feature
translation for exemplar-free class-incremental learning. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (pp. 3911-3920). [43].
Zenodo record: https://zenodo.org/record/7498807.
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4.1.5. Relevant software/datasets/other outcomes

• The PyTorch + Python implementation of FeTrIL can be found in https://github.com/

GregoirePetit/FeTrIL.

4.1.6. Relevance to AI4media use cases and media industry applications

FeTrIl enables a fast and effective updating of incremental learning models. As such, it can be
integrated in use cases which work with dynamic datasets and require swift updates of their
recognition models. In UC2 (2A and 2B), this algorithm can be used to process new topics
which appear in news. This is, for instance, the case of face recognition models which need to
integrate continuously faces of new people who occur in the news. Another relevant use case is UC3
(3C), where techniques such as FeTrIL can be used for the automatic management of unexpected
journalistic events. More generally, lightweight incremental learning models which are built on
top of pretrained models can be embedded in media applications which deal with sequential data
streams which exhibit representation shift over time.

4.2. AdvisIL - A Class-Incremental Learning Advisor

Contributing partners: CEA

4.2.1. Introduction and methodology

A major challenge of CIL is that it is subject to catastrophic forgetting [16,17], namely the tendency
of learning algorithms to abruptly forget previously acquired information when confronted with new
information. In order to learn reliable neural representations both for past and new classes, CIL
algorithms must balance between information retention, i.e. stability, and information acquisition,
i.e. plasticity. However, existing comparative studies [30,31,44] showed that when CIL algorithms
are tested in different incremental scenarios, no method outperforms all others. In addition to the
CIL algorithm itself, the main factors influencing the classification performance are the architecture
of the backbone neural network and the characteristics of the CIL scenario i.e., the memory budget,
the number of incremental steps, the number of classes in the initial step and the size of the
subsequent incremental steps.

Figure 2. Classification performance in percent for various combinations of CIL algorithm and backbone network,
averaged over five reference datasets containing 100 classes each in total. Scenario (a) has a memory budget of
1.5M parameters and consists of 20 steps with 5 classes each. Scenario (b) has a memory budget of 3.0M
parameters, and consists of 4 steps with 25 classes each. Here, as highlighted in purple, scenario (a) is best handled
by the combination of DSLDA and ResNet, while the combination of FeTrIL and ShuffleNet is a better match for
scenario (b). As the same combinations of CIL algorithm and backbone network are not ranked the same from one
scenario to another, it highlights the need for a recommendation method to select the best combination of CIL
algorithm and backbone network depending on the scenario.

The performance variability for two scenarios is illustrated in Figure 2. It shows that the same
combination of CIL algorithm and backbone network is not ranked the same from one EFCIL
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scenario to another. Thus, unlike other learning processes (i.e. classical, few-shot...) for which the
study of the SOTA on evaluation benchmarks gives good indications for the selection of the model,
EFCIL requires a more acute consideration of the learning scenario. These observations raise the
following questions:

1. Since choosing the best CIL algorithm first requires characterizing the CIL scenario, what
knowledge of this scenario may be realistically provided by the user?

2. Given a user’s CIL scenario, how to select a suitable combination of learning algorithm and
backbone network, without benchmarking each possible configuration?

We argue that, regarding (1), the users have little knowledge about their data and can only
approximately provide their CIL scenario’s characteristics. Based on this assumption, we propose to
tackle the selection issue (2) as a recommendation problem. We develop a user-centric method, called
AdvisIL, that recommends a combination of an exemplar-free CIL algorithm and a backbone network
scaled to the user’s needs. Based on a set of pre-computed EFCIL experiments, AdvisIL provides a
recommendation as follows:

1. The users specify their incremental learning settings (memory budget, number of steps, number
of initial classes and size of the incremental update).

2. The pre-computed experiments with settings closest to the user’s settings are selected.

3. The result is the combination of EFCIL algorithm and backbone network that ranks highest
in terms of classification performance with respect to the selected experiments.

As a result, our recommendation method facilitates the use of CIL approaches since the user
only provides the essential information about the incremental process. It prevents the users from
benchmarking each CIL algorithm and backbone network, hence saving them time and computation
efforts. AdvisIL is assessed by an evaluation protocol which uses four test datasets and eighteen
scenarios, allowing us to highlight the relevance of our recommendations in a variety of experimental
settings. To allow the use and the enrichment of AdvisIL by the community, and thus the quality
of its recommendations, we will share the code and the pre-computed experiments on which the
method is based.

4.2.2. Experimental results

4.2.2.1. Experimental Setup
EFCIL algorithms. In our experiments, we use a representative panel of the algorithms:

LUCIR [19], SPB [45], SIW [46], DeeSIL [33], DSLDA [41] and FeTrIL. We remind that LUCIR,
SPB and SIW update the backbone network at each incremental step, and thus focus on the
plasticity of representations. In contrast, DeeSIL, DSLDA and FeTrIL use a representation which is
fixed after the initial step, and thus favour stability. We implement all algorithms using PyTorch [47]
(implementation details can be found in [48]).

Backbone networks. In our experiments, we use: ResNet18 [40], MobileNetv2 [49] and
ShuffleNetv2 [50]. ResNet18 is widely used in the CIL literature. MobileNetv2 and ShuffleNetv2 are
designed for high accuracy while considering computational efficiency for embedded applications.
These backbone networks are scaled to fit various memory budgets.

Datasets for reference configurations. We consider five datasets which are sampled from
ImageNet [51] and denoted by INFood, INFauna, INFlora, INRand0 and INRand1.
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CIL scenarios. The memory budget m is defined as the number of parameters of the final
model (that contains 100 classes here) and is taken in {1.5M, 3M, 6M}. The chosen budgets reflect
the computational constraints of embedded devices, for which CIL is particularly useful

Test datasets We ran experiments on four test datasets denoted by INRand2, FOOD100,
INAT100 and LAND100. INRand2 is obtained by randomly sampling 100-classes of ImageNet [51].
The three other test datasets FOOD100, INAT100 and LAND100 contain 100 classes sampled from
FOOD101 [52], iNaturalist [53] and Google Landmarks v1 [54], respectively.

Test scenarios. The memory, algorithms and backbone networks budgets are the same three
as those used for generating reference configurations. We run experiments for each combination
of algorithm, backbone network, test dataset and test scenario. This corresponds to 1296 test
configurations.

Evaluation protocol As in the case of reference configurations, in our evaluation, model
performance is measured in terms of average incremental accuracy. We assess the recommendations
provided by AdvisIL as follows. Given a test dataset and a test scenario, we compare the average
incremental accuracy of the models trained according to:

i) AdvisIL’s recommended pair algorithm-backbone pair. The model built with this pair is
called the recommended model.

ii) Oracle pair: an upper-bound for AdvisIL which selects by brute force the best-performing
pair of algorithm and backbone network for each test configuration.

iii) Baseline pairs, which are three fixed combinations algorithm-backbone combinations: (FeTrIL,
ResNet), (DSLDA, ShuffleNet) (SPB, MobileNet) whose corresponding models are called
baseline models. These pairs were selected according to their aggregated rank on reference
datasets.

Settings Incr. acc. Incr. acc. difference

AdvisIL ∆O ∆b1 ∆b2 ∆b3

C
IL

se
tt
in
g

(k
,α

,β
)

(50, 2, 2) 24.42 -1.49 1.01 0.81 9.72

(25, 4, 4) 35.07 -0.63 0.30 4.35 13.44

(5, 20, 20) 55.74 -0.65 0.97 3.16 7.46

(13, 40, 5) 62.56 -0.73 2.33 0.06 12.17

(11, 50, 5) 64.40 -1.26 2.02 0.22 9.98

(6, 50, 10) 64.12 -1.56 1.12 0.55 6.64

B
u
d
g
et

m

1.5M 45.94 -1.46 0.37 2.76 6.96

3.0M 51.85 -0.79 2.32 0.52 10.27

6.0M 54.86 -0.92 1.18 1.30 12.47

T
es
t

d
a
ta
se
t INRand2 52.02 -0.73 1.20 1.71 12.51

INAT100 50.18 -1.22 1.57 1.66 10.03

FOOD100 28.03 -1.39 1.99 0.34 5.22

LAND100 74.52 -0.89 0.40 2.89 11.85

Avg 50.88 -1.04 1.29 1.52 9.90

Table 3. Classification performance of models built with AdvisIL’s recommendations on four test datasets and six
test scenarios. Results are grouped either by user-defined (k, α, β), a memory budget m, or by test dataset. The last
row corresponds to the average on all test configurations. The difference between the classification performance of
the oracle pair and AdvisIL’s recommendation is showed (∆Oracle). Similarly, the performance gaps between the
three baseline recommendations (∆b1,∆b2,∆b3) and AdvisIL’s recommendation are showed.

4.2.2.2. Results
In Table 3, we compare the performance of models built according to AdvisIL’s recommendation
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to the performance of models built according to the oracle pair and to the three baseline pairs.
On average, across all four test datasets and eighteen test scenarios, the recommended model
outperforms the best fixed model by 1.29%. The accuracy of the recommended models is below
the oracle, with an average gap of 1.04%. The gap between the average classification performance
of the recommended model and of that of the oracle is stable across scenarios, regardless of the
number of steps and class distribution among the steps, and regardless of the memory budget. It is
also stable across test datasets. Therefore, the recommendations are relevant whatever the scenario
and dataset.

4.2.3. Conclusion

The main contributions of this work are to:

• Introduce a recommendation method for EFCIL algorithms which are adapted to a specific
usage context.

• Propose neural architecture scaling methods to adapt them for on-device learning constraints.

• Evaluate different algorithms and neural architectures for a variety of CIL scenarios to show
the usefulness of the proposed recommendation approach.

4.2.4. Relevant publications

• Feillet, E., Petit, G., Popescu, A., Reyboz, M., and Hudelot, C. (2023). AdvisIL-A Class-
Incremental Learning Advisor. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (pp. 2400-2409). [48].
Zenodo record: https://zenodo.org/record/7498775.

4.2.5. Relevant software/datasets/other outcomes

• The PyTorch+Python implementation of AdvisIL can be found in https://github.com/

EvaJF/AdvisIL.

4.2.6. Relevance to AI4media use cases and media industry applications

AdvisIL is as a decision support tools for incremental learning practitioners to select suitable
continual learning methods for their specific applications. As such, it can be used by media industry
professionals who have limited technical expertise in continual learning to make informed decisions
about the implementation of this type of techniques in their AI-powered data processing pipelines.
It can be integrated in the following AI4Media use cases: (1) UC2 (2A and 2B) to process new
topics which appear in news and thus improve tagging and search capabilities in an effective and
efficient manner, (2) UC3 (3C) because the automatic management of unexpected journalistic
events requires a swift update of recognition models for relevant content such as faces or company
brands.

4.3. Towards Human Society-inspired Decentralized DNN Inference

Contributing partner(s): AUTH
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4.3.1. Introduction and methodology

In human societies, individuals make their own decisions and they may select if and who may
influence it. At a societal level, the overall knowledge is preserved and enhanced by individual
person empowerment, where complicated consensus protocols have been developed over time in
the form of societal mechanisms to assess, weigh, combine, and isolate individual people’s opinions.
In distributed machine learning environments, however, individual AI agents are merely part of a
system where decisions are made in a centralized and aggregated fashion or require a fixed network
topology, a practice prone to security risks and collaboration is nearly absent. Inspired by societal
practices, we propose a decentralized inference strategy where each individual agent is empowered
to make their own decisions, by exchanging and aggregating information with other agents in their
network. To this end, a ”Quality of Inference” consensus protocol (QoI) is proposed, forming a single
commonly accepted inference rule applied by every individual agent. The overall system knowledge
and decisions on specific manners can thereby be stored by all individual agents in a decentralized
fashion, employing e.g., blockchain technology. Moreover, a fault-tolerant inference architecture in
which misbehaving AI agents are penalized, reducing their influence on the decision-making process
of honest agents is designed.

Let G = {A, E} be a direct acyclic graph consisting of M collaborating AI agents described in a
set A = {α1, α2, ..., αM}, that are employed to perform some inference task, e.g., classification, and
E defined as a set of fixed communication links allowing them to communicate with each other.
It is assumed that all agents have obtained access to the same test sample x, while their goal for
them is to produce a single prediction ŷ. This work differentiates the following strategies:
Centralized inference refers to the case where each AI agent αi produces an intermediate prediction
yi for a given test sample xi. A master node thereby collects and aggregates the individual AI agent
predictions and produces the final system output, using e.g., an average/median rule or majority
voting.
Distributed inference refers to the case where individual nodes only perform computational tasks,
i.e., the inference task is divided between each of the nodes and/or a master node, and the final
output of the system for a given test sample is provided by the master node.
Decentralized inference refers to the case where individual nodes αi make their own predictions for
a given sample as in the centralized inference case, however, the aggregation is performed by all
participating AI nodes, using a consensus protocol. A conceptual diagram presenting the different
problem variants is shown in Figure 3.

Figure 3. A conceptual diagram of centralized, distributed, and decentralized inference.

4.3.2. Experimental results

QoI protocol operates in rounds in which each consensus round is defined as one execution of
the normal operation process regardless if it is successful or not. Views describe the consensus
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rounds that are required in order for the network to reach a consensus about a given sample and
are defined as an index of the form vϵV, containing a sequence of testing pairs whose predictions
have been scheduled in the time interval t. At each view, one agent is operating as primary while
the rest M − 1 agents are operating as validators. Our goal is that every honest agent in M
maintains an identical prediction history set defined as Ŷ = {ŷij , ∀v ∈ V and j ∈ C} given a set of
C = {c1, c2, ..., cC} classes where ∥C∥ = C.

For each consensus round, a primary agent, apϵA be the primary agent, the election formula is
defined as:

ap = v mod |A|, (1)

where |A|= M and vϵV represent the view we are currently working on.
View Change. Once the primary agent of the current view is detected as faulty, view change

is performed in order to be replaced. Specifically, in the vth view, the primary agent is promoting a
prediction for the ith sample of the form:

ŷp = argmax (fp (xi)) . (2)

Validators observe the produced prediction and vote accordingly. Let ajϵA represent a random
validator that has just received the primary’s message. If its predicted value ŷj ̸= ŷp or vj ̸= vp then,
from now onwards, the jth agent recognizes the primary as faulty and is voting for its replacement
as:

votej =

{
1, if ŷj ̸= ŷp or vj ̸= vp

0, otherwise
. (3)

If the current primary is honest, it is rewarded by a predetermined amount of quality points (q)
for its honest work.

For a given primary ap, the reward and the penalty are calculated as:

rp =

q, if
∑M−1

i=1 votei
|A| < 0.5

0.5rp, if
∑M−1

i=1 votei
|A| ≥ 0.5

. (4)

We conducted experiments for Individual Agent Decision Aggregation (IADA) and QoI protocols
respectively. According to our setup, the base-line agents are first boosted via the IADA method,
and then a consensus agreement is established between them. The proposed IADA method is
reported with the acronym DA for the probability-based condition and DWA for the weighted-based
condition (see Table 4). For the QoI protocol, the three rules are clearly reported. Comparisons are
conducted with majority voting and weighted average aggregation methods.

Our experiments showed that this framework allows each individual agent to make their own
decisions by exchanging and aggregating information with other agents in their network, in an
effort to improve individual performance. Additionally, it has been shown that by adopting a
fault-tolerant inference architecture, miss- behaving AI agents can be punished in a way that
dramatically lessens their ability to influence the decisions of good agents. Our classification
task studies have demonstrated that the suggested methodologies form a secure decentralized
inference framework, which hinders adversaries from interfering with the whole process and delivers
performance comparable to centralized decision aggregation techniques.

4.3.3. Relevant publications

• D. Papaioannou, V. Mydgalis and I. Pitas, “Towards Human Society-inspired Decentralized
DNN Inference”, Under Review [55].
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Table 4. Comparison of Aggregation Methods in Real Datasets

Experiments Dataset Centralized Voting Rules QoI Consensus Protocol

Weight Average Majority Voting Class Rule Weight Rule Hybrid Rule

Base Agents 94.09 93.75 93.58 94.12 93.62

DA SVHN - - 94.02 94.20 93.99

DWA - - 93.97 94.16 93.95

Base Agents 95.12 95.05 95.04 95.27 94.97

DA Cifar-10 - - 95.05 95.21 95.14

DWA - - 95.16 95.29 95.17

Base Agents 74.65 73.96 71.47 71.42 71.64

DA Cifar-100 - - 73.84 74.01 73.85

DWA - - 74.80 74.96 74.74

Base Agents 92.51 92.01 91.94 92.33 92.01

DA F-MNIST - - 92.15 92.28 92.17

DWA - - 92.16 92.13 92.14

Base Agents 80.11 79.29 78.19 78.21 78.49

DA STL-10 - - 79.49 79.44 79.34

DWA - - 79.19 79.07 79.27

4.3.4. Relevance to AI4media use cases and media industry applications

Our paper is related and contributes to UC7 ”AI for Content Organization and Content Moderation”
and UC1 ”AI against Disinformation” as it proposes a decentralized inference strategy that can
be incorporated into advanced deep learning techniques for content analysis. Inspired by societal
practices, we propose a decentralized decision-making strategy where individual neural agents are
empowered to make their own decisions, by exchanging and aggregating information with other
agents in a shared network. Through the integration of advanced AI functionalities and the proposed
decentralized inference strategy, media companies can efficiently and cost-effectively manage their
visual content, ensuring its relevance and safety, since our method prevents overall process tampering.
Ultimately, while our decentralized inference strategy promotes individual empowerment within AI
systems, it also enhances security and fosters collaboration between multiple neural agents.

4.4. Quantifying the knowledge in Deep Neural Networks: an overview

Contributing partner(s): AUTH

4.4.1. Introduction and methodology

Deep Neural Networks (DNNs) have proven to be extremely effective at learning a wide range
of tasks. Due to their complexity and frequently inexplicable internal state, DNNs are difficult
to analyze: their black-box nature makes it challenging for humans to comprehend their internal
behavior. Several attempts to interpret their operation have been made during the last decade, but
analyzing deep neural models from the perspective of the knowledge encoded in their layers is a
very promising research direction, which has barely been touched upon. Such a research approach
could provide a more accurate insight into a DNN model, its internal state, learning progress, and
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Figure 4. The emergence of possible knowledge points encoded by the DNN visualized as image regions.

knowledge storage capabilities. The purpose of this work is two-fold: a) to review the concept of
DNN knowledge quantification and highlight it as an important near-future challenge, as well as
b) to provide a brief account of the scant existing methods attempting to actually quantify DNN
knowledge.

Knowledge quantification metrics would allow for more precise conclusions regarding what a
DNN has learned during its training process. Although no commonly accepted definition of DNN
knowledge has been proposed yet, several metrics falling under this general area have been presented
in recent years. The most obvious and naive choice is to simply measure the accuracy of DNN
predictions on a known test set. Besides this, two types of more advanced methods have emerged:
a) information-theoretic metrics, which leverage an individual DNN layer’s information to quantify
the knowledge it encodes, and b) knowledge points metrics, that quantify the knowledge points
stored in a trained DNN.

A group of DNN knowledge quantification methods measures a trained DNN layer’s information.
The underlying assumption is that the amount of this information is proportional to the knowledge
this layer encodes, thus it may act as a proxy for the latter one. Entropy has been a metric widely
utilized in recently developed approaches for information quantification. Information-theoretic
DNN knowledge quantification methods measure a trained DNN layer’s information.

The amount of knowledge of each DNN layer is measured as knowledge points, i.e., input units,
whose information is regarded as important for decision-making, since it is discarded much less
than the information of others (Figure 4). The amount of information discarding of each input
unit is formulated as the entropy H(Xc), where Xc denotes a set of inputs xc corresponding to the
concept of a specific object instance.

4.4.2. Experimental Results

We have identified two types of DNN knowledge quantification metrics: information-theoretic and
knowledge points metrics. Figure 5 depicts the evolution of the knowledge quantification methods
studied in this survey. The relevant metrics are summarized in Table 5.

As it can be observed in Table 5, all methods primarily aim to interpret and define the DNN
knowledge, to design appropriate quantification metrics. Information-theoretic metrics measure a
trained DNN layer’s information assuming that the amount of this information is proportional to
the knowledge this layer encodes. Although this assumption is drawn as an obvious conclusion,
specifically defining the DNN knowledge is demanded. Knowledge points methods directly define
knowledge as the total amount of knowledge points encoded by the DNN and fairly quantify its
actual amount. They can interpret and diagnose the inner workings of DNNs not only by measuring
the number of encoded knowledge points but moreover, by evaluating their quality.
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Figure 5. A timeline of the metrics defined to quantify the knowledge of Deep Neural Networks.

Table 5. Knowledge quantification methods.

Method Architecture Modality Task Year

Information-theoretic metrics

Strict Information Discarding [56] Generic Generic Generic 2019

Reconstruction Uncertainty [56] Generic Generic Generic 2019

Filter Contribution (Net2Vec) [57] CNN Images Segmentation 2018

Unified Information-based measure [58] Generic Language Generic 2019

Geometric Mutual Information [59] Generic Generic Generic 2021

Knowledge points metrics

Number of knowledge points [60] Generic Generic Classification 2022

Number of knowledge points [61] CNN Images Classification 2021

A reliable DNN knowledge quantification metric should meet the coherency and generality
criteria as overviewed in Table 6. Coherency implies that a method needs to enable fair layer-wise
comparisons and fair comparisons between different networks. Generality refers to the fact that a
method should have strong connections to existing mathematical theories and should be defined
without regard for model architectures or tasks.

A number of the methods summarized above have been designed specifically for deep CNNs.
However, the vast majority are generic and applicable to multiple different neural architectures. The
majority of the relevant experiments found in the literature are conducted on image analysis tasks.
Almost all of the presented methods focus solely on experiments for classification settings. Given
the level of maturity other computational tasks have achieved thanks to DNNs, it is evident that
this is still an emerging area in urgent need of additional investigation. Novel metrics need to be
precisely defined and alternative approaches to measure the knowledge of trained DNN knowledge
must be discovered.
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Table 6. Comparisons of the methods in terms of coherency and generality.

Method

Coherency

GeneralityFair layer-wise
comparisons

Fair network
comparisons

Information-theoretic methods

Strict Information Discarding [56] Yes Yes Yes

Reconstruction Uncertainty [56] Yes Yes Yes

Filter Contribution (Net2Vec) [57] Yes Yes No

Unified Information-based measure [58] Yes Yes Yes

Geometric Mutual Information [59] Yes No Yes

Knowledge points based methods

Number of Knowledge points [60] Yes Yes Yes

Number of Knowledge points [61] Yes Yes No

4.4.3. Relevant publications

• I. Valsamara, I. Mademlis and I. Pitas,“ Quantifying the knowledge in Deep Neural Networks:
an overview”, Under Review [62].

4.4.4. Relevance to AI4media use cases and media industry applications

While our work contributes to UC7 “AI for Content Organisation and Moderation” as it explores
techniques incorporated into advanced deep learning methods, it can be also incorporated in all
AI4MEDIA use cases where the knowledge of Deep Neural Networks (DNNs) needs to be quantified.
Specifically, within UC7, the need for AI-powered tools to efficiently categorize, tag, and moderate
media content is paramount. Understanding DNNs by shedding light on how they operate and store
knowledge, is pivotal in achieving these goals efficiently. By studying state of the art knowledge
quantification methods for DNNs, our work facilitates the development of more robust and effective
AI algorithms to be utilized by the media sector.

4.5. Knowledge Distillation-driven Communication Framework for Neu-
ral Networks: Enabling Efficient Student-Teacher Interactions

Contributing partner(s): AUTH

4.5.1. Introduction and methodology

Humans acquire new knowledge over time through education, while Artificial Intelligence (AI)
systems are trained on specific datasets. Teacher-Student network frameworks connect AI agents
supporting learning by education, instead of learning from data. The proposed Teacher-Student
network framework introduces a novel agent architecture that can adapt to different task objectives
and perform knowledge self-assessment. The framework facilitates the exchange of knowledge
between teacher agents, who possess domain-specific knowledge, and student agents, who have the
ability to select competent teachers for learning. It supports ”learning by education”, instead of
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”learning from data”. In the multi-agent environment, student agents can learn from the existing
knowledge within the framework, rather than relying on additional labeled data to perform better
on each task, as it is shown in Figure 6.

Figure 6. A DNN agent inside a teacher-student network framework, digesting or diffusing domain-specific
knowledge.

The proposed framework focuses on multiple education scenarios, where the task and its goals
are dynamic, and therefore, the task-relevant DNN knowledge should be available to be digested. At
all times, each agent possesses the ability of self-knowledge assessment indicating that it understands
its state and task environment by evaluating its own knowledge via the knowledge self-assessment
module. Moreover, any agent may seek knowledge from the most knowledgeable and qualified
teacher agents, access and evaluate it, and choose one or more specific domain-educated teachers
to digest new knowledge. The framework connects DNN agents and enables student and teacher
interactions between them as can be seen in Figure 7. All agents can become students and digest
knowledge, or teachers and diffuse their knowledge. After each education cycle, the student model
is expected to be much more competent in its task, due to its old and novel education.

Figure 7. An unconstrained multi-agent environment where each agent can become a teacher and diffuse knowledge
or a student and digest knowledge depending on the incoming data.

The DNN agent structure is composed of multiple cooperating modules as shown in Figure 8 and
is detailed below. The Knowledge module is typically a Deep Neural Network classification model,
capable of learning and performing inference. The Knowledge Self-Assessment (KSA) module
is able to perform self-assessment and provide trustworthy decisions about whether the agent is
knowledgeable or not at the current time, for each task, utilizing an Out Of Distribution Detection
(OODD) algorithm. OODD methods can be employed in cases of pre-trained neural network models
making inferences with test-phase inputs drawn from a data distribution that may differ from that
of the training dataset. Using the KSA module, the agent is able to make decisions about the new
data and whether they belong to its training data domain or not in order to decide if it can handle
them efficiently. The KSA module is a Variational Auto-Encoder using an OOD detection score,
namely Logistic Regression [63]. LR can be regarded as the log ratio of the likelihood gained from
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the generative model Varitional AutoEncoder (VAE) with the variational posterior distribution
optimal configuration for any particular input data, to its likelihood acquired from the VAE trained
on the training data set. KSA is pre-trained and is able to discriminate, at deployment time,
between known or unknown knowledge module inputs, testing whether new data belong to the
domain in which the agent is trained.

Figure 8. The agent structure inside the teacher-student network framework.

4.5.2. Experimental results

The experiments conducted, regarding the functionality of the framework, aim to test the pipeline
and the alternative choices each node have. To this end, five nodes were initialized, with the
following properties:

• Node 1 with out-of-distribution detector (FMNIST), classifier (FMNIST) with 71,37% accu-
racy.

• Node 2 with out-of-distribution detector (MNIST), classifier (MNIST) with 85,62% accuracy.

• Node 3 with no out-of-distribution detector or classifier.

• Node 4 with out-of-distribution detector (FMNIST), classifier (FMNIST) with 69,29% accuracy

• Node 5 with no out-of-distribution detector or classifier, that will face new data (student).

The initial step involves providing new FMNIST data to Node 5 to evaluate the overall functionality
of the framework. Since Node 5 does not have an out-of-distribution detector, it forwards the data
to the entire framework comprising Nodes 1-4 in search of potential teachers. Both Node 1 and
Node 4 respond positively, indicating their availability as potential teachers. To determine the
most knowledgeable teacher, their knowledge is assessed by measuring their accuracy scores on the
given data. After the assessment process of the available teachers, Node 1 demonstrates superior
knowledge and is thus assigned the role of the teacher within the framework. Once Node 1 is chosen
as the teacher, the student (Node 5) within the framework is provided with the following scenarios
to acquire knowledge from the teacher:

S.1 request training data

S.2 seek knowledge distillation using soft-output

S.3 seek knowledge distillation using feature layers
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S.4 request the teacher’s weights

The results from using the different scenarios are gathered in Table 7.

Table 7. Comparisons on the accuracy values of the proposed knowledge acquisition scenarios, with FMNIST as the
student’s knowledge acquisition target.

S.1 S.2 S.3 S.4

Accuracy 71.37% 86.59% 88.23% 71.37%

To better illustrate our point, we employed small architectures in our experiments. We specifically
chose an architecture that, when trained using traditional learning methods, could not surpass
an accuracy level of 72%. However, by incorporating knowledge distillation techniques, the same
architecture was able to achieve an impressive accuracy of 88%.

Similarly, we conducted the same experiment using the CIFAR10 and SVHN datasets, which
yielded consistent results. The nodes in this experiment are as follows:

• Node 1 with out-of-distribution detector (CIFAR10), classifier (CIFAR10) with 56.91%
accuracy.

• Node 2 with out-of-distribution detector (SVHN), classifier (SVHN) with 75.86% accuracy.

• Node 3 with no out-of-distribution detector or classifier.

• Node 4 with out-of-distribution detector (CIFAR10), classifier (CIFAR10) with 53.17%
accuracy

• Node 5 with no out-of-distribution detector or classifier, that will face new data (student).

Nodes 1 and 4 are also in this case, possible teachers. The results from using the different
scenarios are gathered in Table 8.

Table 8. Comparisons on the accuracy values of the proposed knowledge acquisition scenarios, with CIFAR10 as the
student’s knowledge acquisition target.

S.1 S.2 S.3 S.4

Accuracy 56.91% 57.72% 57.89% 56.91%

4.5.3. Relevant publications

• A. Kaimakamidis, I. Valsamara and I. Pitas, “Knowledge Distillation-driven Communication
Framework for Neural Networks: Enabling Efficient Student-Teacher Interactions”, technical
report [64].

4.5.4. Relevance to AI4media use cases and media industry applications

Our research paper introduces a novel framework designed to facilitate communication and knowledge
exchange among Deep Neural Networks (DNNs), serving as a versatile solution for DNN-to-
DNN interactions. This framework offers opportunities to enhance learning capabilities, foster
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collaboration, and improve overall network performance. It finds relevance in several AI4Media
use cases where advanced deep learning techniques play pivotal roles, such as UC3 ”AI in Vision -
High quality Video Production and Content Automation”. It offers a novel method for knowledge
transfer among neural networks, making it a valuable asset in addressing the challenges of content
organization, content enhancement, and media content analysis. Ultimately, our framework promotes
co-operation between media sector companies, by increasing performance of each individual AI
system through knowledge sharing in a Deep Learning agent grid, while ensuring each agent’s
capability of privacy preservation.

4.6. Curriculum Learning: A Survey

Contributing partner(s): UNITN

Training machine learning models in a meaningful order, from the easy samples to the hard ones,
using CL can provide performance improvements over the standard training approach based on
random data shuffling, without any additional computational costs. Curriculum learning strategies
have been successfully employed in all areas of machine learning, in a wide range of tasks. However,
the necessity of finding a way to rank the samples from easy to hard, as well as the right pacing
function for introducing more difficult data can limit the usage of the curriculum approaches. Our
goal was to show how these limits have been tackled in the literature, and to present different
curriculum learning instantiations for various tasks in machine learning. We also wanted to provide
some interesting directions for future work.

Context and motivation. Deep neural networks have become the state-of-the-art approach in
a wide variety of tasks, ranging from object recognition in images [65–68] and medical imaging [69–72]
to text classification [73–76] and speech recognition [77,78]. The main focus in this area of research
is on building deeper and deeper neural architectures, this being the main driver for the recent
performance improvements. For instance, the CNN model of Krizhevsky et al. [65] reached a top-5
error of 15.4% on ImageNet [79] with an architecture formed of only 8 layers, while the more recent
ResNet model [68] reached a top-5 error of 3.6% with 152 layers. While the CNN architecture has
evolved over the last few years to accommodate more convolutional layers, to reduce the size of
the filters, and even to eliminate the fully-connected layers, comparably less attention has been
paid to improving the training process. An important limitation of the state-of-the-art neural
models mentioned above is that examples are considered in a random order during training. Indeed,
the training is usually performed with some variant of mini-batch stochastic gradient descent, the
examples in each mini-batch being chosen randomly.

Since neural network architectures are inspired by the human brain, it seems reasonable to
consider that the learning process should also be inspired by how humans learn. One essential
difference from how machines are typically trained is that humans learn the basic (easy) concepts
sooner and the advanced (hard) concepts later. This is basically reflected in all the curricula taught
in schooling systems around the world, as humans learn much better when the examples are not
randomly presented but are organized in a meaningful order. Using a similar strategy for training a
machine learning model, we can achieve two important benefits: (i) an increase of the convergence
speed of the training process and (ii) a better accuracy. A preliminary study in this direction has
been conducted by Elman [80]. To our knowledge, Bengio et al. [81] are the first to formalize the
easy-to-hard training strategies in the context of machine learning, proposing the CL paradigm.
This seminal work inspired many researchers to pursue curriculum learning strategies in various
application domains, such as weakly supervised object localization [82–84], object detection [85–88]
and neural machine translation [89–92] among many others. The empirical results presented
in these works show the clear benefits of replacing the conventional training based on random
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mini-batch sampling with curriculum learning. Despite the consistent success of curriculum learning
across several domains, this training strategy has not been adopted in mainstream works. This
fact motivated us to write this survey on curriculum learning methods in order to increase the
popularity of such methods. On another note, researchers proposed opposing strategies emphasizing
harder examples, such as Hard Example Mining (HEM) [93–96] or anti-curriculum [97,98], showing
improved results in certain conditions.

(a) General framework for data-level curriculum learning. (b) General framework for model-level curriculum.

Figure 9. General frameworks for data-level and model-level curriculum learning, side by side. In both cases, k is
some positive integer. Best viewed in color.

Figure 9 illustrates the general frameworks for curriculum learning applied at the data level and
at the model level, respectively. The two frameworks have two common elements: the curriculum
scheduler and the performance measure. The scheduler is responsible for deciding when to update
the curriculum in order to use the pace that gives the highest overall performance. Depending on the
applied methodology, the scheduler may consider a linear pace or a logarithmic pace. Additionally,
in self-paced learning, the scheduler can take into consideration the current performance level to find
the right pace. When applying CL over data (see Figure 9a), a difficulty criterion is employed in
order to rank the examples from easy-to-hard. Next, a selection method determines which examples
should be used for training at the current time. Curriculum over tasks works in a very similar way.
In Figure 9b, we observe that CL at model level does not require a difficulty criterion. Instead, it
requires the existence of a model capacity curriculum. This sets how to change the architecture or
the parameters of the model to which all the training data is fed.

On another note, we remark that continuation methods can be seen as curriculum learning
performed over the performance measure P [99]. However, this connection is not typically mentioned
in literature. Moreover, continuation methods [100–102] were studied long before curriculum learning
appeared [81]. Research on continuation methods is therefore considered an independent field of
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study [100, 102], not being necessarily bounded to its applications in machine learning [101], as
would be the case for curriculum learning. In this context, our survey on curriculum learning does
not include continuation methods.

4.6.1. Contributions

Our first contribution is to formalize the existing curriculum learning methods under a single
umbrella. This enables us to define a generic formulation of curriculum learning. Additionally, we
link curriculum learning with the four main components of any machine learning approach: the
data, the model, the task and the performance measure. We observe that curriculum learning can
be applied on each of these components, all these forms of curriculum having a joint interpretation
linked to loss function smoothing. Furthermore, we manually create a taxonomy of curriculum
learning methods, considering orthogonal perspectives for grouping the methods: data type, task,
curriculum strategy, ranking criterion and curriculum schedule. We corroborate the manually
constructed taxonomy with an automatically built hierarchical tree of curriculum methods. In large
part, the hierarchical tree confirms our taxonomy, although it also offers some new perspectives.
While gathering works on curriculum learning and defining a taxonomy on curriculum learning
methods, our survey is also aimed at showing the advantages of curriculum learning. Hence, our
final contribution is to advocate the adoption of curriculum learning in mainstream works.

We are not the first to consider providing a comprehensive analysis of the methods employing
curriculum learning in different applications. Recently, Narkevar et al. [103] survey the use of
curriculum learning applied to reinforcement learning. They present a new framework and use it
to survey and classify the existing methods in terms of their assumptions, capabilities and goals.
They also investigate the open problems and suggest directions for curriculum RL research. While
their survey is related to ours, it is clearly focused on RL research and, as such, is less general than
ours. Directly relevant to our work is the recent survey of Wang et al. [104] (available only as a
preprint at the moment). Their aim is similar to ours as they cover various aspects of curriculum
learning including motivations, definitions, theories and several potential applications. We are
looking at curriculum learning from a different view point and propose a generic formulation of
curriculum learning. We also corroborate the automatically built hierarchical tree of curriculum
methods with the manually constructed taxonomy, allowing us to see curriculum learning from a
new perspective. Furthermore, our review is more comprehensive, comprising nearly 180 scientific
works. We strongly believe that having multiple surveys on the field will strengthen the focus and
bring about the adoption of CL approaches in the mainstream research.

4.6.2. Relevant publications

• P. Soviany, R. Ionescu, P. Rota and N. Sebe, Curriculum Learning: A Survey, International
Journal of Computer Vision, 130(6):1526-1565, June 2022. [105].
Zenodo record: https://zenodo.org/record/7100343.

4.7. Class-incremental Novel Class Discovery

Contributing partner(s): UNITN

4.7.1. Introduction and methodology

Humans are bestowed with the excellent cognitive skills to learn continually over their lifetime [106],
and in most cases without the need of explicit supervision [107]. Thus, it has been a long-standing
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Figure 10. Comparison between the settings (a) NCD which solely concerns the performance of novel classes, and
(b) the proposed class-incremental NCD (class-iNCD) that measures performance of all the classes seen so far with
a single classifier.

goal of the machine learning research community to build AI systems that can mimic this human-
level performance. In an attempt to realize this, much effort has been dedicated to learn deep
learning models from large reservoirs of both labelled [108–110] and unlabelled data [111, 112].
Aside from being effective learners, by imitating human learning mechanisms, neural networks
should also be flexible to absorb novel concepts (or classes) after having learned some patterns
with the past data. The task of automatically discovering novel (or new) classes in an unsupervised
fashion while leveraging some previously learned knowledge is referred to as novel class discovery
(NCD) [113–117] (see Figure 10(a)). NCD has gained significant attention in the recent times due to
its practicality of efficiently learning novel classes without relying on large quantities of unlabelled
data [113].

Most of the proposed NCD solutions rely on stage-wise [114, 118, 119] or joint [113, 115, 117]
learning schemes on the labelled and the unlabelled data, with the assumption that structures
discovered on the labelled images could be leveraged as a proxy supervision on the unlabelled
images. It has been shown that NCD benefits more when the model is trained jointly on the
labelled data while using a clustering objective on the unlabelled data [113, 115–117]. However,
access to the labelled data after the pre-training stage can not always be guaranteed in real-world
applications due to privacy or storage issues. This calls for a more pragmatic NCD setting where
the labelled images would be discarded and only the pre-trained model could be transferred for
learning the novel classes. Being meaningful, such source-free model adaptation has been explored
in the related areas of domain adaptation [120, 121]. Although it seems more practical, such a
training scheme would gradually cause the network to erase all the previously learned information
about the old (or base) classes. This drop in the base class performance when the labelled data
set becomes unavailable is primarily attributed to the phenomenon of catastrophic forgetting [122]
in neural networks. In most of the aforementioned NCD methods the performance on the novel
classes are only deemed important, without any consideration for preserving the performance on
the base classes. We believe that such a setting is of little practical significance in the real world
because the adapted model becomes unusable on the base classes and retraining is infeasible.

Given the inherent drawbacks of the existing NCD setting, we argue that an ideal NCD method
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Table 9. Comparison with state-of-the-art methods in class-iNCD.

Methods
CIFAR-10 CIFAR-100 Tiny-ImageNet Average

Old New All Old New All Old New All Old New All

AutoNovel [113] 27.5 3.5 15.5 2.6 15.2 5.1 2.0 26.4 4.5 10.7 15.0 8.4

ResTune [123] 91.7 0.0 45.9 73.8 0.0 59.0 44.3 0.0 39.9 69.9 0.0 48.3

NCL [115] 92.0 1.1 46.5 73.6 10.1 60.9 0.8 6.5 1.4 55.5 5.9 36.3

DTC [130] 64.0 0.0 32.0 55.9 0.0 44.7 35.5 0.0 32.0 51.8 0.0 36.2

FRoST 77.5 49.5 63.4 64.6 45.8 59.2 54.5 33.7 52.3 65.5 39.8 54.9

should aim to learn novel classes without the explicit presence of the labelled data and at the same
time preserve the performance on the base classes. This new setting is referred to as task-incremental
NCD (iNCD), and indeed has been very recently studied in [123]. In details, ResTune [123] uses
knowledge distillation [124] on the network logits to prevent forgetting on the base classes and a
clustering objective [125] with task specific network weights for the novel classes. As opposed to
the ResTune [123], which facilitates iNCD by solely improving the ability of the network to learn
novel classes, we additionally improve the incremental learning aspect in iNCD as well. Specifically,
inspired by the rehearsal-based incremental learning methods [126–128] which are known to be
effective, we propose to store the base class feature prototypes from the previous task as exemplars,
instead of raw images. Features derived from the stored prototypes are then replayed to prevent
forgetting old information on the base classes in addition to feature-level knowledge distillation.
On the other hand, to facilitate learning of novel classes, we dedicate a task specific classifier that
is optimized with robust rank statistics [113]. Disadvantageously, the introduction of task specific
classifier leads to the dependence on the task-id of an input sample during inference. To overcome
reliance on task-id, we propose to maintain a joint classifier for both the base and novel classes,
which is trained with the pseudo-labels generated by the task specific one. We call this setting as
class-incremental NCD (class-iNCD) as it does not allow the task-id information to be used during
inference. The high level overview of the new class-iNCD setting is shown in Figure 10(b). As our
proposed method amalgamates Feature Replay and Distillation with Self-Training, we name it
FRoST.

4.7.2. Experimental results

4.7.2.1. Experimental Setup Datasets. We have used three data sets to conduct experiments
for class-iNCD: CIFAR-10 [129], CIFAR-100 [129] and Tiny-ImageNet [38]. We split the data sets
into the old and new classes following the existing NCD and iNCD works [113,115,123].
Evaluation metrics. We used our new evaluation protocol to evaluate the performance on the
test data for all the classes. We report three classification accuracies, denoted as Old, New and
All. They represent the accuracy obtained from the joint classifier head on the samples of the old,
new and old+new classes, respectively.
Implementation details We used ResNet-18 [109] as the backbone in all the experiments. We
have adopted most of the hyperparameters from AutoNovel [113]. We introduce only one additional
hyperparemeter λ, which is set to 10.

4.7.2.2. Comparison with State-of-the-art Methods We compare our FRoST with the
state-of-the-art NCD methods under the newly proposed class-iNCD setting. We also compare with
ResTune [123] which is a recently proposed method for iNCD. As none of these existing methods
have been evaluated in the class-iNCD setting, we re-run the baselines and simply modify our
evaluation protocol. We report the results of the NCD [113–115], iNCD [123] baselines and FRoST
in Table 9. As can be observed, under the class-iNCD all the NCD [113–115] fail to obtain a good
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(a) Ours (b) Ours w/o FD&FR (c) Ours w/o ST (d) AutoNovel (e) ResTune

Figure 11. Comparisons of confusion matrix of different methods. Note that, the label IDs of novel classes are
re-assigned by our evaluation protocol.

Table 10. Comparison with the state-of-the-art methods in the two-step class-iNCD setting where new classes arrive
in two episodes, instead of one. New-1-J: new classes performance from joint head at first step, New-1-N: new
classes performance from novel head at first step, etc.

Methods

Tiny-ImageNet

First Step (180-10) Second Step (180-10-10)

Old New-1-J New-1-N All Old New-1-J New-2-J New-1-N New-2-N All

ResTune [123] 39.7 0.0 38.0 37.6 34.9 0.0 0.0 25.4 42.8 31.4

DTC [130] 38.9 0.0 43.8 36.9 33.4 0.0 0.0 28.0 59.4 30.1

NCL [115] 5.6 0.0 34.2 5.3 1.4 0.0 2.6 21.6 41.6 1.4

FRoST 55.2 27.6 32.0 53.8 42.5 34.8 31.2 31.2 46.8 41.6

balance on the old and new classes. Interestingly, while none of these NCD methods use any explicit
objectives to prevent forgetting, they tend to predict well the old classes (see column Old in Table
9) and poor performance on new classes (see column New in Table 9). When visualizing the
confusion matrix in Figure 11, we found that most of the test samples get classified as old classes
due to the old classes classifier having higher norms. As a consequence, this gives the impression
that the baselines methods are able to retain performance on old classes. Second, for the above
methods, although the new classes performance obtained with the joint head appears to be low, the
actual performance of their novel head in the task-aware evaluation is indeed high. We report the
breakdown of the novel classes performance in Table 10 where, for instance, the column New-1-N
denotes the task-aware clustering performance of the novel head on the new classes. As can be
observed, the new classes classifier of the NCD baselines can indeed learn on the new classes (e.g.,
34.2% in NCL vs 32.4% in FRoST).

ResTune, although designed specifically for the iNCD setting, exhibits similar counter-intuitive
behaviour with the performance on the old classes dominating the new classes. To investigate this
pathology, we inspect into the confusion matrix in Figure 11 (e) and find that all the samples get
predicted to the first five old classes for CIFAR10. In other words, the overall performance reported
in ResTune [123] is actually dominated by the old classes performance. We report confusion matrices
on bigger data sets in the supplementary material. This shows that the existing evaluation method
for iNCD is flawed and our proposed class-iNCD is indeed more meaningful that properly evaluates
the effectiveness of a learning algorithm. Contrarily, our proposed FRoST consistently achieves a
good balance in performance in all the tested data sets. This also demonstrates the validity of the
components in our proposed FRoST.
Two-Step Class-iNCD. As done in the class-IL literature [131], we also run experiments on
a sequence of novel tasks, which we call as two-step class-iNCD, where 20 novel classes in Tiny-
ImageNet are added in two steps, each step dealing with 10 novel classes. We compare our FRoST
with the baseline methods in Table 10 where we show not only the joint classifier head performance
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(e.g., New-1-J), but also from the novel classifier head (e.g., New-1-N and New-2-N) at each
step. As can be seen, for the baseline methods the novel classifier heads can satisfactorily discover
the new classes at each step, but when evaluated with the joint head biases the predictions to the
old classes. Unlike the baselines, FRoST does not suffer from this issue and leads to more balanced
predictions.

4.7.3. Conclusions

In summary, the contributions of this work are three-fold:

• We propose a novel framework, FRoST, that can tackle the newly introduced and relevant
task of class-incremental novel class discovery (class-iNCD).

• Our FRoST is equipped with prototypes for feature-replay and employs feature-level knowledge
distillation to prevent forgetting. Moreover, it uses pseudo-labels from the task specific head
to efficiently learn novel classes without interference, enabling us to achieve a task-agnostic
classifier.

• We run extensive experiments on three common benchmarks to prove the effectiveness of our
method. FRoST also obtains state-of-the-art performance when compared with the existing
baselines. Additionally, we run experiments on a sequence of tasks of unlabelled sets and
verify its generality.

4.7.4. Relevant publications

• S. Roy, M. Liu, Z. Zhong, N. Sebe, and E Ricci, Class-incremental Novel Class Discovery,
European Conference on Computer Vision (ECCV’22) [132].
Zenodo record: https://zenodo.org/record/7566121.

4.7.5. Relevant software/datasets/other outcomes

• The Pytorch implementation can be found in
https://github.com/OatmealLiu/class-iNCD.

4.7.6. Relevance to AI4media use cases and media industry applications

We have presented NCD as a generic approach that allows neural networks the flexibility to absorb
novel concepts (or classes) after having learned some patterns with the past data. We have discussed
in the section the application on image analysis so the approach could be directly relevant to use
cases (a) 3A3 (archive exploration), specifically 3A3-11 Visual indexing and search and (b) 7A3
(Re)organisation of visual content by supporting the efficient training and organization of image and
video collections. However, the approach can also be applied when other modalities are involved,
e.g., 4C3 (audio analysis).

4.8. CoReS: Learning Compatible Representations via Stationarity

Contributing partner(s): UNIFI
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Figure 12. Upgrading the DCNN representation model with novel data, typically requires the gallery-set to be
re-indexed. Learning compatible representations allows to compare the newly learned representation of an input
query-set with the old representation of the gallery-set, thus eliminating its computationally intensive re-indexing.

4.8.1. Introduction and methodology

Natural intelligent systems learn from visual experience and seamlessly exploit such learned
knowledge to identify similar entities. Modern AI systems, on their turn, typically require distinct
phases to perform such visual search. An internal representation is first learned from a set of images
(the training-set) using Deep Convolutional Neural Network (DCNN) models [35, 133–135] and
then used to index a large corpus of images (the gallery-set). Finally, visual search is obtained
by identifying the closest images in the gallery-set to an input query-set by comparing their
representations. Successful applications of learning feature representations are: face-recognition
[136–140], person re-identification [141–144], image retrieval [145–147], and car re-identification [148]
among others.

In the case in which novel data for the training-set and/or more recent or powerful network
architectures become available, the representation model may require to be upgraded to improve its
search capabilities. In this case, not only the query-set but also all the images in the gallery-set
should be re-processed by the upgraded model to generate new features and replace the old ones
to benefit from such upgrading. The re-processing of the gallery-set is referred to as re-indexing
(Figure 12).

For visual search systems with a large gallery-set, such as in surveillance systems, social networks
or in autonomous robotics, re-indexing is clearly computationally expensive [149] or has critical
deployment, especially when the working system requires multiple upgrades or there are real-time
constraints. Re-indexing all the images in the gallery-set can be also infeasible when, due to privacy
or ethical concerns, the original gallery images cannot be permanently stored [150] and the only
viable solution is to continue using the feature vectors previously computed. In all these cases,
it should be possible to directly compare the upgraded features of the query with the previously
learned features of the gallery, i.e., the new representation should be compatible with the previously
learned representation.

Learning compatible representation has recently received increasing attention and novel methods
have been proposed in [151–156]. Differently from these works, in this work we address compatibility
leveraging the stationarity of the learned internal representation. Stationarity allows to maintain
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Figure 13. Multi-model Empirical Compatibility Criterion (Eq. 7): representation models ϕi with i = 1, 2, . . . , T are
sequentially trained. Gray arrows represent self and cross-tests (example with T = 4).

the same distribution of the features over time so that it is possible to compare the features of the
upgraded representation with those previously learned. In particular, we enforce stationarity by
leveraging the properties of a family of classifiers whose parameters are not subject to learning,
namely fixed classifiers based on regular polytopes [157–159], that allow to reserve regions of the
representation space to future classes while classes already learned remain in the same spatial
configuration.

Compatibility Evaluation. In [149], a general criterion to evaluate compatibility was defined,
i.e., the Empirical Compatibility Criterion:

M(ϕQ
new, ϕ

G
old) > M(ϕQ

old, ϕ
G
old), (5)

where M is a metric used to evaluate the performance based on dist(·, ·). The notation M(ϕQ
new, ϕ

G
old)

underlines that the upgraded model ϕnew is used to extract feature vectors FQ from query images
IQ, while the old model ϕold is used to extract features FG from gallery images IG . This performance
value is referred to as cross-test. Correspondingly, M(ϕQ

old, ϕ
G
old) evaluates the case in which both

query and gallery features are extracted with ϕold and is referred to as self-test.
In real world applications, multi-step upgrading is often required, i.e., different representation

models must be sequentially learned through time, in multiple upgrade steps. At each step t, the
training-set is upgraded as:

Tt = Tt−1 ∪ Xt (6)

being Xt the new data and Tt−1 the training-set at step t− 1. In the multi-step upgrading case, we
define the following Multi-model Empirical Compatibility Criterion as follows:

M(ϕQ
t′ , ϕ

G
t ) > M(ϕQ

t , ϕ
G
t ) ∀ t′ > t

with t′ ∈ {2, 3, . . . ,T} and t ∈ {1, 2, . . . , T − 1},
(7)

where ϕt′ and ϕt are two different models such that ϕt is upgraded before ϕt′ , T is the number
of upgrade steps and M the metric used to evaluate the performance. Model ϕt′ is compatible
with ϕt when their cross-test is greater than the self-test of ϕt for each pair of upgrade steps.
Figure 13 illustrates the Multi-model Empirical Compatibility Criterion, where {ϕ1, ϕ2, . . . , ϕT }
are the representation models, black arrows indicate the model upgrades and gray arrows represent
self and cross-tests.

In order to assess multi-model compatibility of Eq. 7 for a sequence of T upgrade steps, we
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Figure 14. Compatibility of CoReS and compared methods (shown color-coded) for open-set face verification on the
CASIA-WebFace/LFW dataset with multi-model upgrading. Bins show: (a) AC scores for different number of
upgrades; (b) AM scores for different number of upgrades.

define the following square triangular Compatibility Matrix C:

C =


M(ϕQ

1 , ϕ
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...
...

. . .

M(ϕQ
T , ϕ

G
1 ) M(ϕQ

T , ϕ
G
2 ) · · · M(ϕQ
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 (8)

where each entry Cij is the performance value according to metric M , taking model ϕi for the
query-set Q and model ϕj for the gallery-set G. Entries on the main diagonal, i = j, represent the
self-tests, while the entries off-diagonal, i > j, represent the cross-tests. While showing compatibility
performance across multiple upgrade steps, matrix C can be used to provide a scalar metric to
quantify the global multi-model compatibility in a sequence of upgrade steps. In particular, we
define the Average Multi-model Compatibility (AC) as the number of times that Eq. 7 is verified
with respect to all its possible occurrences, independently of the number of the learning steps:

AC =
2

T (T − 1)

T∑
i=2

i−1∑
j=1

1(Cij > Cjj), (9)

where 1(·) denotes the indicator function.
Finally, we define the Average Multi-model Accuracy (AM) as the average of the entries of the

Compatibility Matrix:

AM =
2

T (T + 1)

T∑
i=1

i∑
j=1

Cij (10)

to provide an aggregate value of the accuracy metric M under compatible training.

4.8.2. Experimental Results

We performed open-set face verification using the CASIA-WebFace dataset to create the training-sets
and LFW as the test set. The CASIA-WebFace dataset includes 494, 414 RGB face images of
10, 575 subjects. The LFW dataset contains 13, 233 target face images of 5, 749 subjects. Of these,
1, 680 have two or more images, while the remaining 4, 069 have only one image. ResNet50 [160]
with input size of 112× 112 is used as backbone. Optimization is performed using SGD with 0.1
learning rate, 0.9 momentum, and 5 · 10−4 weight decay. The batch size is 1, 024. With every
upgrade, training is terminated after 120 epochs. Learning rate is scheduled to decrease to 0.01,
0.001, and 0.0001 at epoch 30, 60, 90 respectively.
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Compatibility is evaluated for one, two, three, four, five, and nine upgrade steps.
In the one-upgrade case, models are learned with 50% of the CASIA-WebFace dataset and

upgraded with 100%. Figure 14a shows that, with 50% of CASIA-WebFace dataset, CoReS and
BCT achieve similar performance. This is because there is already sufficient data variability to learn
compatible features. A big difference between CoReS and compared methods becomes evident when
multiple upgrades are considered as shown in Figure 14a. In this figure, the values of the AC are
reported for each method over a set of different experiment respectively with one, two, three, four,
five, and nine upgrades. CoReS achieves full compatibility (AC = 1) for one, two, three, and four
upgrades and starts decreasing AC from five upgrade steps up to AC = 0.58 with nine upgrades. In
contrast BCT loses performance already with two upgrade steps finishing at AC = 0.09 with nine
upgrade steps. Baseline methods report AC = 0 in all of the scenario. In Figure 14b, we report the
AM metric for these experiments. It can be observed that the CoReS and BCT score almost the
same average verification accuracy in all the experiments, while in the others values are always
lower. This is due to the fact that cross-test values are low since no compatibility is reported.

We conclude that for multi-model upgrading, CoReS, while having the same verification per-
formance as BCT, largely improves compatibility across model upgrades with 544% relative
improvement over BCT for the challenging scenario of nine-step upgrading. The lower AC of
BCT appears to be related to the fact that in this method compatibility is obtained only through
transitivity from the model previously learned.

4.8.3. Conclusions

The main contributions of our research are the following:

• We identify stationarity as a key property for compatibility and propose a novel training
procedure for learning compatible feature representations via stationarity, without the need
of learning any mappings between representations nor to impose pairwise training with the
previously learned model. We called our method: Compatible Representations via Stationarity
(CoReS).

• We introduce new criteria for comparing and evaluating compatible representations in the
case of sequential multi-model upgrading.

• We demonstrate through extensive evaluation on large scale verification, re-identification and
retrieval benchmarks that CoReS improves the current state-of-the-art in learning compatible
features for both single and sequential multi-model upgrading.

4.8.4. Relevant publications

• Biondi, Niccolo, Federico Pernici, Matteo Bruni, and Alberto Del Bimbo. ”Cores: Compati-
ble representations via stationarity.” IEEE Transactions on Pattern Analysis and Machine
Intelligence (2023).
Zenodo record: https://zenodo.org/record/7913176.

4.8.5. Relevant software/datasets/other outcomes

• The PyTorch implementation of our work “CoReS: Compatible Representations via Station-
arity” can be found in:
https://github.com/NiccoBiondi/cores-compatibility.
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4.8.6. Relevance to AI4media use cases and media industry applications

CoReS is a tool that learns semantic representations of data, aiding media professionals in retrieving
information based on semantic content. It can be integrated with the “AI for News” use case
(UC2) and “AI for Vision” use case (UC3) to enhance tagging and search functions. In dynamic
environments, where journalistic content and deep neural network-based recognition models are
frequently updated, CoReS offers a distinctive advantage. It produces semantic representations of
data that remain compatible with previous versions, eliminating the need for database reprocessing.
This approach ensures quick and smooth news retrieval even as new recognition models come into
play. Conversely, in many standard retrieval applications, when a more advanced recognition model
becomes available, the existing semantic content in the database cannot be used directly. This often
necessitates reprocessing and results in a computationally intensive re-indexing process. Moreover,
CoReS can provide essential support to UC7 ”AI for Content Organization and Content Moderation”
and UC1 ”AI against Disinformation” as it embodies foundational principles for content analysis,
ensuring fast and accurate semantic understanding of updated news.

4.9. CL2R: Compatible Lifelong Learning Representations

Contributing partner(s): UNIFI

4.9.1. Introduction and methodology

The universe is dynamic and the emergence of novel data and new knowledge is unavoidable.
The unique ability of natural intelligence to lifelong learning is highly dependent on memory and
knowledge representation [161]. Through memory and knowledge representation, natural intelligent
systems continually search, recognize, and learn new objects in an open universe after exposure
to one or a few samples. Memory is substantially a cognitive function that encodes, stores, and
retrieves knowledge. Artificial representations learned by Convolutional Neural Network (CNN)
models [35,134,135,138,139] stored in a memory bank (i.e., the gallery-set) have been shown to
be very effective in searching and recognizing objects in an open-set/open-world learning context.
Successful examples are face recognition [133,140,162], person re-identification [163–165] and image
retrieval [166–168]. These approaches rely on learning feature representations from static datasets
in which all images are accessible at training time. On the other hand, dynamic assimilation of new
data for lifelong learning suffers from catastrophic forgetting : the tendency of neural networks to
abruptly forget previously learned information [169,170].

In the case of visual search, even avoiding catastrophic forgetting by repeatedly training DCNN
models on both old and new data, the feature representation still irreversibly changes [171]. Thus,
in order to benefit from the newly learned model, features stored in the gallery must be reprocessed
and the “old” features replaced with the “new” ones. Reprocessing not only requires the storage
of the original images (a noticeable leap from natural intelligence), but also their authorization
to access them [150]. More importantly, extracting new features at each update of the model is
computationally expensive or infeasible in the case of large gallery-sets. The speed at which the
representation is updated to benefit from the newly learned data may impose time constraints
on the re-indexing process. This may occur from timescales on the order of weeks/months as in
retrieval systems or social networks [151], to within seconds as in autonomous robotics or real-time
surveillance [172,173]. Recently in [151], a novel training procedure has been proposed to avoid
re-indexing the gallery-set. The representation obtained in this manner is said to be compatible,
as the features before and after the learning upgrade can be directly compared. Training takes
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Figure 15. Overview of the Compatible Lifelong Learning Representations (CL2R) problem and proposed training
procedure. The learning agent searches object instances from query images IQ without re-indexing the gallery-set.
Any update to the internal feature representation ϕ does not render the features in the gallery-set unusable (i.e., no
images are stored). Compatible feature representation under catastrophic forgetting is learned imposing stationarity
to features learned from the the CIL surrogate task. Training is based on rehearsal with the episodic memory Mt.

advantage of all the data from previous tasks (i.e., no lifelong learning), guaranteeing the absence
of catastrophic forgetting. The advantage of considering compatible representation learning within
the lifelong learning paradigm, as in this paper, is that compatible representation allows visual
search systems not only to distribute the computation over time, but also to avoid or possibly limit
the storage of images on private servers for gallery data. This can have important implications
for the societal debate related to privacy, ethical and sustainable issues (e.g., carbon footprint) of
modern AI systems [150,174–176].

We identify stationarity as the key requirement for feature representation to be compatible
during lifelong learning. Stationary features have been shown to be biologically plausible in many
studies of working memory in the prefrontal cortex of macaques [177–179]. The works [177,178]
decoded the information from the neural activity of the working memory using a classifier with
a single fixed set of weights. They noted that a non-stationary feature representation seems to
be biologically problematic since it would imply that the synaptic weights would have to change
continuously for the information to be continuously available in memory.

Inspired by this, in this paper, we formalize the problem of Compatible Lifelong Learning Rep-
resentations (CL2R) in relation to the relevant areas of compatible learning and lifelong (continual)
learning. We call any training procedure that aims to obtain compatible features and minimize
catastrophic forgetting as CL2R training, and we propose (1) a novel set of metrics to properly
evaluate CL2R training procedures (2) a training procedure based on rehearsal [170,180] and feature
stationarity [157,181] to jointly address catastrophic forgetting and feature compatibility. Figure 15
provides an overview of the problem and the training procedure. Specifically, our CL2R training
procedure is achieved by encouraging global and local stationarity to the learned features.

Proposed CL2R Metrics The work in [182,183] proposes a set of metrics to assess the ability of
the learner to transfer knowledge based on a matrix that reports the test classification accuracy
of the model on task j after learning task i. Along a similar vein, we present a set of metrics to
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evaluate the compatibility between representation models in a compatible lifelong learning setting.
Let C ∈ RT×T be the compatibility matrix of the Eq. 8 for T tasks, the proposed criteria are

the following: (1) Backward Compatibility (BC) measures the gap in compatibility performance
between the representation learned at task T with respect to the representation learned at task k
with k ∈ {1, . . . , T − 1}. When BC < 0 the learning procedure is also influenced by catastrophic
forgetting because the performance degrades with newer learned tasks. BC is defined as follows:

BC =
1

T − 1

T−1∑
k=1

(CT,k − Ck,k) (11)

(2) Forward Compatibility (FC) estimates the influence that learning a representation on a task
k − 1 has on the compatibility performance of the representation learned on a future task k by
comparing the cross-test (between models at task k and k − 1) with respect to the self-test at task
k. FC ≥ 0 denotes that, on average, the cross-test values are greater than the self-test evaluated
on the subsequent tasks, therefore, re-indexing does not necessarily provide improved results. FC
is defined as follows:

FC =
1

T − 1

T∑
k=2

(Ck,k−1 − Ck,k). (12)

The intuition behind the definition of this metric comes from noticing that as the number
of tasks increases, the cross-test may result better than the self-test. As this is not typically
observed when there is no catastrophic forgetting (i.e., when repeatedly training with new and
old data), we argue this is due to the joint interaction between the compatibility constraint and
catastrophic forgetting. This observation led us to define something “positive” when the compatible
representation with the previously learned model is higher than the self-test of the current model.
This metric is designed to yield high values when a CL2R training procedure is able to positively
exploit the joint interaction between feature forgetting and compatible representation.
From Eqs. 11 and 12, it can be deduced that BC and FC ∈ [−1, 1]. Backward compatibility for
the first task and forward compatibility for the last task are not defined. The larger these metrics,
the better the model. When AC values are comparable, both BC and FC represent two metrics
that quantify the positive interaction between search accuracy under catastrophic forgetting and
compatibility. This allows evaluating how catastrophic forgetting affects the representation and its
compatibility.

4.9.2. Experimental Results

In this section, we report the experiments in two, three, five, and ten tasks CL2R settings with
models trained on CIFAR100 (i.e., using 50, 33, 20, 10 classes per task) where compatibility is
evaluated on the CIFAR10 generated pairs.

In Table 12, we summarize the performance of our CL2R training procedure with respect to
the other baselines in the two-task scenario. We evaluate the compatibility of the updated model
according to the ECC (Eq. 5), BC (Eq. 11), and FC (Eq. 12). The first row of Table 12 reports the
verification accuracy of the model trained on the first 50 classes of CIFAR100. Experiments show
that, among the methods compared, LUCIR and PODNet may have an inherent, although limited,
level of compatible representations. This substantially confirms the importance of having some
form of mechanism to preserve the local geometry of the learned features. Our training procedure
achieves the highest cross test, BC, and FC, thus resulting to be the most suited training procedure
to avoid re-indexing.

In the last rows of the table, we report the performance of the BCT and our Upper Bound
(UB) that are not affected by catastrophic forgetting. The effect of catastrophic forgetting and its
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Table 11. Evaluation of CIFAR10. Three, five, and ten-task CL2R setting with models trained on CIFAR100. We
report AC (Eq. 4), BC (Eq. 5), and FC (Eq. 6) for the methods we evaluated.

method

three tasks

AC BC FC

ER 0 −0.070 −0.080

LwF 0.33 −0.044 0.000

BiC 0.67 −0.040 −0.040

LUCIR 0.33 −0.039 0.030

FAN 0.67 –0.010 −0.026

FOSTER 0 –0.149 –0.132

ℓ-BCT 0.07 −0.095 −0.014

PODNet 0.67 –0.015 –0.026

Ours 0.67 −0.007 0.012

BCT* 0.33 −0.018 −0.040

Ours (UB)* 0.67 0.015 0.011

five tasks

AC BC FC

0.12 −0.098 −0.087

0.13 −0.051 −0.035

0.14 −0.092 −0.023

0.36 –0.015 0.005

0.36 −0.055 −0.039

0 –0.072 –0.077

0 −0.083 −0.043

0.30 –0.025 –0.006

0.54 −0.002 0.008

0.50 0.008 −0.039

0.90 0.017 −0.027

ten tasks

AC BC FC

0.04 −0.130 −0.083

0.04 −0.037 −0.036

0.11 −0.060 −0.018

0.20 −0.044 0.001

0.11 −0.160 0.067

0.04 –0.098 –0.105

0.07 −0.064 −0.030

0.27 –0.032 –0.002

0.44 −0.003 0.005

0.38 0.019 −0.008

0.60 0.021 −0.005

*Not subject to catastrophic forgetting

implications on the reduction of performance in compatibility can be observed in the self-test, as
these values are significantly higher than the values reported by the methods learned using CiL.

In Table 11, results for the scenario of three, five, and ten-task CL2R are presented. For
each experiment, we report AC (Eq. 9), BC (Eq. 11), and FC (Eq. 12). As can be noticed,
our method always achieves the highest AC, thus obtaining the largest number of compatible
representations between models, and always achieves the highest BC between methods that are
subject to catastrophic forgetting. FAN achieves almost the same performance as our procedure in
the three-task scenario, while, when the number of tasks increases, it has a significant decrease in
performance, especially in the ten-task setting. This may be due to increasing number of adaptation
functions between different feature spaces that FAN uses to adapt old features with respect to the
new ones. As can be noticed from the two tables, FOSTER does not learn compatible features.
This may be due to the fact that feature space compression forces the representation to change
abruptly reducing the overall compatibility with previous models. BCT reports higher values since
its representation is learned from scratch for each new task. Compared to the upper bound (UB),
our training procedure achieves lower AC and BC, this is due to the influence of catastrophic
forgetting. From the table it can also be noticed that BiC, LUCIR, and PODNet do not satisfy
compatibility when catastrophic forgetting is more severe, as, for example, in the case of ten-tasks.
Overall, these results suggest that the interaction between local and global stationarity promoted
by our training procedure shows a significant improvement in performance that feature distillation
alone cannot provide.

4.9.3. Conclusions

Our contributions can be summarized as follows:

• We consider compatible representation learning within the lifelong learning paradigm. We refer
to this general learning problem as Compatible Lifelong Learning Representations (CL2R).

• We define a novel set of metrics to properly evaluate CL2R training procedures.

• We propose a CL2R training procedure that imposes global and local stationarity on the learned
features to achieve compatibility between representations under catastrophic forgetting. Global
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Table 12. CIFAR10 evaluation. Two-task CL2R setting with models trained on CIFAR100. Initial Task (i.e., the
previous task) shows the verification accuracy on the first 50 classes, the other rows represent the performance
obtained after two tasks.

method
self
test

cross
test ECC BC FC

Initial Task 0.65 – – – –

ER 0.64 0.62 × −0.034 −0.210

LwF 0.64 0.64 × −0.009 0.002

BiC 0.66 0.63 × −0.015 −0.028

LUCIR 0.70 0.66
√

0.012 −0.038

FAN 0.66 0.63 × −0.023 −0.035

FOSTER 0.66 0.57 × –0.080 –0.090

ℓ-BCT 0.65 0.60 × −0.047 −0.044

PODNet 0.67 0.66
√

0.014 –0.013

Ours 0.66 0.67
√

0.017 0.006

BCT* 0.72 0.65
√

0.003 −0.071

Ours (UB)* 0.73 0.69
√

0.039 −0.040

*Not subject to catastrophic forgetting

and local interactions show a significant performance improvement when local stationarity is
promoted only from already observed samples in the episodic memory.

• We empirically assess the effectiveness of our approach in several benchmarks showing
improvements over baselines and adapted state-of-the-art methods.

4.9.4. Relevant publications

• Biondi, Niccolò, Pernici, Federico, Bruni, Matteo, Mugnai, Daniele, and Del Bimbo, Alberto
(2023). CL2R: Compatible Lifelong Learning Representations. ACM Transactions on Multi-
media Computing, Communications and Applications, 18(2s), 1-22.
Zenodo record: https://zenodo.org/record/7551216.

4.9.5. Relevant software/datasets/other outcomes

• The PyTorch implementation of our work “CL2R: Compatible Lifelong Learning Representa-
tions” can be found in:
https://github.com/NiccoBiondi/CompatibleLifelongRepresentation.

4.9.6. Relevance to AI4media use cases and media industry applications

CL2R and CoReS share similarities in their foundational approach to data representation. Thus,
CL2R can be seamlessly integrated with use cases such as ”AI for News” (UC2) and ”AI for Vision”
(UC3) to boost tagging and search functionalities. Additionally, its alignment with foundational
principles for content analysis makes it ideal for ”AI for Content Organization and Content
Moderation” (UC7) and ”AI against Disinformation” (UC1), ensuring rapid and precise semantic
understanding of updated news content.

The key difference between CL2R and CoReS lies in their learning methodologies. CoReS
primarily learns from static datasets, while CL2R employs continual learning techniques, making it
particularly relevant in today’s AI landscape. In essence, media companies using CL2R can train
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deep learning-based recognition models without the need for vast amounts of training data. This
not only addresses the ethical concerns associated with data privacy and storage but also reduces
the environmental carbon footprint of AI operations. CL2R’s continual learning minimizes the
constant need for data storage and obviates the reprocessing of databases (or galleries). This results
in both operational efficiency and the alleviation of ethical issues.

4.10. Contrastive Supervised Distillation for Continual Representation
Learning

Contributing partner(s): UNIFI

4.10.1. Introduction and methodology

Deep Convolutional Neural Networks (DCNNs) have significantly advanced the field of visual
search or visual retrieval by learning powerful feature representations from data [184–186]. Current
methods predominantly focus on learning feature representations from static datasets in which
all the images are available during training [187–189]. This operative condition is restrictive in
real-world applications since new data are constantly emerging and repeatedly training DCNN
models on both old and new images is time-consuming. Static datasets, typically stored on private
servers, are also increasingly problematic because of the societal impact associated with privacy
and ethical issues of modern AI systems [174,176].

These problems may be significantly reduced in incremental learning scenarios as the computation
is distributed over time and training data are not required to be stored on servers. The challenge
of learning feature representation in incremental scenarios has to do with the inherent problem of
catastrophic forgetting, namely the loss of previously learned knowledge when new knowledge is
assimilated [170,190]. Methods for alleviating catastrophic forgetting has been largely developed in
the classification setting, in which catastrophic forgetting is typically observed by a clear reduction
in classification accuracy [122,131,191–193]. The fundamental differences with respect to learning
internal feature representation for visual search tasks are: (1) evaluation metrics do not use
classification accuracy (2) visual search data have typically a finer granularity with respect to
categorical data and (3) no classes are required to be specifically learned. These differences might
suggest different origins of the two catastrophic forgetting phenomena. In this regard, some recent
works provide some evidence showing the importance of the specific task when evaluating the
catastrophic forgetting of the learned representations [194–197]. In particular, the empirical evidence
presented in [194] suggests that feature forgetting is not as catastrophic as classification forgetting.
We argue that such evidence is relevant in visual search tasks and that it can be exploited with
techniques that learn incrementally without storing past samples in a memory buffer [198].

According to this, we propose a new distillation method for the continual representation learning
task, in which the search performance degradation caused by feature forgetting is jointly mitigated
while learning discriminative features. This is achieved by aligning current and previous features of
the same class, while simultaneously pushing away features of different classes. We follow the basic
working principle of contrastive loss [199] used in self-supervised learning, to effectively leverage
label information in a distillation-based training procedure in which we replace anchor features
with the feature of the teacher model.
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Table 13. Evaluation on Stanford Dogs and CUB-200 of CSD and compared methods.

Stanford Dogs CUB-200

Method
Recall@1

(1-60)
Recall@1
(61-120)

Recall@1
Average

Recall@1
(1-100)

Recall@1
(101-200)

Recall@1
Average

Initial model 81.3 69.3 75.3 79.2 46.9 63.1

Fine-Tuning 74.0 83.7 78.8 70.2 75.1 72.7

MMD loss [195] 79.5 83.4 81.4 77.0 74.1 75.6

Feat. Est. [197] 79.9 83.5 81.7 77.7 75.0 76.4

CSD (Ours) 80.9 83.5 82.2 78.6 78.3 78.5

Joint Training 80.4 83.1 81.7 78.2 79.2 78.7
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Figure 16. Evolution of Recall@1 on the first task as new tasks are learned on CUB-200. Comparison between
our method (CSD) and compared methods.

4.10.2. Experimental Results

4.10.2.1. Experimental Setup
The experiments are evaluated with T = 2, 5, 10. In CUB-200 and Stanford Dogs, following [200]

[201], we use half of the data to pre-train a model and split the remaining data into T training-set.
CUB-200 is evaluated with T = 1, 4, 10 while Stanford Dogs with T = 1. Following [197], we
adopt pretrained Google Inception [202] as representation model architecture on CUB-200 and
Stanford Dogs with 512-dimension feature space. We trained the model for 2300 epochs for each
task using the Adam optimizer with a learning rate of 1 · 10−5 for the convolutional layers and
1 · 10−6 for the classifier. Random crop and horizontal flip are used as image augmentation. We
adopt Recall@K [203] [200] as performance metric using each image in the test-set as query and
the others as gallery.

4.10.2.2. Comparison with State-of-the-art Methods
We compare our method on CUB-200 and Stanford Dogs datasets with the Fine-Tuning baseline,

MMD loss [195], and [197] denoted as Feature Estimation. As an upper bound reference, we report
the Joint Training performance obtained using all the data to train the model.

We report in Table 13 the scores obtained with T = 1 on the fine-grained datasets. On Stanford
Dogs, our approach achieves the highest recall when evaluated on the initial task and comparable
result with other methods on the final task with a gap of only 0.2% with respect to Fine-Tuning
that focus only on learning new data. This results in our method achieving the highest average
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recall value with an improvement of 0.5% Recall@1 concerning Feature Estimation, 0.8% for
MMD loss, and 3.4% for Fine-Tuning. On the more challenging CUB-200 dataset, we obtain the
best Recall@1 on both the initial and the final task outperforming the compared methods. Our
method achieves the highest average recall value with an improvement of 2.1% Recall@1 with
respect to Feature Estimation, 2.9% for MMD loss, and 5.8% for Fine-Tuning. Differently from
CIFAR-100, on fine-grained datasets, there is a lower dataset shift between different tasks leading
to a higher performance closer to the Joint Training upper bound due to lower feature forgetting.

We report in Figure 16a and Figure 16b the challenging cases of CUB-200 with T = 4 and
T = 10, respectively. These experiments show, consistently with Table 13, how our approach
outperforms state-of-the-art methods. In particular, with T = 10 (Figure 16b), our method preserves
the performance obtained on the initial task during every update. CSD largely improves over the
state-of-the-art methods by almost 20% - 25% with respect to [197] and [195] achieving similar
performance to the Joint Training upper bound. By leveraging labels information for distillation
during model updates, CSD provides better performance and favorably mitigates the catastrophic
forgetting of the representation compared to other methods that do not make use of this information.

4.10.3. Conclusions

Our contributions can be summarized as follows:

• We address the problem of continual representation learning proposing a novel method that
leverages label information in a contrastive distillation learning setup. We call our method
Contrastive Supervised Distillation (CSD).

• Experimental results on different benchmark datasets show that our CSD training procedure
achieves state-of-the-art performance.

• Our results confirm that feature forgetting in visual retrieval using fine-grained datasets is
not as catastrophic as in classification.

4.10.4. Relevant publications

• Barletti, T., Biondi, N., Pernici, F., Bruni, M., and Del Bimbo, A. (2022, May). Contrastive
supervised distillation for continual representation learning. In Image Analysis and Process-
ing–ICIAP 2022: 21st International Conference, Lecce, Italy, May 23–27, 2022, Proceedings,
Part I (pp. 597-609). Cham: Springer International Publishing.
Zenodo record: https://zenodo.org/record/7551163 (Best Student Paper Award).

4.10.5. Relevant software/datasets/other outcomes

• The PyTorch implementation of our work “Contrastive Supervised Distillation for Continual
Representation Learning” can be found in:
https://github.com/NiccoBiondi/ContrastiveSupervisedDistillation.

4.10.6. Relevance to AI4media use cases and media industry applications

CSD, as presented in our paper, offers a new method that helps media professionals search for and
categorize content effectively. It’s particularly beneficial for applications such as news (”UC2 AI
for News”), visual content (”UC3 AI for Vision”), countering misinformation (”UC1 AI against
Disinformation”), and managing and moderating content (”UC7 AI for Content Organization
and Content Moderation”). One of the primary advantages of CSD is its ability to learn new

Intermediate Outcomes of New Learning Paradigms Research 60 of 197

https://zenodo.org/record/7551163
https://github.com/NiccoBiondi/ContrastiveSupervisedDistillation


information without forgetting previous knowledge. Unlike many Continual Learning methods
that use a memory system to store and review old training data, CSD does not. This makes CSD
more efficient and also provides a more ethical and privacy-focused approach, especially concerning
the data used to train the recognition retrieval model. Such considerations are crucial for media
professionals and participants involved in the aforementioned use cases, emphasizing the importance
of data protection.
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5. Manifold learning and disentangled feature representation
(Task 3.2) – detailed description

Contributing partners: QMUL, JR, UNIFI, UNITN

In recent years, manifold and disentangled feature representation learning have risen as a
prominent research area addressing the problem of finding meaningful representation schemes for
both the generative and the discriminative learning paradigms. In the generative regime, studying
the structure of latent spaces of generative methods (such as GANs) by discovering semantic paths
that govern the generation process, has proven to be very useful in understanding and controlling
image generation. For instance, by discovering interpretable or controllable generative paths for
manipulating the generation process (e.g., image editing) [1–3]. In the discriminative regime,
learning meaningful feature representations, along with metrics that model data manifolds better
(i.e., by adopting the hyperbolic geometry instead of the widely used Euclidean modeling [4]), lead
to better, more discriminative features, and, thus, improve significantly the performance in visual
understanding tasks (such as image retrieval). Advances in both generative and discriminative
regimes are particularly useful in media generation and visual content analysis.

5.1. Finding non-linear RBF paths in GAN latent space

Contributing partners: QMUL

(a) (b)

Figure 17. (a) Warpings of vector space Rd due to two RBF functions, f i and fj , lead to different non-linear paths
in Rd for any given z ∈ Rd (dashed bold lines) via their gradients, ∇f i and ∇fj . Solid black lines represent
isohypses of the warpings and the colored vectors represent the vector fields induced by their gradients. (b)
Illustration of a non-linear path due to warping fj , starting from a latent code z and moving along the gradient
∇fj by steps of magnitude ϵ.

5.1.1. Introduction and methodology

Generative Adversarial Network (GAN) [204] has emerged as the leading generative learning
paradigm, exhibiting clear superiority in terms of the quality of generated realistic and aesthetically
pleasing images. However, despite their generative efficiency, GANs do not provide an inherent way
of comprehending or controlling the underlying generative factors. To address this, the research
community has directed its efforts towards studying the structure of GAN’s latent space [205–218].
These works study the structure of GAN’s latent space and attempt to find interpretable directions
on it; that is, directions sampling across which are expected to generate images where only a few
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Reconstructor
Pretrained

GAN Generator

Figure 18. Overview WarpedGANSpace: A latent code z ∼ N (0, Id) is shifted by a vector induced by a warping
function fk implemented by the warping network W after choosing the corresponding support set Sk, weights Ak,

and parameters Gk. The pair of latent codes, z and z+ ϵk
∇fk(z)

∥∇fk(z)∥ , are then fed into the generator G in order to

produce two images. The reconstructor R is optimized to reproduce the signed shift magnitude ϵk and predict the
index k of the support set used.

Method

GAN

SNGAN SNGAN
BigGAN ProgGAN StyleGAN2

(MNIST) (Anime)

Random 46.0 85.0 76.0 60.0 -

Coord 48.0 89.0 66.0 82.0 -

Linear [212] 88.0 99.0 85.0 90.0 -

Ours 98.4 99.8 92.6 99.3 99.8

Table 14. Reconstructor accuracy (%) of the proposed method compared to [212] (linear directions), random latent
direction and latent directions aligned with axes, for various GAN generators pretrained on the given datasets.

(ideally one) factors of variations are “activated”. Meaningful human-interpretable directions can
refer to either domain-specific factors (e.g., facial expressions [205]) or domain-agnostic factors (e.g.,
zoom scale [215–217]).

In this work, we propose to learn non-linear warping functions on the latent space, each one
parametrized by a set of RBF-based latent space warping operations, and where each warping
function fk gives rise to a family of non-linear paths via its gradient. More precisely, at each latent
code z ∈ Rd, the gradient of the warping function ∇fk(z) gives the direction along the k-th family
of paths – clearly, the gradient of fk(z) is not isotropic in Rd, giving rise to non-linear paths. An
example is shown in Figure 17, where two RBF-warping functions f i and f j are depicted together
with two distinct non-linear paths. Building on the work of [212], that discovers linear paths, we
optimize the trainable parameters of the RBFs, so as that images that are generated by codes along
paths of different families, fk, are easily distinguishable by a discriminator network (Figure 18)
– this leads to easily distinguishable image transformations, such as pose and facial expressions
in facial images (Fig. 17b). We show that [212], which learns linear paths, can be derived as a
special case of our method and perform extensive comparisons with state-of-the art methods both
qualitatively and quantitatively.

5.1.2. Experimental results

5.1.2.1. Pretrained GAN generators and datasets We evaluate the proposed method
using the following pretrained GANs: a) Spectrally Normalized GAN (SN-GAN) [221] trained on
MNIST [222] and AnimeFaces [223], b) BigGAN [224] trained on ImageNet [225], c) ProgGAN [220]
trained on CelebA-HQ [226], and d) StyleGAN2 [219] trained on FFHQ [219].
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Figure 19. Non-linear interpretable paths automatically discovered by our method in StyleGAN2’s [219] W-space.

5.1.2.2. Paths with more distinguishable changes in the image space We first show that
a reconstructor that discriminates images according to the warping in the latent space that generated
them, i.e., estimates the index of the warping function, has better classification performance than in
the corresponding linear case [212]. This is an indication that the paths that are generated by our
method can be discriminated more effectively and therefore are more likely to be more interpretable.
The results are summarised in Table 14 and are consistent across several pretrained GANs.

5.1.2.3. Non linear interpretable paths with steeper and more disentangled changes
in the image space – quantitative evaluation In this section, we will present our quantitative
evaluation scheme, which we use for assessing the performance of our method and compare it to
state-of-the-art [212,218], for ProgGAN and StyleGAN2.

As discussed before, for a given method that discovers a set of interpretable paths; that is, linear
in the cases of [212,218] or non-linear in the case of the proposed method, in the latent space of a
pretrained GAN generator, we generate an image sequence for each path, starting from a random
latent code and “walking” towards the positive and the negative ways of the path for a certain
amount of steps. For each image of such sequence, we apply a set of pretrained networks that
predict the following: a) the location of the face (bounding box), using [227], b) an identity score
for each image of the sequence that expresses the similarity between the original image (central
image of the sequence) and each of the rest, using ArcFace [228], c) an age, race, and gender score
using FairFace [229], d) a set of CelebA attributes classifiers (e.g., smile, wavy hair, etc.), and e) an
estimation of the face pose (yaw, pitch, roll), using Hopenet [230]. In this way, for each warping we
have a set of paths in the latent space and the corresponding paths in the attribute space.

In order to obtain a measure on how well the paths generated by a warping function are
correlated with a certain attribute, we estimate the average Pearson’s correlation between the index
of the step along the path and the corresponding values in the attribute vector. By doing so, for
each warping, we obtain a vector, which we normalize. This allows for sorting the discovered paths
with respect to the correlation with each attribute and select the paths that give the maximum
absolute correlation for each attribute.

The results are summarised in Table 15, where we report quantitative results for our method
(Table 15a), in comparison to [212] (Table 15b) and [218] (Table 15c), in terms of L1-normalized
correlation averaged across 100 latent codes. We note that our method achieves better correlations
for the respective attributes, while at the same time the correlations with the rest of the attributes
are lower than those achieved by [212, 218], as is evident by the lower values in the off-diagonal
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Figure 20. Automatically discovered non-linear (ours – first row) and linear (Voynov and Babenko [212] – second
row, GANSpace [218] – third row) interpretable paths in ProgGAN’s [220] latent space.

elements of the matrix. This shows in a quantitative manner, what was evident in a qualitatively
manner in Figure 20, that is, that the discovered paths in the latent space lead to more disentangled
changes in the attribute space.

Finally, in Figure 19, we show the results of generation across some non-linear interpretable
paths obtained automatically by our method for StyleGAN2, for the following attributes: age, race
(skin color), gender (“femaleness”), and yaw (rotation). In this figure, we report the paths with the
highest correlation with the respective attribute.

5.1.3. Relevant publications

• Tzelepis, C., Tzimiropoulos, G., Patras, I. (2021). “WarpedGANSpace: Finding non-linear
RBF paths in GAN latent space”. ICCV 2021 [1].
Zenodo record: https://zenodo.org/record/5550474.

5.1.4. Relevant software/datasets/other outcomes

• The PyTorch implementation of our work “WarpedGANSpace: Finding non-linear RBF paths
in GAN latent space” can be found in https://github.com/chi0tzp/WarpedGANSpace.
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Table 15. Comparison of the proposed method (non-linear latent paths) to [212] (linear latent directions) and
GANSpace [218] (linear PCA-based latent directions) in terms of L1-normalized correlation and range (r).

ID Yaw Pitch Smile Race Hair r

Yaw 0.52 0.32 0.05 0.01 0.07 0.03 43.66◦

Pitch 0.41 0.04 0.38 0.13 0.03 0.01 22.53◦

Smile 0.24 0.03 0.07 0.61 0.03 0.03 0.37

Race 0.32 0.03 0.12 0.08 0.29 0.17 0.06

Hair 0.23 0.02 0.11 0.13 0.02 0.49 0.28

(a) Non-linear paths (Ours).

ID Yaw Pitch Smile Race Hair r

Yaw 0.51 0.24 0.21 0.01 0.02 0.01 18.93◦

Pitch 0.47 0.01 0.25 0.04 0.00 0.22 8.27◦

Smile 0.24 0.01 0.04 0.57 0.05 0.09 0.28

Race 0.52 0.05 0.02 0.10 0.31 0.01 0.16

Hair 0.43 0.00 0.10 0.06 0.04 0.36 0.27

(b) Linear directions (Voynov and Babenko [212]).

ID Yaw Pitch Smile Race Hair r

Yaw 0.47 0.27 0.04 0.13 0.03 0.06 17.65◦

Pitch 0.45 0.05 0.38 0.09 0.02 0.01 7.48◦

Smile 0.21 0.00 0.07 0.55 0.08 0.08 0.21

Race 0.35 0.11 0.02 0.12 0.27 0.12 0.10

Hair 0.44 0.05 0.06 0.03 0.08 0.34 0.15

(c) Linear PCA directions (GANSpace [218]).

5.1.5. Relevance to AI4media use cases and media industry applications

Our algorithm provides a solution for discovering interpretable paths in the latent space of generative
methods, such as Generative Adversarial Networks (GANs). That is, discovering ways of under-
standing and, thus, controlling the generative process. As such, it may exhibit wide applicability in
various media industry applications, such as image editing given real visual data. In such a scenario,
a human in the loop (e.g., a journalist or a creative artist) can perform image editing of visual
data coming from news feeds. More generally, since generative learning is fundamental in creative
industries, our method can be used in order to control media generation (e.g., virtual characters,
animations, etc), that can subsequently be incorporated in media industry for the generation of
controllable media content.

5.2. Unsupervised learning of parts and appearances in the feature maps
of GANs

Contributing partners: QMUL

5.2.1. Introduction and methodology

Generative Adversarial Networks (GANs) [204] constitute the SOTA for the task of image synthesis.
However, despite the remarkable progress in this domain through improvements to the image
generator’s architecture [205,219,231–234], their inner workings remain to a large extent unexplored.
Developing a better understanding of the way in which high-level concepts are represented and
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composed to form synthetic images is important for a number of downstream tasks such as generative
model interpretability [235–237] and image editing [1, 212, 218, 238–240]. In modern generators
however, the synthetic images are produced through an increasingly complex interaction of a set of
per-layer latent codes in tandem with the feature maps themselves [219,232,233] and/or with skip
connections [234]. Furthermore, given the rapid pace at which new architectures are being developed,
demystifying the process by which these vastly different networks model the constituent parts of an
image is an ever-present challenge. Thus, many recent advances are architecture-specific [241–243]
and a general-purpose method for analyzing and manipulating convolutional generators remains
elusive.

Figure 21. We propose an unsupervised method for learning a set of factors that correspond to interpretable parts
and appearances in a dataset of images. These can be used for multiple tasks: (a) local image editing, (b)
context-aware object removal, and (c) producing saliency maps for learnt concepts of interest.

A popular line of GAN-based image editing research concerns itself with learning so-called
“interpretable directions” in the generator’s latent space [1, 212, 218, 237–239, 244–246]. Once
discovered, such representations of high-level concepts can be manipulated to bring about predictable
changes to the images. One important question in this line of research is how latent representations
are combined to form the appearance at a particular local region of the image. Whilst some recent
methods attempt to tackle this problem [241,243,247–251], the current state-of-the-art methods
come with a number of important drawbacks and limitations. In particular, existing techniques
require prohibitively long training times [241,249], costly Jacobian-based optimization [249,252],
and the requirement of semantic masks [241] or manually specified regions of interest [249, 252].
Furthermore, whilst these methods successfully find directions affecting local changes, optimization
must be performed on a per-region basis, and the resulting directions do not provide pixel-level
control–a term introduced by [249] referring to the ability to precisely target specific pixels in the
image.

In this light, we present a fast unsupervised method for jointly learning factors for interpretable
parts and their appearances (we thus refer to our method as PandA) in pre-trained convolutional
generators. Our method allows one to both interpret and edit an image’s style at discovered
local semantic regions of interest, using the learnt appearance representations. We achieve this by
formulating a constrained optimization problem with a semi-nonnegative tensor decomposition of
the dataset of deep feature maps Z ∈ RM×H×W×C in a convolutional generator. This allows one to
accomplish a number of useful tasks, prominent examples of which are shown in Figure 21. Firstly,
our learnt representations of appearance across samples can be used for the popular task of local
image editing [241,249] (for example, to change the colour or texture of a cat’s ears as shown in
Figure 21 (a)). Whilst the state-of-the-art methods [241,249,252] provide fine-grained control over
a target region, they adopt an “annotation-first” approach, requiring an end-user to first manually
specify a ROI. By contrast, our method fully exploits the unsupervised learning paradigm, wherein
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Figure 22. Local image editing on a number of architectures and datasets, using both the global and refined parts
factors. At each column, the original image is edited at the target part with a different appearance vector.

such concepts are discovered automatically and without any manual annotation. These discovered
semantic regions can then be chosen, combined, or even modified by an end-user as desired for local
image editing.

More interestingly still, through a generic decomposition of the feature maps our method
identifies representations of common concepts (such as “background”) in all generator architectures
considered (all 3 StyleGANs [219, 232, 233], ProgressiveGAN [253], and BigGAN [234]). This is
a surprising finding, given that these generators are radically different in architecture. By then
editing the feature maps using these appearance factors, we can thus, for example, remove specific
objects in the foreground (Figure 21 (b)) in all generators, seamlessly replacing the pixels at the
target region with the background appropriate to each image.

However, our method is useful not only for local image editing, but also provides a straightforward
way to localize the learnt appearance concepts in the images. By expressing activations in terms
of our learnt appearance basis, we are provided with a visualization of how much of each of the
appearance concepts are present at each spatial location (i.e., saliency maps for concepts of interest).
By then thresholding the values in these saliency maps (as shown in Figure 21 (c)), we can localize
the learnt appearance concepts (such as sky, floor, or background) in the images–without the need
for supervision at any stage.

5.2.2. Experimental results

Here, we showcase our method’s ability to perform local image editing in pre-trained GANs,
on 5 generators and 5 datasets (ImageNet [254], AFHQ [255], FFHQ [232], LSUN [256], and
MetFaces [257]). In Figure 22, we show a number of interesting local edits achievable with our
method, using both the global and refined parts factors. Whilst we can manipulate the style at
common regions such as the eyes with the global parts factors, the refined parts factors allow one
to target regions such as an individual’s clothes, or their background. One is not limited to this
set of learnt parts however. For example, one can draw a ROI by hand at test-time or modify an
existing part. This way, pixel-level controle.g., opening only a single eye of a face) is achievable in a
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way that is not possible with the SOTA methods [241,249].
We next compare our method to state-of-the-art GAN-based image editing techniques in Figure

23. In particular, we train our model at layer 5 using RS = 8 global parts factors, with no refinement.
As can be seen, SOTA methods such as LowRank-GAN [249] excel at enlarging the eyes in a
photo-realistic manner. However, we frequently find the surrounding regions to change as well.
This is seen clearly by visualizing the mean squared error [242] between the original images and
their edited counterparts, shown in every second row of Figure 23. We further quantify this ability
to affect local edits in the section that follows.

Figure 23. Qualitative comparison to SOTA methods editing the “eyes” ROI. We also show the mean squared
error [242] between the original images and their edited counterparts, highlighting the regions that change.

We compute the ratio of the distance between the pixels of the original and edited images in
the region of ‘disinterest’, over the same quantity with the region of interest:

ROIR(M,X ,X ′) =
1

N

N∑
i=1

||(1−M) ∗ (Xi −X ′
i ) ||

||M ∗ (Xi −X ′
i ) ||

, (13)

whereM∈ [0, 1]H×W×C is an H ×W spatial maskreplicated along the channel mode) specifying

the region of interest, 1 is a 1-tensor, and X ,X ′ ∈ RN×H̃×W̃×C̃ are the batch of original and edited
versions of the images respectively. A small ROIR indicates more ‘local’ edits, through desirable
change to the ROI (large denominator) and little change elsewhere (small numerator). We compute
this metric for our method and SOTA baselines in Table 16, for a number of regions of interest. As
can be seen, our method consistently produces more local edits than the SOTA for a variety of
regions of interest. We posit that the reason for this is due to our operating directly on the feature
maps, where the spatial activations have a direct relationship to a patch in the output image.

5.2.3. Relevant publications

• Oldfield, J., Tzelepis, C., Panagakis, Y., Nicolaou, M. A., Patras, I. ”PandA: Unsupervised
learning of parts and appearances in the feature maps of GANs”. ICLR 2023. [2].
Zenodo record: https://zenodo.org/record/7682257.

5.2.4. Relevant software/datasets/other outcomes

• The PyTorch implementation of our work “PandA: Unsupervised Learning of Parts and
Appearances in the Feature Maps of GANs” can be found at: https://github.com/

james-oldfield/PandA.
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Table 16. ROIR (↓) of eq. (13) for 10k FFHQ samples per local edit.

Eyes Nose Open mouth Smile

GANSpace [218] 2.80±1.22 4.89±2.11 3.25±1.33 2.44±0.89
SeFa [238] 5.01±1.90 6.89±3.04 3.45±1.12 5.04±2.22
StyleSpace [241] 1.26±0.70 1.70±0.82 1.24±0.44 2.06±1.62
LowRankGAN [249] 1.78±0.59 5.07±2.06 1.82±0.60 2.31±0.76
ReSeFa [252] 2.21±0.85 2.92±1.29 1.69±0.65 1.87±0.75
Ours 1.04±0.33 1.17±0.44 1.04±0.39 1.05±0.38

5.2.5. Relevance to AI4media use cases and media industry applications

Our algorithm for learning a set of factors that correspond to interpretable parts and appearances
in a dataset of images contributes and provides solution to the general cases of local image editing,
context-aware object removal, and producing saliency maps for learnt concepts of interest. This is
connected to visual content generation that can be useful in visual analysis and creation in the
media industry. The provided solution allows a human in the loop (e.g., a journalist or a creative
artist) to perform image editing that is of interest in news-related content. For instance, removing,
blurring, or even highlighting specific objects of interest in the visual stream of news content.

5.3. Dataset Anonymization with Generative Models

Contributing partners: QMUL, UNITN

5.3.1. Introduction and methodology

Considering that modern machine learning algorithms learn from vast amounts of data often crawled
from the Web [232,258], it has become increasingly important to consider the impact this has on
the privacy of those individuals depicted. Motivated by privacy concerns, many societies have
recently enacted strict legislation, such as the General Data Protection Regulation (GDPR) [259],
which requires the consent of every person that might be depicted in an image dataset. Whilst
such laws have obvious benefits to the privacy of those featured in image datasets, this is not
without costly side effects to the research community. In particular, research fields such as computer
vision and machine learning rely on the creation and sharing of high-quality datasets of images of
humans for a number of important tasks including security [260], healthcare [261], and creative
applications [232,262].

A recent line of research focuses on overcoming this issue by anonymizing the identity of the
individuals in image datasets. Through this approach, the machine learning community can still
benefit from the wealth of large datasets of high-resolution images, but without cost to privacy.
A certain line of work leverages the power of GANs [265], which have recently been used for
discovering controllable generation paths in their latent or feature spaces [1, 2, 266–268]. Towards
face anonymization, GANs have been incorporated in order to synthesize new images in order to
obtain photos that maintain most of the image while changing the face of the subject of interest. In
particular, these approaches use techniques like image inpainting [264], conditional generation [263],
attribute manipulation [269], or adversarial perturbation [270]. These works are able to obtain
anonymized images that can still be used for computer vision tasks such as tracking and detection,
with very good results in terms of privacy preservation. However, many of these works lack the
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Figure 24. Face dataset anonymization: Comparison of our method [3] to CIAGAN [263] and DeepPrivacy [264] in
terms of identity anonymization and attribute preservation.
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Figure 25. Face dataset anonymization: Optimizing the trainable portion of the latent code wi
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ability to generate natural-looking faces and often fail to preserve the original facial attributes
in the anonymized images (or, on the occasions in which such methods do preserve the facial
attributes, they fail to demonstrate this quantitatively). This is critical for many applications
which rely on the attributes of the inner face, such as expression recognition [271], or mental
health affect analysis [272]. To further complicate the picture, a fundamental problem often found
with existing works is the way in which the anonymized images copy not just the original image’s
background, but also more identifiable features [263,264], such as the clothes of an individual, or
their hair (see examples of this in Figure 24). We argue that leaving such structure of the images
unchanged constitutes a glaring privacy vulnerability, as one can re-identify the original image from
the anonymized counterpart by comparing the image background or person’s clothes.

Motivated by these concerns, we propose to de-identify individuals in datasets of facial images
whilst preserving the facial attributes of the original images. To achieve this, in contrast to existing
work [263,264,269,273,274] that train custom neural networks from scratch, we propose to work
directly in the latent space of a powerful pre-trained GAN, optimizing the latent codes directly
with losses that explicitly aim to retain the attributes and obfuscate the identities. More concretely,
we use a deep feature-matching loss [275] to match the high-level semantic features between the
original and the fake image generated by the latent code, and a margin-based identity loss to control
the similarity between the original and the fake image in the ArcFace [276] space. The initialisation
of the latent codes is obtained by randomly sampling the latent space of GAN, using them to
generate the corresponding synthetic images and finding the nearest neighbors in a semantic space
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(FARL [275]). In order to preserve texture and pose information of the original image, we perform
inversion of the original image and retain the parts that correspond to the properties we want to
preserve in the final code. This results in a latent code that yields a high-resolution image that
contains a new identity but retains the same facial attributes as the original image.

5.3.2. Experimental results

5.3.2.1. Datasets and the SOTA We perform anonymization on the following datasets: (i)
CelebA-HQ [277], which contains 30000 1024× 1024 face images of celebrities from the CelebA
dataset with various demographic attributes (e.g., age, gender, race) and where each image is
annotated with 40 attribute labels related to the inner and outer regions of the face, and (ii)
LFW [278], which contains over 13000 images collected from the Web (5749 identities with 1680 of
those identities being pictured in at least 2 images). We compare our anonymization framework
with two state-of-the-art anonymization methods, namely CIAGAN [263] and DeepPrivacy [264].

In Figures 26a, 26b we make a qualitative comparison between our method and the SOTA [263,
264]. As can be clearly seen, our method is capable of retaining the facial attributes of the image
to a much greater extent than the SOTA. In Tables 17, 18 we show the results for FID [279], face
detection, and face re-identification for the two considered datasets. We see that our method excels
at producing the most realistic-looking images under the FID metric for CelebA-HQ in Table 17,
and also outperforms the baselines for the FID metric on LFW [278] in Table 18 when considering
the CelebA-HQ [277] dataset as the “target” distribution1.

FID↓ Detection↑ Face re-ID↓
dlib MTCNN(%) CASIA(%) VGG(%)

Randomly generated 18.09 100 99.99 3.61 1.08

CIAGAN [263] 37.94 95.10 99.82 2.19 0.37

DeepPrivacy [264] 32.99 92.82 99.85 3.61 1.05

Ours (ID) 44.12 98.58 97.99 3.28 0.58

Ours (ID+attributes) 44.11 100 100 3.06 2.06

Ours 29.93 100 100 2.80 1.67

Table 17. CelebA-HQ [277] privacy and image quality results.

FID↓ FID (C-HQ)↓ Detection↑ Face re-ID↓
dlib MTCNN(%) CASIA(%) VGG(%)

CIAGAN [263] 22.07 85.23 98.14 99.89 0.17 0.91

DeepPrivacy [264] 23.46 123.67 96.70 99.57 2.74 1.52

Ours 27.45 68.88 100 100 2.07 1.58

Table 18. LFW [278] privacy and image quality results.

We quantify the attribute preservation of the anonymization methods for the CelebA-HQ [277]
in Table 19. As can be seen, our method’s images result in a classifier capable of almost the same
accuracy as when training on the original labels, demonstrating the ability of our method to retain
the original facial features. Whilst the other two baselines also produce reasonable results under

1Given that CelebA-HQ is of much higher quality than LFW, we report both cases to demonstrate that our
images can better match the distribution of high-resolution data.
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Figure 26. Anonymization results on (a) the CelebA-HQ [277] and (b) the LFW [278] datasets in comparison to
DeepPrivacy (DP) [264] and CIAGAN [263].

this combined accuracy metric, we argue this is because of the way in which they preserve the
image outside the region of the inner face of the images.

Inner face Outer face Combined

Original 0.8409 0.8683 0.8539

CIAGAN [263] 0.7277 0.8372 0.7852

DeepPrivacy [264] 0.7658 0.8511 0.8135

Ours 0.7817 0.8518 0.8181

Table 19. Attribute classification results on CelebA-HQ [277].

5.3.3. Relevant publications

• Barattin, S., Tzelepis, C., Patras, I., and Sebe, N. “Attribute-preserving Face Dataset
Anonymization via Latent Code Optimization”. CVPR 2023. [3].
Zenodo record: https://zenodo.org/record/8012381.

5.3.4. Relevant software/datasets/other outcomes

The PyTorch implementation of our work “Attribute-preserving Face Dataset Anonymization via
Latent Code Optimization” (CVPR 2023) can be found in https://github.com/chi0tzp/FALCO.
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5.3.5. Relevance to AI4media use cases and media industry applications

Our algorithm for the anonymization of facial images contributes and provides solution to the
general cases where the privacy protection of human faces is important. This can be crucial to the
media industry in the cases where depicted faces (e.g., of people that have not given consent) need
to be de-identified before being published as part of a news content. The efficiency of our method
allows for the fast processing of images/videos, which is typically needed due to the dynamic nature
of news and media content, where the depicted faces can be anonymized without losing crucial facial
attributes, such as skin colour, facial expressions, etc. Furthermore, our method can help towards
sharing important datasets that have been collected by media industry organisations for decades
and that now may violate GDPR, such as datasets of humans coming from news images/videos.
Our anonymization method can protect the identity of the depicted humans, while rendering those
datasets useful for the industry and the research community.

5.4. A survey of manifold learning and its applications for multimedia

Contributing partners: JR

5.4.1. Introduction

Deep learning methods are nowadays the best way for the automatic analysis of multimedia data
(e.g. images, video or 3D data) for tasks like classification or detection. However, classic neural
networks are restricted to data lying in vector spaces, while data residing in smooth non-Euclidean
spaces arise naturally in many problem domains. For example, a 360◦ camera actually captures
a spherical image, not a rectangular image. We will focus in this survey on manifolds, especially
Riemannian manifolds, which are well suited for generalizing a vector space because they are locally
Euclidian and differentiable.

A manifold M of dimension d corresponds to a topological structure which locally (so in the
neighborhood of a point p ∈ M) looks like a d−dimensional Euclidean space. The ”best” local
approximation of this neighborhood of p with a d−dimensional Euclidean space is its tangent space
TpM . The tangent space TpM can be seen as a linear approximation of M around p. For example,
for a 2-dimensional manifold its tangent space TpM is the tangent plane going through this point
(see Figure 27). A Riemannian manifold is a smooth manifold M equipped with a positive definite
inner product gp on the tangent space TpM of each point p.

The inner product g induces a norm on the tangent space, which subsequently allows us to
calculate curve lengths and distances on the manifold M . For each curve c(t) on the manifold its
length can be calculated by integrating the norm along the curve (for details see [280–284]). A
geodesic curve is a length-minimizing curve connecting two points p and q on the manifold. The
distance between these points is defined as the length of the geodesic.

Let p be a (reference) point on the manifold and v a vector of its tangent space TpM . The
vector v can be mapped now to the point q on the manifold that is reached after unit time t = 1 by
the geodesic c(t) starting at p with tangent vector v. This mapping expp(v) : TpM →M is called
the exponential map at point p.

The inverse mapping logp(q) : M → TpM is uniquely defined around a neighborhood of p.
Informally, the exponential map and logarithm map move points back and forth between the
manifold and the tangent space (see Figure 27) while preserving distances. Furthermore, derivative
operators like differential, intrinsic gradient, divergence and laplacian can be also defined on a
manifold [285,286], which allows us to perform calculus on the manifold.
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Closely related to manifolds are Lie groups. A Lie group is a smooth manifold that also forms a
group [280], where both group operations (commonly called multiplication and inverse) are smooth
mappings of manifolds. The Lie algebra g of a Lie group M is defined as the tangent space at the
identity TeM , where e is the identity element of the group (see section 16 in [286]).

Key components of neural networks – like mean, convolution, nonlinearities and batch normaliza-
tion – can be defined on Riemannian manifolds as described in [288–292]. Optimization algorithms
for Riemannian manifolds (gradient descent, SGD, Adam etc.) can be found in [293–300].

Commonly encountered examples of Riemannian manifolds in computer vision are the n−sphere
Sn, the manifold of n × n symmetric positive matrices Pn, the special orthogonal group SO(n)
(rotation matrices), the special euclidean group SE(n) (rigid body transformations), Grassman
manifold Gr(n, p) (collection of all p−dimensional linear subspaces in Rn, see [301]) and the Stiefel
manifold St(n, p) (collection of all p-dimensional orthogonal bases in Rn).

In the following, we will give an overview of manifold learning methods employed in important
application fields in multimedia (similarity search, image classification, synthesis & enhancement,
video analysis, 3D data processing, nonlinear dimension reduction) and about available open source
software frameworks.

5.4.2. Similarity search & retrieval

Image retrieval deals with searching for similar images in an image gallery, given a certain query
image (see the surveys [302,303]). Many methods employ for this metric learning, which transforms
input images into embeddings (≈ feature vectors) and learns a distance function between these
embeddings.

The authors of [304] propose regularized ensemble diffusion for refining/reranking the initial
similarity search results. They show that regularized ensemble diffusion is significantly more robust
against noise in the data than standard diffusion. A diffusion process [305] models the relationship
between objects on a graph-based manifold, wherein similarity values are diffused along the geodesic
path in an iterative way.

In [306] an unsupervised framework is presented for the identification of hard training examples
for the training of an embedding. Hard training examples (both positive and negative samples) are
identified by disagreement between euclidean and manifold similarities.

A time- and memory-efficient algorithm for estimating similarities on the data manifold is
proposed in [307]. They adapt the random walk procedure to estimate manifold similarities only an
a small number of data in each mini-batch, rather than on all training data.

The work of [308] proposes a unsupervised metric learning algorithm that learns a metric in a
lower dimensional latent space using constraints provided as tuples, which rely on pseudo-labels
obtained by a graph-based clustering method (authority ascent shift). The parameters of the
approach are learned jointly using Riemannian optimization on a product manifold.

Figure 27. Tangent space and exponential map on a 2-dimensional manifold. Image courtesy of [287].
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Figure 28. Transfer CNNs trained on flat images to 360◦ images with the method from [310].

5.4.3. Image classification & object detection

The work [295] proposes a framework for the transformation of problems with manifold constraints
into unconstrained problems on an Euclidean space through a mechanism they call dynamic
trivializations. They show how to implement these trivializations efficiently for a large variety of
commonly used matrix manifolds and provide a formula for the gradient of the matrix exponential.

The authors of [309] propose manifold mixup, a novel regularizer which forces the training to
interpolate between hidden representations – captured in the intermediate layers of the network –
of samples. It can be seen as a generalization of input mixup, which does the interpolation on a
random layer of the network (whereas input mixup uses always layer 0). Experiments for the task
of image classification show that manifold mixup flattens the class-specific representation (lower
variance) and generates a smoother decision boundary.

An approach for few-shot image classification is presented in [311] which proposes embedding
propagation as an unsupervised non-parametric regularizer. Embedding propagation leverages
interpolation between the extracted features of a neural network, based on a similarity graph.
Experiments show that embedding propagation yields a smoother embedding manifold and gives
better performance on three standard datasets for few-shot image classification.

The work [310] introduces a knowledge distillation method which is able to transfer an existing
CNN model trained on perspective images to spherical images captured with a 360◦ camera without
any additional annotation effort (see Figure 28). They train a spherical Faster R-CNN model
with this method, demonstrating that an object detector for spherical images (in equirectangular
projection) can be trained without any annotations in the 360◦ images.

5.4.4. Image synthesis & enhancement

For image synthesis and enhancement, state of the art algorithms employ either GANs (generative
adversial networks) [312] or diffusion models [313].

The authors of [314] show that current solvers employed in diffusion models throw the generative
sample path off the data manifold, causing the error to accumulate. They propose an additional
correction term inspired by the manifold constraint to force the iterations to be close to the data
manifold. The proposed manifold constraint is easy to add to a solver, yet boosts its performance
significantly.

A method for comparing data manifolds based on their topology is presented in [315]. They
introduce novel tools, specifically cross-barcode and manifold topology divergence score, which are
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Figure 29. From left to right: Content image, style image, style-transferred image [316].

able to track spatial discrepancies between manifolds on multiple scales. They apply it to assess
the performance of generative models in various domains (images, 3D shapes or time series) and
demonstrate that these tools are able to detect common problems of GAN-based image synthesis
like mode dropping, mode collapse and image disturbance.

The work [316] proposes progressive attentional manifold alignment for style transfer, which
progressively aligns content manifolds to their most related style manifolds. Afterwards, space-aware
interpolation is performed in order to increase the structural similarity of the corresponding manifolds,
which makes it easier for the attention module to match features between them. Experiments show
that the method generates high-quality style-transferred images (see Figure 29).

The FLAME algorithm proposed in [317] performs highly realistic image manipulations (e.g.
changing expression, hair style or age of a synthetic face, see Figure 30) with minimal supervision.
It estimates linear latent directions in the latent space of StyleGAN2 using only a few image pairs
and introduces a novel method for sampling from the attribute style manifold.

5.4.5. Video analysis

Most manifold learning methods for video analysis deal with the important task of human action
recognition. Often they employ neural networks over the manifold Pn of symmetric positive matrices
(usually covariance matrices) for this.

The authors of [289] propose a dilated convolution operator on manifolds, based on the weighted
Frechet mean [288], as well as a residual connection operator. Both are important building blocks of
modern neural networks. They construct a manifold-valued network employing covariance matrices
(calculated from CNN features) and train this network for human action detection on the UCF-11
video dataset.

In [290] the convolution is defined as the weighted sum (reprojected to the manifold) in the
tangent space TaM , where a is the Frechet mean of the input points for the convolution. They
show that their proposed convolution operator is an isometry of the manifold, which corresponds to
the translation-invariance property of the convolution in an Euclidean space.

The algorithm [318] adopts a neural network over the manifold Pn of symmetric positive definite
matrices as the backbone and appends a cascade of Riemannian autoencoders to it in order to enrich
the information flow within the network. Experiments on the tasks of emotion recognition, hand
action recognition and human action recognition demonstrate a favourable performance compared
to state of the art methods.

5.4.6. 3D data processing

The work [319] proposes a novel algorithm for geometric disentanglement (separate intrinsic and
extrinsic geometry) of 3D models, based on the fundamental theorem for surfaces. They describe
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surface features via a combination of conformal factors and surface normal vectors and propose a
convolutional mesh autoencoder based on these features. The conformal factor defines a conformal
(angle-preserving) deformation between two manifolds. The algorithm achieves state-of-the-art
performance on 3D surface generation, reconstruction and interpolation tasks (see Figure 31).

The authors of [320] propose an approach for learning generative models on manifolds by
minimizing the probability path divergence. Unlike other continuous flow approaches, it does not
require solving an ordinary differential equation during training.

In [321] a method for rotation (pose) estimation of 3D objects from point clouds and images is
presented. For this, they propose a novel manifold-aware gradient in the backward pass of rotation
regression that directly updates the neural network weights.

The work [322] introduces intrinsic neural fields, a novel and versatile representation for neural
fields on manifolds. Intrinsic neural fields are based on the eigenfunctions of the Laplace-Beltrami
operator, which can represent detailed surface information directly on the manifold. Furthermore,
they extend neural tangent kernel analysis to manifolds for better insight into the spectral properties
of neural fields.

5.4.7. Nonlinear dimension reduction

Many real world high-dimensional datasets are actually lying in a low-dimensional manifold
(manifold hypothesis). Nonlinear dimensional reduction algorithms project high-dimensional data
onto such a low-dimensional manifold, while trying to preserve distance relationships in the original
high-dimensional space as good as possible.

Classical approaches for nonlinear dimension reduction are Isomap, Local Linear Embedding
(LLE) and Laplacian Eigenmaps (see the survey in [323]). In recent years, more powerful approaches
like t-SNE, UMAP, TriMAP and PaCMAP have emerged [324]. From these, PaCMAP seems to
preserve best both the global and local structure of the high-dimensional data.

In [325], the h-NNE algorithm is proposed, which is competitive with t-SNE and UMAP in
quality while being on order of magnitude faster. The significant runtime advantage is possible as
h-NNE avoids solving an optimization problem and relies on nearest neighbor graphs instead.

The SpaceMAP algorithm [326] (see Figure 32) introduces the concept of equivalent extended
distance, which makes it possible to match the capacity between two spaces of different dimensionality.
Furthermore, hierarchical manifold approximation is performed based on the observation that real-
world data has often a hierarchical structure.

The DIPOLE algorithm proposed in [327] corrects an initial embedding (e.g. calculated via
Isomap) by minimizing a loss functional with both a local, metric term and a global, topological
term based on persistent homology. Unlike more ad hoc methods for measuring the shape of data

Figure 30. Image editing with FLAME [317].
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at multiple scales, persistent homology is rooted in algebraic topology and enjoys strong theoretical
foundations.

For measuring the intrinsic dimension of a data distribution, in [328] a method is presented
based on recent progress in likelihood estimation in high dimensions via normalizing flows.

5.4.8. Relevant publications

The survey has been submitted to MVA Conference 2023 and is currently under review.

5.5. Manifold mixing soups for better out-of-distribution performance

Contributing partners: JR

5.5.1. Introduction and methodology

Large pretrained visual foundation models like CLIP [5] or CoCa [6] got very popular recently
due to their great performance for a variety of computer vision tasks, either as zero-shot learner
(without finetuning) or serving as a base for task-specific finetuning on a smaller dataset.

Typically, multiple models are finetuned with different hyperparameters (like learning rate,
weight decay or data augmentation strategy), using the same pretrained model as initialization.
From those, the model with the best accuracy on the validation dataset is selected. Unfortunately,
this procedure leaves out important information which has been learned in the latent space manifolds
(individual layers or a collection of layers) of the remaining finetuned models. As shown in [329],
even fusing multiple finetuned models in a very straightforward way by averaging them makes the
fused model already significantly more robust to distribution shifts in the data.

Motivated by this, we propose the manifold mixing model soup (ManifoldMixMS ) algorithm.
Instead of simple averaging, it uses a more sophisticated strategy to generate the fused model.
Specifically, it partitions a neural network model into several latent space manifolds (which can be
individual layers or a collection of layers). Afterwards, from the pool of finetuned models available
after hyperparameter tuning, the most promising ones are selected and their latent space manifolds
are mixed together individually. The optimal mixing coefficient for each latent space manifold
is calculated automatically via invoking an optimization algorithm. The fused model we retrieve
with this procedure can be thought as sort of a ”Frankenstein” model, as it integrates (parts of)
individual model components from multiple finetuned models into one model.

In the following, we outline the proposed algorithm for generating a fused model – the manifold
mixing model soup – from its ingredients (the finetuned models after hyperparameter tuning). The
algorithm pseudocode can be seen in Algorithm 1.

Figure 31. Generated 3D models with the geometric disentanglement algorithm from [319].
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Figure 32. Comparison of classic nonlinear dimension reduction methods with SpaceMAP [326].

We first sort all n finetuned models θi (with i = 0, ..., n− 1) in descending order, based on their
validation accuracy V alAcc(θi) on the original dataset which was used for finetuning. So θ0 is the
model (to be precise, its finetuned parameters) with the highest validation accuracy, whereas θn−1

is the one with the lowest validation accuracy.
Each model θi is partitioned into m components θji , where θji corresponds to a single latent

space manifold, and j = 1, ...,m. Each latent space manifold comprises either a single layer or a
collection of layers, corresponding to one building block of the model. Typically, we partition a
model into 10− 30 components.

The fused model Ψ is now calculated in an sequential way, by iteratively mixing promising
ingredient models with it. At first, the fused model is set to the best finetuned model via Ψ = θ0,
and the variable k, which counts the number of models which have been mixed so far into the fused
model, is set to 1.

In each iteration (for i = 1, ..., n−1), we try now to mix the candidate model θi with the current
fused model Ψ in an optimal way, with the aim of increasing the validation accuracy of the updated
fused model Ψ′ (which includes θi) on the original dataset.

In order to save computation time, we skip the optimization step for a candidate model θi for
which it is unlikely that we get an increase in the validation accuracy by mixing θi into the current
fused model Ψ. For that, we generate the ”approximate average” model Ψ̃ via

Ψ̃ =
k

k + 1
·Ψ+

1

k + 1
· θi (14)

and test whether the condition V alAcc(Ψ̃) > τ · V alAcc(Ψ) is fulfilled. If so, we continue with this
iteration. If it is not fulfilled, we skip the following steps of this iteration, so candidate model θi
will not be taken into account. The motivation for the specific combination provided in Eq. (14) is
that Ψ̃ calculated in this way corresponds approximately to the average of all candidate models
(like in [329]) which have been mixed so far into the fused model (including θi), if we assume that
the optimization did not change the mixing coefficients drastically from their provided initial values.
We set the constant τ to 0.998.

Having identified θi as a promising candidate model, in the next step we determine the optimal
factors for mixing its latent space manifolds into the current fused model Ψ. For this, we define the
updated fused model Ψ′(λ) as a component-wise convex combination of Ψ and θi via

Ψ′(λ)j = λj ·Ψj + (1− λj) · θji (15)
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for all components j = 1, ...,m. Note that Ψ′(λ) is a function of the mixing vector λ. The
mixing factor λj ∈ [0, 1] determines how much of the j − th component (latent space manifold)
of the candidate model θi is mixed into the current fused model Ψ. The component-wise convex
combination of the two models allows an optimizer to explore the latent space manifolds of the
models Ψ and θi in a very flexible way, in order to find the optimal mixing vector λ∗ ∈ Rm which
gives the highest validation accuracy for the updated fused model Ψ′.

For the subsequent optimization step, we set up the optimization problem to solve as

λ∗ = argmax
λ∈[0,1]m

(V alAcc (Ψ′ (λ))) (16)

where [0, 1]m is the m−dimensional unit interval. Via the constraint λ ∈ [0, 1]m we ensure that a
convex combination is done for each component, so we are in fact interpolating linearly between
the latent space manifolds Ψj and θj . The model Ψ′(λ) can be calculated via Eq. (15).

For solving this optimization problem, we employ the Nevergrad 2 optimization package. It
provides a large variety of black-box derivative-free optimization algorithms together with a
sophisticated heuristic [330] to select the best optimizer based on the characteristic (number of
variables, allowed budget for function evaluations etc.) of the optimization problem. As the initial
value for the mixing factors, we set λj = k/(k + 1) for j = 1, ...,m with a similar motivation as
explained earlier for Eq. (14).

We invoke now the optimizer in order to calculate the optimal mixing vector λ∗ which give the
highest validation accuracy on the dataset used for finetuning. The optimal updated fused model
can be calculated now via Ψ′∗ = Ψ′(λ∗).

After iterating over all candidate models θi for i = 1, ..., n− 1 we retrieve a final fused model
Ψ (the manifold mixing model soup), which mixes together the k selected candidate models /
ingredients in an optimal way.

5.5.2. Experiments and Evaluation

The setup for our experiments is very similar to the one for the vision models given in the model
soup paper [329]. We summarize it in the following for clarity and completeness.

The model employed for finetuning is the CLIP model [5]. CLIP is a powerful multi-modal
zero-shot neural network, which has been pretrained with contrastive learning on a huge dataset
of image-text pairs. Finetuning of the pretrained model is performed end-to-end (all parameters
are modified), as it typically leads to better performance than training only the final linear layer.
Before finetuning, the final layer is initialized with a linear probe as described in [331]. The loss
function employed for finetuning is the cross-entry loss.

The original dataset employed for finetuning is ImageNet [332]. Since the official ImageNet
validation dataset is typically used as the test dataset, we use roughly 2% of the ImageNet training
dataset as held-out validation dataset for calculating the validation accuracy in our proposed
algorithm (see Algorithm 1).

For measuring the OOD performance (robustness to distribution shifts) of our proposed algo-
rithm, we employ five datasets derived from ImageNet with natural (not synthetically generated)
distribution shifts. They corresponds to datasets with naturally occurring variations of the data
samples due to different lighting, viewpoint, geographic location, image style (e.g. sketch instead of
photo), crowdsourcing and more. The five datasets with distribution shifts we use are:

• ImageNet-V2 (IN-V2) [333] is a reproduction of the ImageNet test set with distribution shift.
The dataset was collected by closely following the original labelling protocol.

2https://facebookresearch.github.io/nevergrad/
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Algorithm 1 Manifold mixing model soup algorithm

Require: Finetuned models {θ0, ..., θn−1} as result of hyperparameter tuning
Require: Partitioning of a model ζ into m components (latent space manifolds) ζj for j = 1, ...,m
Require: Function V alAcc(ζ) which calculates validation accuracy for ζ on dataset
{θ0, ..., θn−1} ← sort({θ0, ..., θn−1})
k ← 1
Ψ← θ0
τ ← 0.998
for i = 1, ..., n− 1 do
Ψ̃ = k

k+1 ·Ψ+ 1
k+1 · θi

if V alAcc(Ψ̃) > τ · V alAcc(Ψ) then
Ψ′(λ)j = λj ·Ψj + (1− λj) · θji
λ∗ = argmaxλ∈[0,1]m (V alAcc (Ψ′ (λ)))

Ψ′∗ = Ψ′(λ∗)
if V alAcc(Ψ′∗) > V alAcc(Ψ) then

k ← k + 1
Ψ← Ψ′∗

end if
end if

end for
return Ψ

• ImageNet-R (IN-R) [334] contains renditions (e.g., sculptures, paintings) for 200 ImageNet
classes.

• ImageNet-Sketch (IN-Sketch) [335] contains sketches instead of natural images. It contains
only sketches in ”black-and-white” color scheme.

• ObjectNet [336] provides objects in various scenes with 113 classes overlapping with ImageNet.

• ImageNet-A (IN-A) [337] is a test set of natural images misclassified by a ResNet-50 model
for 200 ImageNet classes.

See Figure 33 for an illustration of samples for each of the datasets with natural distribution
shifts. For all datasets (the original used for finetuning and the ones with distribution shifts), we
take the top-1 accuracy on the respective test set for measuring the performance of a model. We
calculate the overall out-of-distribution performance of a model as the average of its test accuracy
over all five datasets with distribution shifts.

We partition the CLIP ViT-B/32 model into 8, 15 and 26 components. A too fine partitioning
(e.g. one component for each layer of the model) makes the optimization much more difficult,
whereas a too coarse partioning provides not enough flexibility for mixing the latent space manifolds
individually in an optimal way. The structure of the partitioning is done roughly according to
the hierarchy of the building blocks of the CLIP model. We denote the respective variant of our
proposed algorithm with 8, 15 and 26 components as ManifoldMixMS-C8, ManifoldMixMS-C15
and ManifoldMixMS-C26.

We parametrize the Nevergrad optimizer with an maximum budget for the number of function
evaluations (of the objective function to optimize) of roughly 250 function evaluations for all
ManifoldMixMS variants. The employed optimizer is automatically selected by the Nevergrad
optimization package (see [330]).
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Figure 33. Samples for class lemon, from the original ImageNet dataset and the five datasets with natural
distribution shifts. Image courtesy of [338]

.

For the evaluation of our proposed manifold mixing model soup algorithm, we compare mainly
with the greedy soup and uniform soup algorithms which have been proposed in [329]. Additionally,
we compare our proposed algorithm also against ensemble models.

The scatterplot in Figure 34 shows how our proposed ManifoldMixMS-C8 algorithm (the overall
best variant) performs compared to the greedy soup and uniform soup algorithm from [329] and to
the individual finetuned models.

Furthermore, Table 20 gives a detailed evaluation of our proposed variants of the manifold
mixing soup algorithm with 8, 15 and 26 on the five datasets with distribution shifts (ImageNet-V2,
ImageNet-R, ImageNet-Sketch, ObjectNet, ImageNet-A) as well as on the original dataset used for
finetuning (ImageNet).

One can see clearly from the scatterplot that our proposed manifold mixing model soup
(especially the preferred variant with 8 components) algorithm combines the best properties of
the uniform model soup and greedy soup algorithm. Specifically, it has practically the same good
out-of-distribution accuracy as the uniform soup algorithm and still keeps the good accuracy of the
greedy soup algorithm on the original ImageNet dataset. In contrast, the uniform soup algorithm
performs on the original ImageNet dataset even worse than the best individual finetuned model.

It is significantly better with respect to the best finetuned model both on the datasets with
distribution shifts (+3.5%), but also on the original ImageNet dataset (+0.6%). The difference
grows even bigger when comparing with the second-best finetuned model.

5.5.3. Conclusion

We propose the manifold mixing model soup algorithm, which mixes together the latent space
manifolds of multiple finetuned models in an optimal way in order to generate a fused model.
Experiments show that the fused model gives significantly better out-of-distribution performance
when finetuning a CLIP model for image classification.

5.5.4. Relevant publications

The publication has been submitted for IMVIP 2023 and is currently under review.
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Figure 34. Comparison of our proposed manifold mixing soup algorithm (with 8 components) against greedy soup
and uniform soup algorithm from [329] and the individual finetuned models.

5.5.5. Relevant software/datasets/other outcomes

A Python implementation of the ManifoldMixMS algorithm will be made available at https:

//github.com/hfassold/ManifoldMixMS as soon as the publication gets accepted.

5.5.6. Relevance to AI4media use cases and media industry applications

The ManifoldMixMS algorithm for improving the out-of-distribution performance of a model can
be employed for all AI4Media use cases where a training and subsequent hyperparameter tuning is
done – e.g. in UC6 (BSC) that is dealing with media generation.

5.6. Sparse to Dense Dynamic 3D Facial Expression Generation

Contributing partners: UNIFI

5.6.1. Introduction and methodology

Synthesizing dynamic 3D (4D) facial expressions aims at generating realistic face instances with
varying expressions or speech-related movements that dynamically evolve across time, starting
from a face in neutral expression. It finds application in a wide range of graphics applications
spanning from 3D face modeling, to augmented and virtual reality for animated films and computer
games. While recent advances in generative neural networks have made possible the development of
effective solutions that operate on 2D images [339, 340], the literature on the problem of generating
facial animation in 3D is still quite limited.

To perform a faithful and accurate 3D facial animation, three main challenges arise. First,
the identity of the subject whose neutral face is used as starting point for the sequence should
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Table 20. Detailed comparison of our proposed manifold mixing soup algorithm variants for the CLIP ViT-B/32
neural network with the best and second-best finetuned model, the model soup algorithms from [329] and for
completeness also with Ensemble methods.The top-1 accuracy (in %) on the respective test dataset is employed. The
column ”Avg OOD” corresponds to the average over all 5 datasets with distribution shifts. The best and second-best
result for each dataset (without taking into account the Ensemble methods as they have a much higher
computational cost) is marked in red and blue.

Method ImageNet IN-V2 IN-R IN-Sketch ObjectNet IN-A Avg OOD

Best finetuned model 80.38 68.44 44.51 60.63 42.62 23.64 47.97

Second-best finetuned model 79.89 67.91 41.49 54.58 37.98 18.01 44.01

Uniform soup 79.97 68.51 47.71 66.54 45.95 29.17 51.57

Greedy soup 81.03 69.55 47.77 64.20 44.90 27.89 50.86

ManifoldMixMS-C8 80.95 69.67 48.15 64.81 45.66 29.06 51.47

ManifoldMixMS-C15 80.80 69.61 47.89 64.76 44.45 28.39 51.02

ManifoldMixMS-C26 80.85 69.58 48.04 64.79 45.75 28.88 51.41

Ensemble 81.19 – – – – – 50.77

Greedy ensemble 81.90 – – – – – 49.44

Figure 35. 3D dynamic facial expression generation: A GAN generates the motion of 3D landmarks from an
expression label and noise; A decoder expands the animation from the landmarks to a dense mesh, while keeping the
identity of a neutral 3D face,

be maintained across time. Second, the applied deformation should correspond to the specified
expression/motion that is provided as input, and should be applicable to any neutral 3D face.
Incidentally, these are major challenges in 3D face modeling, which require disentangling structural
face elements related to the identity, e.g., nose or jaw shape, from deformations related to the
movable face parts, e.g., mouth opening/closing. Finally, it is required to model the temporal
dynamics of the specified expression so to obtain realistic animations.

Some previous works tackled the problem by capturing the facial expression of a subject frame-
by-frame and transferring it to a target model [341]. However, in this case the temporal evolution
is not explicitly modeled, so the problem reduces to transferring a tracked expression to a neutral
3D face. Some other works animated a 3D face mesh given an arbitrary speech signal and a static
3D face mesh as input [342, 343]. Also in this case, the temporal evolution is guided by an external
input, similar to a tracked expression. Instead, here we are interested in animating a face just
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starting from a neutral face and an expression label.
In our solution, which is illustrated in Figure 35, the temporal evolution and the mesh deformation

are decoupled and modeled separately in two network architectures. A manifold-valued GAN
(Motion3DGAN ) accounts for the expression dynamics by generating a temporally consistent
motion of 3D landmarks corresponding to the input label from noise. The landmarks motion is
encoded using the Square Root Velocity Function (SRVF) and compactly represented as a point on
a hypersphere. Then, a Sparse2Dense mesh Decoder (S2D-Dec) generates a dense 3D face guided
by the landmarks motion for each frame of the sequence. To effectively disentangle identity and
expression components, the landmarks motion is represented as a per-frame displacement from a
neutral configuration. Instead of directly generating a mesh, the S2D-Dec expands the landmarks
displacement to a dense, per-vertex displacement, which is finally used to deform the neutral mesh.
The intuition that led to this architecture is the following: the movement induced on the face
surface by the underlying facial muscles is consistent across subjects. In addition, it causes the
vertex motion to be locally correlated as muscles are smooth surfaces. We thus train the decoder to
learn how the displacement of a sparse set of points influences the displacement of the whole face
surface. This has the advantage that structural face parts, e.g., nose or forehead, which are not
influenced by facial expressions are not deformed, helping in maintaining the identity traits stable.
Furthermore, the network can focus on learning expressions at a fine-grained level of detail and
generalize to unseen identities.

Figure 36 provides some additional details on the two specialized networks that compose our
architecture. Motion3DGAN accounts for the temporal dynamics and generates the motion of
a sparse set of 3D landmarks from noise, provided an expression label, e.g., happy, angry. The
motion is represented as per frame landmark displacements with respect to a neutral configuration.
These displacements are fed to a decoder network, S2D-Dec, that constructs the dense point-cloud
displacements from the sparse displacements given by the landmarks. These dense displacements
are then added to a neutral 3D face to generate a sequence of expressive 3D faces corresponding to
the initial expression label. In the following, we separately describe the two networks.

Figure 36. Overview of our framework. Motion3DGAN generates the motion q(t) of 3D landmarks corresponding
to an expression label from a noise vector z. The module is trained guided by a reconstruction loss Lr and
adversarial loss Ladv. The motion q(t) is converted to a sequence of landmark displacements di, which are fed to
S2D-Dec. From each di, the decoder generates a dense displacement Dg

i . A neutral mesh is then summed to the
dense displacements to generate the expressive meshes Sg. S2D-Dec is trained under the guidance of a displacement
loss Ldr and our proposed weighted reconstruction loss Lpr.

5.6.2. Experimental results

We validated the proposed method in a broad set of experiments on two publicly available benchmark
datasets.
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CoMA dataset [344]: It is a common benchmark employed in other studies [344, 345]. It consists
of 12 subjects, each one performing 12 extreme and asymmetric expressions. Each expression comes
as a sequence of meshes S ∈ RN×3 (140 meshes on average), with N = 5, 023 vertices.
D3DFACS dataset [346]: We used the registered version of this dataset [124], which has the
same topology of CoMA. It contains 10 subjects, each one performing a different number of facial
expressions. In contrast to CoMA, this dataset is labeled with the activated action units of the
performed facial expression. It is worthy to note that the expressions of D3DFACS are highly
different from those in CoMA.

5.6.2.1. 3D Expression Generation For evaluation, we set up a baseline by first comparing
against standard 3DMM-based fitting methods. Similar to previous works [347,348], we fit Sn to the
set of target landmarks Ze using the 3DMM components. Since the deformation is guided by the
landmarks, we first need to select a corresponding set from Sn to be matched with Ze. Given the
fixed topology of the 3D faces, we can retrieve the landmark coordinates by indexing into the mesh,
i.e., Zn = Sn(Iz), where Iz ∈ Nn are the indices of the vertices that correspond to the landmarks.
We then find the optimal deformation coefficients that minimize the Euclidean error between
the target landmarks Ze and the neutral ones Zn, and use the coefficients to deform Sn. In the
literature, several 3DMM variants have been proposed. We experimented the standard PCA-based
3DMM and the DL-3DMM in [347]. We chose this latter variant as it is conceptually similar to
our proposal, being constructed by learning a dictionary of deformation displacements. For fair
comparison, we built the two 3DMMs using a number of deformation components comparable to
the size of the S2D-Dec input, i.e., 68× 3 = 204. For PCA, we used either 38 components (retaining
the 99% of the variance) and 220, while for DL-3DMM we used 220 dictionary atoms.

With the goal of comparing against other deep models, we also considered the Neural3DMM [345].
It is a mesh auto-encoder tailored for learning a non-linear latent space of face variations and
reconstructing the input 3D faces. In order to compare it with our model, we modified the
architecture and trained the model to generate an expressive mesh Sg given its neutral counterpart
as input. To do so, we concatenated the landmarks displacement (of size 204) to the latent vector
(of size 16) and trained the network towards minimizing the same Lpr loss used in our model. All
the compared methods were trained on the same data. Finally, we also identified the FLAME
model [348]. Unfortunately, the training code is not available, and using the model pre-trained on
external data would not be a fair comparison.

The mean per-vertex Euclidean error between the generated meshes and their ground truth is
used as standard performance measure, as in the majority of works [344,345,349,350]. Note that
we exclude the Motion3DGAN model here as we do not have the corresponding ground-truth for
the generated landmarks (they are generated from noise). Instead, we make use of the ground truth
motion of the landmarks.

5.6.2.2. Comparison with Other Approaches Table 21 shows a clear superiority of S2D-Dec
over state-of-the-art methods for both the protocols and datasets, proving its ability to generate
accurate expressive meshes close to the ground truth in both the case of unseen identities or
expressions. In Figure 37, the cumulative per-vertex error distribution on the expression-independent
splitting further highlights the precision of our approach, which can reconstruct 90%-98% of the
vertices with an error lower than 1mm. While other fitting-based methods retain satisfactory
precision in both the protocols, we note that the performance of Neural3DMM [345] significantly
drop when unseen identities are considered. This outcome is consistent to that reported in [349], in
which the low generalization ability of these models is highlighted. We also note that results for the
identity-independent protocol were never reported in the original papers [344,345]. Overall, our
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Expression Split Identity Split

Method CoMA D3DFACS CoMA D3DFACS

PCA-220 0.76± 0.73 0.42± 0.44 0.80± 0.73 0.56± 0.56

PCA-38 0.90± 0.84 0.44± 0.45 0.93± 0.82 0.58± 0.56

DL3DMM [347]0, 86± 0, 80 0.73± 1.15 0.89± 0.79 1.15± 1.50

Neural [345] 0.75± 0.85 0.59± 0.86 3.74± 2.34 2.09± 1.37

Ours 0.52± 0.59 0.28± 0.31 0.55± 0.62 0.27± 0.30

Table 21. Reconstruction error (mm) on expression-independent (left) and identity-independent (right) splits:
comparison with PCA-k 3DMM (k components), DL-3DMM (220 dictionary atoms), and Neural3DMM.

Figure 37. Cumulative per-vertex Euclidean error between PCA-based 3DMM models, DL-3DMM, Neural3DMM,
and our proposed model, using expression-independent cross-validation on the CoMA (left) and D3DFACS (right)
datasets.

solution embraces the advantages of both approaches, being as general as fitting solutions yet more
accurate.

Figure 38 shows some qualitative examples by reporting error heatmaps in comparison with
PCA, DL-3DMM [347] and Neural3DMM [345] for the identity-independent splitting. The ability
of our model as well as PCA and DL-3DMM to preserve the identity of the ground truth comes
out clearly, in accordance with the results in Table 21. By contrast, Neural3DMM shows high
error even for the neutral faces, which proves its inability to keep the identity of an unseen face.
Indeed, differently from to the other methods, Neural3DMM encodes the neutral face in a latent
space and predicts the 3D coordinates of the points directly, which introduces some changes on the
identity of the input face. This evidences the efficacy of our S2D-Dec, that instead learns per-point
displacements instead of point coordinates.

5.6.3. Conclusions

As a main contribution of this research, we proposed a novel framework for dynamic 3D expression
generation from an expression label, where two decoupled networks separately address modeling
the motion dynamics and generating an expressive 3D face from a neutral one. We demonstrated
the improvement with respect to previous solutions, and showed that using landmarks is effective in
modeling the motion of expressions and the generation of 3D meshes. We also identified two main
limitations: first, our S2D-Dec generates expression-specific deformations, and so cannot model
identities. Moreover, while Motion3DGAN can generate diverse expressions and allows interpolating

Intermediate Outcomes of New Learning Paradigms Research 88 of 197



Figure 38. Mesh reconstruction error (red=high, blue=low) of our model and other methods.

on the sphere to obtain complex facial expressions, the samples are of a fixed length (i.e., 30 meshes,
from neutral to apex). However, as shown in the applications, S2D-Dec can deal with motion of
any length since it is independent from Motion3DGAN.

5.6.4. Relevant publications

• Naima Otberdout, Claudio Ferrari, Mohamed Daoudi, Stefano Berretti, Alberto Del Bimbo.
“Sparse to Dense Dynamic 3D Facial Expression Generation.” IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022, pp. 20385-20394 [351].
Zenodo record: https://zenodo.org/record/6396131.

5.6.5. Relevant software/datasets/other outcomes

• The PyTorch implementation of our S2D-Dec amd Motion3dGAN architectures can be found
in https://github.com/CRISTAL-3DSAM/Sparse2Dense.

5.6.6. Relevance to AI4media use cases and Media Industry Applications

Our Motion3DGAN tool contributes and provides solution to the general cases where a temporal
smooth trajectory should be generated. The S2D-Dec provides a solution to all those cases where a
static 3D mesh should be generated from a spare set of points (e.g., landmarks or joints). This can
find application in several different contexts, like human-avatar interaction, film industry, etc. The
proposed solution can be part of a talking head generation solution than can be highly useful in
generating new content in media industry (for news, movies, virtual assistants, etc.).

5.7. Conditioned Image Retrieval for Fashion using Contrastive Learning
and CLIP-based Features

Contributing partners: UNIFI

Intermediate Outcomes of New Learning Paradigms Research 89 of 197

https://zenodo.org/record/6396131
https://github.com/CRISTAL-3DSAM/Sparse2Dense


Image Features

Text Features Linear ReLU Dropout

Concatenation Linear

Image Scalar
Weight

X

X

Text Scalar
Weight

+ Normalization Combined Features

Linear ReLU Dropout

Linear ReLU Dropout

Figure 39. Architecture of the combiner network.

5.7.1. Introduction

Content-Based Image Retrieval (CBIR) is a fundamental task in multimedia and computer vision
and has been applied to many different domains like art [352], commerce [353], medicine [354],
security [355], nature [356], landmarks [357], etc. Typically image features of the database images
are computed and compared with the features of a query image.

Interactive (i.e. conditioned) image retrieval systems extend CBIR systems to improve their
effectiveness, by adding some form of user feedback, e.g. to provide some measure of relevance [358]
or requesting constraints on some attributes of the retrieved results [359]. These types of systems
can be applied in many different domains such as web search, e-commerce and surveillance. However,
the difficulty in the development of these approaches is the need to incorporate features from the
feedback and the intent of the user, in addition to the semantic gap between features and image
content.

Very recently, it has been shown that a deep neural network like CLIP [360], trained using an
image-caption alignment objective on large-scale internet data, can obtain impressive zero-shot
transfer on a myriad of downstream tasks like image classification, text-based image retrieval, object
detection and video action recognition.

In this work we show that CLIP-based features can be effectively used to implement a conditioned
image retrieval system where user feedback is provided as natural language input to provide
additional (or contrasting) requirements with respect to those embedded in the visual features of
the image used to query the system. In this context a user selects a reference image and then
provides additional requirements and requests in form of text, e.g. asking to change texture or
shape features of the reference image. We apply the system to the fashion domain. Unluckily there
not yet many datasets to evaluate the methods tackling this retrieval task, so in the following we
report results obtained on the challenging FashionIQ dataset [361] obtaining state-of-the-art results;
of course the approach is applicable to domains that are different from fashion.

5.7.2. Previous work

Traditional CBIR did not use any kind of user feedback or its intent to refine results. However, within
interactive and conditioned CBIR, a lot of work has been done to improve retrieval performance
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incorporating user’s feedback in terms of relevance to the query [362] or by considering relative [363]
and absolute attributes [364, 365]. The limiting expressiveness of attributes was successively
addressed in [366, 367] by considering purely textual feedback, allowing richer expressiveness.
Nonetheless, performance of the textual model can limit the system in understanding and reacting
appropriately. At the same time, GPT-2, BERT [368] and GPT-3 [369] models have shown that large
amounts of text combined with recent improvements in attention mechanisms enable learning of
powerful features that integrate vast knowledge. Adding images to the learning process, CLIP [360]
has very recently shown that it is feasible to perform multimodal zero shot learning, obtaining
remarkable feature generalization of both images and text. Contrary to standard vision models that
are trained on typical datasets and that are good at only one task, this new class of models learn
only associations between the abundant images and natural language supervision available on the
internet. They are not directly optimized for a benchmark and yet are able to perform consistently
well on different tasks. CLIP effectiveness is still subject of study [370], with first applications to
art [371], image generation [372] and zero shot video retrieval [373]. Our work builds upon CLIP
and further explores its potential in the task of conditioned image retrieval, applying the proposed
approach to fashion.

In the growing area of image retrieval with user feedback, our work is related to the recently
introduced conditioned fashion image retrieval with text [361]. In [374], a transformer that can be
seamlessly plugged in a CNN to selectively preserve and transform the visual features conditioned
on language semantics is presented. In [366, 375] they use skip connections and combine them
with graph neural networks, reporting improved performance. In [376], image style and content
are considered separately by two different neural network modules. In [377] a Correction Network
is added which explicitly models the difference between the reference and target image in the
embedding space.

Differently from these work, our method differs by few factors. It explicitly considers a learned
manifold of visual and text features with the goal of learning an additive transformation in the same
space. Moreover, our approach does not use any kind of spatial information. Instead, in [366,376]
features extracted from the backbone are 3-dimensional and the composition takes care of spatial
information, in [374] the features are extracted at different convolutional layers from the ResNet-50
backbone. In [377] the authors divided the image and the sentence into a set of localized components
assigning a representation module, denoted as experts, to each of them. More similar to our work
is [375] which trains a combiner directly on flattened image and text features that, differently from
our work, are obtained from different embeddings.

5.7.3. The proposed method

The proposed method addresses the multimodal problem of conditional fashion image retrieval.
Given as input a reference image (e.g. an image of a black dress) and a text that includes a
descriptive request from the user in relation to the image (“red and yellow”), the goal of the retrieval
is to retrieving the best matching images that satisfy similarity constraints imposed by both of the
input components (an image of a red and yellow dress). To retrieve correct images, the system
must be able to understand both the contents of the image and text, and further add the textual
comment to the image content.

In contrast to previous works like [374–377] that build from different image and textual model,
we start from the hypothesis of having a common embedding of images and text, realized by CLIP.
As shown in [360], similar concepts expressed in text and images tend to share similar features, or
at least be “near” in the common space.

The input image and text are encoded using their respective CLIP encoders into features in
the common space. The task is then cast as a problem of learning a transformation from the
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reference image feature and input text to a combined feature that includes both the multimodal
input information and is as near as possible to the common manifold. We denote this transformation
as a Combiner function and design a neural network architecture that is trained to learn the correct
function. We explore different Combiner functions showing that state of the art performance is
obtainable.

The Combiner function, depicted in Fig. 39, is simple yet more performing than more complex
architectures that we tested. The idea is to build an additive transformation where text, image
and the combination of both are all added into the final combined feature. The text and image
features are each weighted by a scalar that is trained to balance their contribution. We found these
two contributions essential to obtain a new state of the art performance. The third contribution is
given from the mixture of image and text. Starting from text and image features, we apply to each
feature a linear transformation followed by the ReLU function. Features are then concatenated
and the output is fed to another linear layer that is followed by a ReLU and a final linear layer.
The three contributions are finally summed and L2 normalized. Dropout is applied to each layer to
reduce overfitting.

Training of the system is performed with triplets of input images, text and target images.
Following [366,375] we employ the DML loss as pairwise contrastive loss using the normalized dot
product as similarity kernel. Similarly to CLIP [360], we multiply the logits (i.e. the dot product
between predicted and target features) by 100 before computing the loss. This was shown to help
the training process by improving the dynamic range of features.

Implementation Details

We decided to perform experiments using two CLIP models of different size. The smallest one is
based on a modified ResNet-50 (RN50) [378] architecture. It takes as input images of 224× 224
pixels and outputs features of 1024 dimensions. The biggest one, denoted as RN50x4, follows the
EfficientNet-style model scaling and use approximately 4x the computation of the smallest. It takes
as input images of 288× 288 pixels and outputs features of 640 dimensions. In the experiments,
the CLIP encoders have been kept frozen and the only trained part of the model is the Combiner
function. The dropout rate was set to 0.5 as commonly done with linear layers. The text and image
scalar weights were both initialized to 1. We used PyTorch in our experiments. The learning rate
was set to 5e− 5 and we trained the model for a maximum of 300 epochs. The batch size was set
to 1024 for the experiments with RN50 and 512 for the experiments with RN50x4, due to memory
limits.

5.7.4. Experimental results

Dataset and metrics

We used the popular FashionIQ dataset [361] since it is commonly used to test conditioned image
retrieval. FashionIQ provides 77,684 fashion images crawled from the web and split in train,
validation and test sets, divided into three different categories: Dress, Toptee and Shirt. Among
the 46,609 training images there are 18,000 training triplets made of a candidate image, a pair of
user texts and a target image. The texts describe properties to modify in the candidate image to
match the target image. Validation and test set have, respectively, 15,537 and 15,538 images with
6,017 and 6,119 triplets.

We follow experimental setting as in [376, 377]. We employ the average recall at rank K
(Recall@K) as evaluation metric, namely Recall@10 (R@10) and Recall@50 (R@50). Note that for
each triplet there is only a positive index image. Hence, each individual query has R@K either of
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Average

Model R@10 R@50

Sum 19.55 38.40

Weighted sum 19.78 39.04

No skip 23.38 46.81

Linear after skip 23.36 47.42

No Dropout 28.36 51.62

No ReLU & Dropout 28.20 51.10

CLIP fine-tuning 27.91 51.50

Proposed model 29.67 53.41

Table 22. Recall at K on the validation set, with variations on the architecture. Best score is highlighted in bold.

Average

Batch size R@10 R@50

64 28.75 51.94

128 29.01 52.41

256 29.10 52.58

512 29.00 53.02

1024 29.67 53.41

Table 23. Recall at K on the validation set when increasing the batch size. Best score is highlighted in bold.

Shirt Dress Toptee Average

Method R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

JVSM [379] 12.0 27.1 10.7 25.9 13.0 26.9 11.9 26.6

TRACE w/BERT [380] 20.80 40.80 22.70 44.91 24.22 49.80 22.57 46.19

VAL w/GloVe [374] 22.38 44.15 22.53 44.00 27.53 51.68 24.15 46.61

CurlingNet [381] 21.45 44.56 26.15 53.24 30.12 55.23 25.90 51.01

RTIC-GCN [375] 22.72 44.16 27.71 53.50 29.63 56.30 26.69 51.32

CoSMo [376] 24.90 49.18 25.64 50.30 29.21 57.46 26.58 52.31

DCNet [377] 23.95 47.30 28.95 56.07 30.44 58.29 27.78 53.89

Our (CLIP-RN50) 31.41 52.11 25.69 50.64 31.91 57.50 29.67 53.41

Our (CLIP-RN50x4) 35.76 56.20 27.20 53.57 36.31 61.14 33.09 56.99

Table 24. Comparison between our method and current state-of-the-art models on the Fashion-IQ validation set.
Best scores are highlighted in bold.

zero or one. All results are on the validation set since at the time of writing the test set ground-truth
labels has not been released yet.

Ablation studies

In this section we show preliminary experiments with variations of the architecture shown in Fig. 39,
and with different batch sizes. All experiments were performed with RN50 as backbone.
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We tested the following baselines:

• Sum: image and text features are summed;

• Weighted sum: a weighted sum between the image and text features, i.e. the model without
the mixture contribution of text and image;

• No skip: only the mixture contribution of text and image;

• Linear after skip: the regular model with an additional linear layer in both text and image
contributions;

• No Dropout: without dropout layers;

• No ReLU & Dropout: without ReLU activations and dropout layers;

• CLIP fine-tuning: end-to-end fine-tuned CLIP with the Combiner function;

• Proposed model: the proposed model shown in Fig. 39.

We report the results for each variation in Tab. 22.
The first interesting thing to notice is that a simple sum of the candidate image features and

the relative captions features led to decent results that are not too far from the worst competing
state-of-the-art methods. This confirms that text and images in the CLIP embedding reside
(approximately) in the same manifold. The weighted sum baseline, where text and image weights
are learned, results in little improvement. The two weights stabilize respectively to 1 and 0.80 for
images and text, signaling a preference towards image features.

Compared to the proposed model, we note that removing the text and image direct contributions
lead to a significant drop in performance. Given the effectiveness of the Sum baseline, this is
reasonable, since their presence may enable the Combiner function to only learn an offset to an
already good starting point.

In our experiments, fine-tuning CLIP along Combiner training did not bring any performance
improvement.

Regarding the batch size, we tested different value ranging from 64 to 1024. We report the
performance obtained in Tab. 23. We note that increasing the batch size provides a ∼ 3% increase
of both recall measures.

Comparison with SotA

Tab. 24 shows the quantitative results on Fashion-IQ validation set. Our approach outperforms the
state-of-the-art by improving up to ∼ 5% in average R@10 and 3% in average R@50 upon the best
method, DCNet [377], when using the CLIP RN50x4 backbone. Our method have the highest recall
in the Shirt and Toptee categories, with comparable performance in the Dress category, using both
backbones. Between the two backbones, we note that bigger RN50x4 obtains the best performance,
with an improvement on the smaller RN50 in the range of about 2% to 4% in all categories.

5.7.5. Conclusions

In this work we tackled the problem of conditioned image retrieval for fashion using the recent
CLIP model where we exploited its zero shot transfer features. We developed a Combiner network
that is able to compute a combined feature made from reference images integrated with a textual
description. Experiments on the FashionIQ dataset show that our approach is able to outperform
more complex state of the art methods.
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Our future work will deal with the extension of the proposed method to videos and further
experimentation with different image domains.

5.7.6. Relevant publications

• Alberto Baldrati, Marco Bertini, Tiberio Uricchio, and Alberto Del Bimbo. 2021. “Conditioned
Image Retrieval for Fashion using Contrastive Learning and CLIP-based Features”. In Proc. of
ACM Multimedia Asia (MMAsia ’21). DOI:10.1145/3469877.3493593
Zenodo record: https://zenodo.org/record/6411201.

5.7.7. Relevance to AI4media use cases and media industry applications

As indicated in the introduction of this section, interactive (or conditioned) image retrieval is an
interesting extension of the standard CBIR paradigm, and it it has wide applicability in various
media industry applications apart from CBIR itself, such as: near-duplicate detection (expressing
the concept of “near” using natural language) and face or person recognition (expressing the
differences w.r.t. an example). Our method for combined image retrieval contribute to use cases
(a) 3A3 (in particular 3A3-11 Visual Indexing) and 4C1 by providing solutions to analyze visual
content, and (b) 7A3 (Re)organisation of visual content, by supporting the organization of image
and video collections.

5.8. Hyperbolic Vision Transformers

Contributing partner: UNITN

5.8.1. Introduction and methodology

Metric learning task formulation is general and intuitive: the obtained distances between data
embeddings must represent semantic similarity. It is a typical cognitive task to generalize similarity
for new objects given some examples of similar and dissimilar pairs. Metric learning algorithms
are widely applied in various computer vision tasks: content-based image retrieval [382–384], near-
duplicate detection [385], face recognition [386,387], person re-identification [388,389], as a part of
zero-shot [384] or few-shot learning [390–392].

Modern image retrieval methods can be decomposed into roughly two components: the encoder
mapping the image to its compact representation and the loss function governing the training
process. Encoders with backbones based on transformer architecture have been recently proposed as
a competitive alternative to previously used convolutional neural networks (CNNs). Transformers
lack some of CNN’s inductive biases, e.g., translation equivariance, requiring more training data to
achieve a fair generalization. On the other hand, it allows transformers to produce more general
features, which presumably can be more beneficial for image retrieval [393,394], as this task requires
generalization to unseen classes of images. To alleviate the issue above, several training schemes
have been proposed: using a large dataset [395], heavily augmenting training dataset and using
distillation [396], using self-supervised learning scenario [394].

The choice of the embedding space directly influences the metrics used for comparing represen-
tations. Typically, embeddings are arranged on a hypersphere, i.e. the output of the encoder is L2

normalized, resulting in using cosine similarity as a distance. In this work, we propose to consider
the hyperbolic spaces. Their distinctive property is the exponential volume growth with respect
to the radius, unlike Euclidean spaces with polynomial growth. This feature makes hyperbolic
space especially suitable for embedding tree-like data due to increased representation power. The
paper [397] shows that a tree can be embedded to Poincaré disk with an arbitrarily low distortion.
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Most of the natural data is intrinsically hierarchical, and hyperbolic spaces suit well for its repre-
sentation. Another desirable property of hyperbolic spaces is the ability to use low-dimensional
manifolds for embeddings without sacrificing the model accuracy and its representation power [398].

The goal of the loss function is straightforward: we want to group the representations of similar
objects in the embedding space while pulling away representations of dissimilar objects. Most
loss functions can be divided into two categories: proxy-based and pair-based [399]. Additionally
to the network parameters, the first type of losses trains proxies, which represent subsets of the
dataset [383]. This procedure can be seen from a perspective of a simple classification task: we
train matching embeddings, which would classify each subset [400]. At the same time, pair-based
losses operate directly on the embeddings. The advantage of pair-based losses is that they can
account for the fine-grained interactions of individual samples. Such losses do not require data
labels: it is sufficient to have pair-based relationships. This property is crucial for a widely used
pairwise cross-entropy loss in self-supervised learning scenario [401–403]. Instead of labels, the
supervision comes from a pretext task, which defines positive and negative pairs. Inspired by these
works, we adopt pairwise cross-entropy loss for our experiments. The schematic overview of the
proposed method is depicted in Figure 40.

ViT Exponential
mapping

Pairwise
Cross-Entropy

Poincaré disk

384d 128d

FC

Figure 40. Overview of the proposed method. Two images representing one class (positives) are encoded with the
vision transformer, projected into a space of a lower dimension with a fully connected (FC) layer, and then mapped
to a hyperbolic space. Blue stars depict the resulting embeddings. Poincaré disk is shown with uniform triangle
tiling on the background to illustrate the manifold curvature. Gray circles represent other samples from the batch
(negatives). Finally, arrows in the disk represent distances used in the pairwise cross-entropy loss. Positives are
pushed closer to each other, negative are pulled far apart.

5.8.2. Experimental results

We follow a widely adopted training and evaluation protocol [399] and compare several versions of
our method with current state-of-the-art on benchmark datasets for category-level retrieval. There
are two types of experiments, first, we compare with the state-of-the-art, and then we investigate
the impact of hyperparameters (encoder patch size, manifold curvature, embedding size and batch
size).

5.8.2.1. Datasets
CUB-200-2011 (CUB) [404] includes 11,788 images with 200 categories of bird breeds. The

training set corresponds to the first 100 classes with 5,864 images, and the remaining 100 classes
with 5,924 images are used for testing. The images are very similar; some breeds can only be
distinguished by minor details, making this dataset challenging and, at the same time, informative
for the image retrieval task. Cars-196 (Cars) [405] consists of 16,185 images representing 196 car
models. First 98 classes (8,054 images) are used for training and the other 98 classes (8,131 images)
are held out for testing.
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Method
CUB-200-2011 (K) Cars-196 (K)

1 2 4 8 1 2 4 8

Margin [406] 63.9 75.3 84.4 90.6 79.6 86.5 91.9 95.1

NSoftmax [407] 56.5 69.6 79.9 87.6 81.6 88.7 93.4 96.3

MIC [408] 66.1 76.8 85.6 - 82.6 89.1 93.2 -

IRTR [393] 72.6 81.9 88.7 92.8 - - - -

Sph-DeiT 73.3 82.4 88.7 93.0 77.3 85.4 91.1 94.4

Sph-DINO 76.0 84.7 90.3 94.1 81.9 88.7 92.8 95.8

Sph-ViT § 83.2 89.7 93.6 95.8 78.5 86.0 90.9 94.3

Hyp-DeiT 74.7 84.5 90.1 94.1 82.1 89.1 93.4 96.3

Hyp-DINO 78.3 86.0 91.2 94.7 86.0 91.9 95.2 97.2

Hyp-ViT § 84.0 90.2 94.2 96.4 82.7 89.7 93.9 96.2

Table 25. Recall@K metric for 128-dimensional embeddings. The 6 versions of our method are listed in the bottom
section, evaluated for head embeddings. “Sph-” are versions with hypersphere embeddings optimised using Dcos ,
“Hyp-” are versions with hyperbolic embeddings optimised using Dhyp . “DeiT”, “DINO” and “ViT” indicate type
of pretraining for the vision transformer encoder. Margin, MIC, NSoftmax are based on ResNet-50 [409] encoder,
IRTR is based on DeiT [396].
§ pretrained on the larger ImageNet-21k [254].

5.8.2.2. Results Table 25 highlights the experimental results for the 128-dimensional head
embedding and the results for 384-dimensional encoder embedding are shown in Table 26. We
include evaluation of the pretrained encoders without training on the target dataset in Table 26
for reference. On the CUB dataset, we can observe the solid performance of methods with ViT
encoder; the gap between the second-best method IRTR and Hyp-ViT is 9%. However, the main
improvement comes from the dataset used for pretraining (ImageNet-21k), since Hyp-DINO and
Hyp-DeiT demonstrate a smaller improvement, while baseline ViT-S without finetuning shows
strong performance. We hypothesize that this is due to the presence of several bird classes in the
ImageNet-21k dataset encouraging the encoder to separate them during the pretraining phase.

For Cars-196, Hyp-DINO outperforms Hyp-ViT with a significant margin. These results confirm
that both pretraining schemes are suitable for the considered task. The versions with DeiT perform
worse compared to ViT- and DINO-based encoders while outperforming CNN-based models. This
observation confirms the significance of vision transformers in our architecture. The experimental
results suggest that hyperbolic space embeddings consistently improve the performance compared
to spherical versions. Hyperbolic space seems to be beneficial for the embeddings, and the distance
in hyperbolic space suits well for the pairwise cross-entropy loss function. At the same time, our
sphere-based versions perform well compared to other methods with CNN encoders.

Figure 41 illustrates how the learned embeddings are arranged on the Poincaré disk. We use
UMAP [422] method with the “hyperboloid” distance metric to reduce the dimensionality to 2D
for visualization. For the training part, we can see that samples are clustered according to labels,
and each cluster is pushed closer to the border of the disk, indicating that the encoder separates
classes well. However, for the testing part, the structure is more complex. We observe that some of
the samples tend to move towards the center and intermix, while others stay in clusters, showing
possible hierarchical relationships. We can see that car images are grouped by several properties:
pose, color, shape, etc.
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Method Dim
CUB-200-2011 (K) Cars-196 (K)

1 2 4 8 1 2 4 8

A-BIER [410] 512 57.5 68.7 78.3 86.2 82.0 89.0 93.2 96.1

ABE [411] 512 60.6 71.5 79.8 87.4 85.2 90.5 94.0 96.1

SM [412] 512 56.0 68.3 78.2 86.3 83.4 89.9 93.9 96.5

XBM [413] 512 65.8 75.9 84.0 89.9 82.0 88.7 93.1 96.1

HTL [414] 512 57.1 68.8 78.7 86.5 81.4 88.0 92.7 95.7

MS [415] 512 65.7 77.0 86.3 91.2 84.1 90.4 94.0 96.5

SoftTriple [416] 512 65.4 76.4 84.5 90.4 84.5 90.7 94.5 96.9

HORDE [417] 512 66.8 77.4 85.1 91.0 86.2 91.9 95.1 97.2

Proxy-Anchor [399] 512 68.4 79.2 86.8 91.6 86.1 91.7 95.0 97.3

NSoftmax [407] 512 61.3 73.9 83.5 90.0 84.2 90.4 94.4 96.9

ProxyNCA++ [418] 512 69.0 79.8 87.3 92.7 86.5 92.5 95.7 97.7

IRTR [393] 384 76.6 85.0 91.1 94.3 - - - -

ResNet-50 [409] † 2048 41.2 53.8 66.3 77.5 41.4 53.6 66.1 76.6

DeiT-S [396] † 384 70.6 81.3 88.7 93.5 52.8 65.1 76.2 85.3

DINO [394] † 384 70.8 81.1 88.8 93.5 42.9 53.9 64.2 74.4

ViT-S [419] † § 384 83.1 90.4 94.4 96.5 47.8 60.2 72.2 82.6

Sph-DeiT 384 76.2 84.5 90.2 94.3 81.7 88.6 93.4 96.2

Sph-DINO 384 78.7 86.7 91.4 94.9 86.6 91.8 95.2 97.4

Sph-ViT § 384 85.1 90.7 94.3 96.4 81.7 89.0 93.0 95.8

Hyp-DeiT 384 77.8 86.6 91.9 95.1 86.4 92.2 95.5 97.5

Hyp-DINO 384 80.9 87.6 92.4 95.6 89.2 94.1 96.7 98.1

Hyp-ViT § 384 85.6 91.4 94.8 96.7 86.5 92.1 95.3 97.3

Table 26. Recall@K metric, “Dim” column shows the dimensionality of embeddings. The 6 versions of our method
are listed in the bottom section, evaluated for encoder embeddings, titles are described in Table 25. Encoders by
method: A-BIER, ABE, SM: GoogleNet [420]; XBM, HTL, MS, SoftTriple, HORDE, Proxy-Anchor: Inception with
batch normalization [421]; NSoftmax, ProxyNCA++: ResNet-50 [409]; IRTR: DeiT [396]. † pretrained encoders
without training on the target dataset. § pretrained on the larger ImageNet-21k [254].

5.8.3. Conclusions

The main contributions of our research are the following:

• We propose to project embeddings to the Poincaré ball and to use the pairwise cross-entropy
loss with hyperbolic distances. Through extensive experiments, we demonstrate that the
hyperbolic counterpart outperforms the Euclidean setting.

• We show that the joint usage of vision transformers, hyperbolic embeddings, and pairwise
cross-entropy loss provides the best performance for the image retrieval task.

5.8.4. Relevant publications

• A. Ermolov, L. Mirvakhabova, V. Khrulkov, N. Sebe, and I. Oseledets, ”Hyperbolic Vision
Transformers: Combining Improvements in Metric Learning”, IEEE/CVF Conference on
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Test Train
Figure 41. Hyp-DINO embeddings for Cars-196 dataset (training and evaluation sets) on the Poincaré disk. Each
point inside the disk corresponds to a sample, different colors indicate different classes. Images of cars are plotted
preserving neighborhood relations of samples.

Computer Vision and Pattern Recognition (CVPR’22), June 2022 [4].
Zenodo record: https://zenodo.org/record/7100206.

5.8.5. Relevant software/datasets/other outcomes

• The PyTorch implementation can be found in https://github.com/htdt/hyp_metric.

5.8.6. Relevance to AI4media use cases and media industry applications

As indicated in the beginning of the section, the metric learning task is generic and tries to enforce
the distances between data embeddings to represent semantic similarity. As such it has wide
applicability in various media industry applications: content-based image retrieval, near-duplicate
detection, face recognition, person re-identification, zero-shot and few-shot learning. Specifically the
presented results could be directly relevant to use cases (a) 3A3 (archive exploration), specifically
3A3-11 Visual indexing and search and (b) 7A3 (Re)organisation of visual content by supporting
the efficient training and organization of image and video collections.
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6. Transfer learning (Task 3.3) – detailed description

Contributing partners: BSC, UNITN, CEA, CNR

Transfer Learning is an emerging field among Deep Learning practitioners that seeks to reuse
and exploit previously generated models for different purposes. Considering the huge amount of
data, human effort and computational power needed to train these models, being able to reuse
them is of paramount importance. Beyond practical reasons, Transfer Learning poses a scientific
challenge of relevance, as it forces researchers to question the internal knowledge representation of
deep models. Indeed, to understand how to reuse deep representations, one must first understand
how are these representations learned, and how are they internally structured. Advances in this field
have potential relevance for key aspects of Deep Learning, such as explainability and interpretability,
efficiency and footprint reduction, and real world deployment of AI powered systems.

6.1. When & How: Methodological study on transfer learning

Contributing partners: BSC

Transfer learning is a method that reuses the learnt knowledge in a neural network (source or
pre-trained model) for another (target) model and dataset. It assumes that the learnt features
in such models are representations general enough as to be of use in other tasks, and alleviates
requirements of storage space, energy, labelled data and powerful computational devices. In the
context of deep learning, the properties of such transfer have been widely studied [35, 186,423,424],
including lower training times, increased performance and the requirement of less data for the same
or better results than training a network from scratch without knowledge reuse.

In image classification tasks, the most common approaches of transfer learning are FE and
Fine-Tuning (FT). Fine-tuning a pre-trained network for a target task consists on simply re-training
the parameters of the pre-trained model for the new task – in contrast to training a network
from scratch. Feature extraction approaches freeze all of the pre-trained model’s parameters and
train a simpler classifier using the embeddings from the target task’s instances [35, 424]. FT is
normally the default method when performing transfer learning [186], improving performance
when the pre-trained model was trained in a large enough dataset, regardless of the size of the
target dataset [425]. However, in cases where the target data is scarce, fine-tuning all parameters
of a network may cause overfitting [186], which can be alleviated by freezing some of the layers.
Alternatively, FE methods provide a different representation that reduces the dimensionality –
helping deal with the curse of dimensionality – and noise in the input [426].

Both FT and FE have different pros and cons, and no clear guidelines exists to support a choice
between both. That is why, to fill the gap, we study both methods while taking into account different
perspectives, including the availability of pre-trained models on similar tasks, data volume, and the
trade-offs between performance, carbon footprint, human cost and computational requirements.

6.1.1. Methodology

6.1.1.1. Models and datasets We use two VGG16 [427], one trained on ImageNet 2012 [428]
(IN, 1.2M train images) with Top-1/Top-5 accuracy of 71.3/90.1, the other trained on Places 2 [429]
(P2, 1.8M train images) with 55.2/85.0 accuracy. These are publicly available at https://keras.
io/api/applications and https://github.com/CSAILVision/places365, respectively.

We use 10 target datasets for evaluation, which represent a variety of possible scenarios when
performing transfer learning with respect to transferability. Some of them are direct subsets (⊂) of a
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source dataset (Stanford Dogs [430], Caltech 101 [431] ⊂ IN ; MIT ISR [432] ⊂ P2 ); some intersect
(∩) with a pre-training dataset but expand beyond it (Food 101 [433], CUB200 [404], Oxford
Flower [434], Oxford-IIIT-Pet [435] ∩ IN ); and some are entirely disjoint (∅) to the pre-training
datasets (DTD [436], Oulu Knots [437], MAMe [438]). As Oulu Knots suffers from a very significant
imbalance, we take the smallest class out in all of our experimentation, calling this subset Knots6.

6.1.1.2. Methods For FT, we re-train the model while freezing a variable number of initial
layers, and re-initializing the last two layers. A minimum of 10 and a maximum of 25 epochs are
computed. Training is also stopped when three consecutive epochs show a non-improving validation
loss. Batch size is 64. For FE we use the Full Network Embedding, which extracts an embedding
from a percentage of layers starting from the last before the classification layer, using an average
pooling operation on convolutional layers to extract one number per channel. Activations are
feature-wise standardised and discretised to values in {−1, 0, 1} [439]. Experiments are given a time
limit of 24 hours. Data augmentation is used in both FT and FE, using 10 crops per sample (4
corners and central, with horizontal mirroring). During inference, crop predictions are aggregated
using majority voting.

6.1.1.3. Metrics We use metrics from four categories. (1) Performance: Validation and test
mean class accuracies (VACC , TACC), and overfitting (VACC −TACC). (2) Footprint : power average
in kW (PAVG) in a sample of trainings, estimated greenhouse gas emissions in Kg of CO2 (ECO2

).
(3) Computational requirements: execution time in hours (T ), amount of experiments (nEXP ).
(4) Human cost : Time analysing results and designing experimentation (A).

6.1.1.4. Experiments To both gauge the costs and benefits of FE and FT, and at the same
time to select the best hyperparameter configurations for further experimentation, we perform a
model selection process for each pair of approach and target dataset. In these process, we track all
aforementioned metrics. We also study the effect of varying the amount of samples per class in the
training dataset for FE and FT, as well as try to gauge trade-offs between them, with respect to
performance and computation time.

6.1.2. Results

6.1.2.1. Hyperparameter search We perform model selection processes for the 20 possible
pre-trained model and task pairs, and consider a few hyperparametric variables, chosen by their
impact on performance. In 8 out of 10 datasets, FT obtained the better performing model (mean of
2.84±8.66%). In overfitting (VACC − TACC), FT shows a slightly higher drop in test performance
(mean drop of 3.6%, for FE’s 1.92%). The average power consumption in FT was 276.1W, 222%
bigger than that of FE (124.1W). FT emitted 52.5 times more CO2 than FE. In the context of the
performance-footprint trade-off, notice that this increase in footprint produces a mean improvement
in VACC of 2.81%. For TACC , only 1.13%. The FT search lasted a total 1, 825.72 hours, 30.4 times
more than the FE search. In 9 out of 10 tasks, the FE search was faster than FT. Each FT search
also required 6 times more experiments, influenced by a larger hyperparameter selection. Lastly, the
time dedicated by experts on analysing results and designing experimentation (A), show how FE
results are significantly easier to process thanks to its plain performance metrics. However, when
performing FT, it is relevant to look at the tables beyond simple metrics, as part of the information
regarding model convergence is lost when looking at a single performance metric. Thus, processing
the results from FT entails the analysis of multiple training curves, which require in the order of 4
to 6 times more time. That being said, current deep learning frameworks are more oriented towards
FT, which make FE slightly harder to implement.
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VACC TACC PAVG ECO2
T nEXP A

FT 77.46 73.86 276.1W 201.54kg 1,825.72h 480 4-6h

FE 74.65 72.73 124.1W 3.84kg 60.02h 80 0-1h

Table 27. Performance (VACC and TACC , average), footprint (PAV G average, ECO2
sum), computational

requirements (T sum, nEXP total) and human cost (A sum) of the hyperparameter searches.
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Figure 42. Relative difference in test accuracy (100 · FT−FE
FE

), w.r.t. the train split size. Shadowed regions show the
minimum and maximum differences among the 5 random subsets. Black line represents point in which FE and FT
have same performance.

6.1.2.2. Few-shot learning We study the effects of limited data availability, by subsetting the
target datasets prior to training. For each target dataset and number of instances per class (IC),
we generate 5 random subsets (to mitigate statistical variance). We train FT and FE models and
extract their final TACC . The distribution and mean relative difference in TACC of the five runs for
each IC are shown in Figure 42. These results allow us to categorise datasets in two types: those
where FT overtakes FE given enough samples per class, and those where FT and FE converge to
the same accuracy. This distinction can be made at around 25 instances per class: if FT has not
overcome FE with that amount or less, it will not happen regardless of data availability. Notice
such threshold may depend on the architecture or source dataset employed [425,440].

Figure 42 illustrates how, for those datasets that are disjoint from the pretraining dataset,
FT and FE performance tends to converge at larger IC. On the other hand, for those datasets
which overlap (either intersect or subset) with the pretraining dataset, FT outperforms FE. We are
unsure about the cause of this difference in behaviour. Another factor to consider here is time until
convergence. While both methods scale linearly with IC, the cost of FT grows 7 times faster than
the cost of FE.
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6.1.3. Discussion

While FT is generally superior in performance, FE is better in terms of footprint, computational
requirements and human cost. This is important in domains where TL is unfavourable (i.e. one
cannot find pre-trained models close to the target dataset). Domains in which data availability is
highly variable (e.g. because of new data constantly being added) also favour FE, as FT requires
for constant and expensive hyperparameter searches while FE does not. The gain in performance
provided by FT over FE is, on average, 2.8% on VACC , and 1.1% on TACC . Meanwhile, FT
produces in the order of 7,000% more CO2 than FE, and demands between 4 and 6 times more of
human effort. It this context, researchers and practitioners of TL deciding between FT and FE
should consider the relevance of limited performance gains for each application. While additional
performance gains for FT over FE could be obtained by intensive data gathering, labelling and
pretraining efforts, these would correspondingly increase the cost of later performing FT, allowing
this point to hold.

In few-shot learning scenarios (around 5 or less samples per class), the previous performance
gain of FT vanishes, making FE the best performing model in most settings. At more than 5
samples per class, FT may overtake FE by considerable margins in intersecting and subset (⊂, ∩)
datasets. For disjoint datasets, FT may require more than 100 samples per class to outperform
FE, with the latter still having competitive performance. We believe these results will hold for
architectures and pre-training datasets comparable to the ones used here (i.e. CNNs and datasets
in the order of a few millions of training samples).

6.1.4. Relevant publications

• A. Tormos, D. Garcia-Gasulla, V. Gimenez-Abalos, and S. Alvarez-Napagao, “When & How to
transfer with Transfer Learning,” in Has it Trained Yet? NeurIPS 2022 Workshop, 2022. [441].
Zenodo record: https://zenodo.org/record/8014324.

6.1.5. Relevant software/datasets/other outcomes

• The implementation can be found in https://github.com/HPAI-BSC/tl-tradeoff.

6.2. Source-Free Open Compound Domain Adaptation in Semantic Seg-
mentation

Contributing partner: UNITN

6.2.1. Introduction and methodology

Deep learning has now achieved a remarkable success in fully-supervised semantic segmentation [442–
444], which, however, is relied heavily on the expensive dense pixel-wise annotations. One solution
to lighten the labeling cost is Unsupervised Domain Adaptation (UDA), which aims to transfer
the knowledge of labeled synthetic data to unlabeled real-world data. Despite the effectiveness of
existing UDA methods [121,445,446], they mainly consider the context of a single target domain,
resulting in limited applications in the real world. Indeed, the target domain may be captured from
multiple data distributions without a clear separation and the system will unavoidably face instances
from unseen domains. To investigate a more realistic Domain Adaptation (DA) problem, in this
paper, we consider the setting of open compound domain adaptation (OCDA) [447] for semantic
segmentation. In OCDA, the unlabeled target domain is a compound of multiple homogeneous
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Table 28. Comparisons of different cross-domain transfer learning settings. DA: domain adaptation, SF-DA:
source-free DA, DG: domain generalization, OCDA: open compound DA, SF-OCDA: source-free OCDA.

Settings
Source Source Unlabeled Multiple Open

Data Model Target Targets Targets

DA [445] ✓ ✓ ✓ ✗ ✗

SF-DA [448] ✗ ✓ ✓ ✗ ✗

DG [449] ✗ ✓ ✗ ✗ ✓

OCDA [447] ✓ ✓ ✓ ✓ ✓

SF-OCDA ✗ ✓ ✓ ✓ ✓

domains without domain labels. The adapted model is applied to test samples from the compound
target domain and an open domain, where the open domain is unseen during training.

Model

Cloudy

Rainy

Snowy

𝜽𝑺

Source Training Target Training

Copy Model

Overcast CityScapes

RainySnowyCloudy

Testing Compound and Open Domains

Model

GTA5
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Figure 43. Illustration of SF-OCDA. In the training stage, the model is first trained on the (synthetic) labeled
source data and then adapted to the (real-world) unlabeled compound target data. The source data are not available
during the target adaptation. In the testing stage, the learned model is used to predict the semantic segmentation
results for samples from the compound and open domains.

Existing UDA [445,446,450] and OCDA [447,451,452] methods commonly require the use of
the labeled source data during the whole training process. However, the source data are not always
available due to data privacy. In addition, the source data are generally very large, which require
plenty of storage space (e.g., GTA5 [453]≈57GB). This further limits the applications of existing
methods, especially when transferring to a lightweight self-driving device. Nevertheless, we can
choose to maintain the pre-trained source model instead of the source data, enabling us to obey the
data privacy policy and use much less storage space (e.g., DeepLab-VGG16 [427, 444]≈120MB).
These facts motivate us to introduce a more challenging but practical setting for OCDA, called
source-free OCDA (SF-OCDA), where only the source pre-trained model and the unlabeled target
data are available during the training of the target model. In the literature, SFDA has recently been
developed in image classification [120,454] and semantic segmentation [448,455] for the single target
case. However, as shown in Table 28 and Figure 43, compared with SF-DA, our SF-OCDA demands
not only adapting to data from multiple target domains but also considering the generalization
performance on unseen domains.

In SF-OCDA, the source data and target data are invisible to each other. In such context,
we cannot align the domain distributions as traditional DA methods [121,445,446]. Instead, this
research introduces an effective two-stage framework for SF-OCDA (see Figure 44), which consists
of (1) training a generalized source model and (2) adapting the target model with self-supervised
learning. In the first stage, we aim to learn a robust model, which can generalize well to different
target domains. To achieve this goal, we propose the Cross-Patch Style Swap (CPSS), which can
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Figure 44. The framework of the proposed method. (1) The model is first trained on the labeled source domain. (2)
We generate pseudo-labels by the source pre-trained model and train the target model in a self-training manner. In
the second stage, we have no access to the source data. To improve the generalization ability of the model, we equip
the model with the Cross-Patch Style Swap module in the two training stages, which augments features by
exchanging styles among patches.

effectively augment the samples with various image styles. Specifically, CPSS first extracts the
styles of patches in feature maps and then randomly exchanges the styles among patches by the
instance normalization and de-normalization. In this manner, CPSS can prevent the model from
overfitting to the source domain and thus significantly improve the generalization ability of the
model. In the second stage, we adapt the target model by self-supervised learning. Specifically, we
optimize the target model with the guide of pseudo-labels generated from the pre-trained source
model, which can implicitly align the source and target distributions under the constraint of label
consistency. Moreover, CPSS is also applied to reduce the influence of noisy pseudo-labels and to
avoid overfitting to the target domain, which can further boost the performance on the compound
and open domains.

6.2.2. Experimental results

Datasets. Following [447], we use the synthetic image data GTA5 [453] as the source domain, the
rainy, snowy, and cloudy images in C-Driving [447,459] as the compound target domain, and the
overcast images in C-Driving as the open domain. To further measure the generalization ability
of models, we additionally use Cityscapes [460] as an extended open domain. GTA5 includes
24,966 training images with a resolution of 1914×1052. C-Driving consists of 14,697 unlabeled
training images and 1,430 testing images, where the image size is 1280×720. Cityscapes contains
500 images of 2048×1024 for validation. For all datasets, pixels belong to 19 shared semantic
categories. During testing, we use mean intersection-over-union (mIoU) to evaluate the semantic
segmentation performance.

6.2.2.1. Comparison with State-of-the-Art Methods
Results of GTA5 → C-Driving. In Table 29, we compare our method with the state-of-the-art

UDA models [445,456–458] and OCDA models [447,451,452] on the setting of “GTA5 to C-Driving”.
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Table 29. Comparison with the state-of-the-art methods on GTA5 → C-Driving. † denotes methods that employ the
long-training strategy.

Methods
Backbone

Source Compound(C) Open(O) Avg

GTA5 → Free Rainy Snowy Cloudy Overcast C C+O

Source Only

VGG16

✓ 16.2 18.0 20.9 21.2 18.9 19.1

AdaptSeg [445] ✗ 20.2 21.2 23.8 25.1 22.1 22.5

CBST [456] ✗ 21.3 20.6 23.9 24.7 22.2 22.6

IBN-Net [457] ✗ 20.6 21.9 26.1 25.5 22.8 23.5

PyCDA [458] ✗ 21.7 22.3 25.9 25.4 23.3 23.8

Liu et al. [447] ✗ 22.0 22.9 27.0 27.9 24.5 25.0

Park et al. [451] ✗ 27.0 26.3 30.7 32.8 28.5 29.2

Source Only†

VGG16

✓ 23.6 24.4 27.8 29.5 25.6 26.3

AdaptSeg [445]† ✗ 25.6 27.2 31.8 32.1 28.8 29.2

MOCDA [452]† ✗ 24.4 27.5 30.1 31.4 27.7 29.4

Park et al. [451]† ✗ 27.1 30.4 35.5 36.1 32.0 32.3

Ours (Stage-I)† ✓ 28.5 30.5 36.4 37.4 32.8 33.2

Ours (Stage-II)† ✓ 30.6 31.9 37.6 38.0 34.4 34.5

Source Only†
ResNet101

✓ 27.6 27.8 32.9 33.0 30.0 30.3

Ours (Stage-I)† ✓ 35.5 33.4 41.4 41.2 37.8 37.9

Ours (Stage-II)† ✓ 35.3 36.9 41.8 42.0 38.5 39.0

For a fair comparison, all the models adopt DeepLab-V2 with VGG16 backbone. Following [451],
we use the long training scheme (150K iterations) to train the model. We make the following
observations. First, the models trained with the long training scheme produce higher results,
showing the advantage of the long training scheme. Second, our Stage-I model, which is trained
only with the source data, achieves the best performance among all the existing methods that
use both the source and the target data. This verifies the effectiveness of the proposed CSPP in
learning a generalizable model. Third, our Stage-II model outperforms all compared models by a
large margin, indicating that our method produces new state-of-the-art performance for OCDA,
even under the source-free constraint. In addition, we also provide the results of our method with
ResNet101 backbone. As shown in Table 29, our Stage-I model outperforms the baseline model by
7.8% in C mIoU and 7.6% in C+O mIoU, and our target training stage yields 1.1% improvement in
C+O mIoU.

Results of Domain Generalization. We also verify the generalization ability of our method
on CityScapes in Table 30. We can observe that our Stage-I model surpasses the state-of-the-art
domain generalization methods with both VGG16 and ResNet101 backbone when trained only
with GTA5. Compared with DRPC [449] that additionally uses ImageNet [254] images, our model
outperforms it by 1.0% and 2.2% in mIoU with VGG16 and ResNet101 backbone respectively.
These findings demonstrate the effectiveness of the proposed method on open domains.

6.2.2.2. Evaluation In this section, we evaluate the effectiveness and superiority of the proposed
method. Experiments are conducted with VGG16 backbone.

Effectiveness of Style Augmentations. In Table 31, we investigate the effectiveness of
the proposed CPSS and Photometric Transformation (PT). Clearly, CPSS consistently improves
the performance for both stages. Specifically, for the source training stage (Stage-I), inserting
CPSS outperforms the baseline by 5.6% in C mIoU and by 5.7% in C+O mIoU. Adopting the
photometric transformation further gains 1.6% and 1.2% improvement in C mIoU and C+O mIoU,
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Table 30. Evaluation on open domain CityScapes. § extra using the ImageNet images.

Method
GTA5 → CityScapes

VGG16 ResNet101

ASG [461] 31.5 32.8

IBN-Net [457] 34.8 40.3

DRPC [449]§ 36.1 42.5

Ours (Stage-I) 37.1 44.7

respectively. For the target training stage (Stage-II), we initialize the model by the source model
trained with CPSS and PT. Without using style augmentations, self-supervised learning achieves
limited improvement. In contrast, adding CPSS can clearly promote performance on both compound
and open domains. This verifies that CPSS can not only reduce the impact of noisy samples but
also improve the robustness of the model to unseen domains. On the other hand, using photometric
transformation has a slight influence on the performance. This is mainly because the model has
been familiar with such transformation during source training.

Table 31. Effectiveness of style augmentations.

Model CPSS PT C C+O

Stage-I

✗ ✗ 25.6 26.3

✓ ✗ 31.2 32.0

✓ ✓ 32.8 33.2

Stage-II

✗ ✗ 33.3 33.5

✓ ✗ 34.3 34.4

✓ ✓ 34.4 34.5

Table 32. Comparison of different stylized operations.

Method C C+O

MixStyle [462] 30.7 31.2

CrossNorm [463] 31.4 31.8

CPSS (intra-image) 31.7 32.3

CPSS (inter-image ) 32.8 33.2

Comparison of Different Stylized Operations. In Table 32, we compare several stylized
operations that do not use any auxiliary information, i.e., MixStyle [462], CrossNorm [463], and two
versions of our CPSS. Experiments are conducted in the source training stage. We can find that
mixing styles with a random weight (MixStyle) is less suitable for semantic segmentation, because
MixStyle may sometimes generate semantically unrealistic styles. Compared with CrossNorm and
CPSS (intra-image), CPSS (inter-image) produces clearly higher performance. This indicates that
augmenting samples with more various styles can help us to learn a more generalizable model.

Is Splitting Latent Domains Necessary? Recent OCDA methods [451,452] show that the
sub-domain labels can be used to reduce the latent domain gaps in the target domain. Instead, in
our target training stage, we randomly select training samples from the target data to form the
mini-batch without considering the sub-domain labels. To verify the impact of considering the
latent domains for CPSS, we implement our framework with a new sampling strategy. Specifically,
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we sample the images in a balanced way, so that each mini-batch contains at least one sample for
each sub-domain. We provide two kinds of latent domains: “Oracle” denotes using the original
rainy, snowy, cloudy as the latent domains; and “Clustering” denotes separating latent domains
by clustering the style features. As shown in Table 33, the random sampling strategy and its
two variants achieve similar performance. This indicates that the proposed CPSS can potentially
consider the style variations among multiple latent domains and learn a robust model.

Table 33. Impact of latent domains.

W/ Latent Split C C+O

✓
Clustering 34.4 34.7

Oracle 34.3 34.5

✗ — 34.4 34.5

6.2.3. Conclusions

Our contributions are summarized as follows:

• We introduce a new setting for semantic segmentation, i.e., SF-OCDA, which is an important
yet unstudied problem. In addition, we propose an effective framework for solving SF-OCDA,
which focuses on learning a generalized model during the stages of source pre-training and
target adaptation.

• We propose the CPSS, which diversifies the samples in the feature-level, to improve the
generalization ability of the model in both source and target training stages. CPSS is a
lightweight module without learnable parameters, which can be readily injected into existing
segmentation models.

• The proposed framework learned with the source-free constraint significantly outperforms
the state-of-the-art methods on the OCDA benchmark. Our approach also surpasses the
advanced domain generalization approaches on CityScapes.

6.2.4. Relevant publications

• Y. Zhao, Z. Zhong, Z. Luo, G. H. Lee, and N. Sebe, Source-Free Open Compound Domain
Adaptation in Semantic Segmentation, IEEE Transactions on Circuits and Systems for Video
Technology, 32(10):7019-7032, October 2022. [464].
Zenodo record: https://zenodo.org/record/7565978.

6.2.5. Relevant software/datasets/other outcomes

• The Pytorch implementation can be found in
https://github.com/HeliosZhao/SFOCDA.

6.2.6. Relevance to AI4media use cases and media industry applications

Semantic segmentation is an useful tool for providing the first step towards image understanding
however, the existing approaches rely heavily on the expensive dense pixel-wise annotations. Our
solution addresses the challenging setting of open compound domain adaptation where the unlabeled
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target domain is a compound of multiple homogeneous domains without domain labels. The adapted
model is applied to test samples from the compound target domain and an open domain, where the
open domain is unseen during training. This approach provides a wide applicability to several use
cases: (a) UC2B by providing solutions to analyze/adapt the visual content, and (b) UC2A and 2B
by providing solutions to discover new visual content and adapt accordingly. These can help to
improve tagging and search capabilities.

6.3. solo-learn: A Library of Self-supervised Methods for Visual Repre-
sentation Learning

Contributing partner: UNITN

We introduce here solo-learn, a library of self-supervised methods for visual representation
learning. Implemented in Python, using Pytorch and Pytorch lightning, the library fits both
research and industry needs by featuring distributed training pipelines with mixed-precision, faster
data loading via Nvidia DALI, online linear evaluation for better prototyping, and many additional
training tricks. Our goal is to provide an easy-to-use library comprising a large amount of SSL
methods, that can be easily extended and fine-tuned by the community. solo-learn opens up
avenues for exploiting large-budget SSL solutions on inexpensive smaller infrastructures and seeks
to democratize SSL by making it accessible to all.

Deep networks trained with large annotated datasets have shown stunning capabilities in the
context of computer vision. However, the need for human supervision is a strong limiting factor.
Unsupervised learning aims to mitigate this issue by training models from unlabeled datasets.
The most prominent paradigm for unsupervised visual representation learning is SSL, where the
intrinsic structure of the data provides supervision for the model. Recently, the scientific community
devised increasingly effective SSL methods that match or surpass the performance of supervised
methods. Nonetheless, implementing and reproducing such works turns out to be complicated.
Official repositories of state-of-the-art SSL methods have very heterogeneous implementations or
no implementation at all. Although a few SSL libraries [465,466] are available, they assume that
larger-scale infrastructures are available or they lack some recent methods. When approaching
SSL, it is hard to find a platform for experiments that allows running all current state of the
art methods with low engineering effort and at the same time is effective and straightforward
to train. This is especially problematic because, while the SSL methods seem simple on paper,
replication of published results can involve a huge time and effort from researchers. Sometimes
official implementations of SSL methods are available, however, releasing standalone packages
(often incompatible with each other) is not sufficient for the fast-paced progress in research and
emerging real-world applications. There is no toolbox offering a genuine off-the-shelf catalog of
state-of-the-art SSL techniques that is computationally efficient, which is essential for in-the-wild
experimentation.

To address these problems, we developed solo-learn, an open-source framework that provides
standardized implementations for a large number of state-of-the-art SSL methods. We believe
solo-learn will enable a trustworthy and reproducible comparison between the state of the art
methods. The code that powers the library is written in Python, using Pytorch [467] and Pytorch
Lightning(PL) [468] as back-ends and Nvidia DALI3 for fast data loading, and supports more
modern methods than related libraries. The library is highly modular and can be used as a complete
pipeline, from training to evaluation, or as standalone modules.

3https://github.com/NVIDIA/DALI
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6.3.1. The solo-learn Library: An Overview

Currently, we are witnessing an explosion of works on SSL methods for computer vision. Their
underlying idea is to unsupervisedly learn feature representations by enforcing similar feature
representations across multiple views from the same image while enforcing diverse representations
for other images. To help researchers have a common testbed for reproducing different results,
we present solo-learn, which is a library of self-supervised methods for visual representation
learning. The library is implemented in Pytorch, providing state-of-the-art self-supervised methods,
distributed training pipelines with mixed-precision, faster data loading, online linear evaluation for
better prototyping, and many other training strategies and tricks presented in recent papers. We
also provide an easy way to use the pre-trained models for object detection, via DetectronV2 [469].
Our goal is to provide an easy-to-use library that can be easily extended by the community, while
also including additional features that make it easier for researchers and practitioners to train on
smaller infrastructures.

6.3.2. Self-supervised Learning Methods

We implemented 13 state-of-the-art methods, namely, Barlow Twins [470], BYOL [471], DeepCluster
V2 [472], DINO [112], MoCo V2+ [473], NNCLR [474], ReSSL [475], SimCLR [199], Supervised
Contrastive Learning [476], SimSiam [477], SwAV [472], VICReg [478] and W-MSE [479].

6.3.3. Architecture

solo.args

--dataset imagenet
--dali

--gpus 0,1,2,3
--lr 0.1

--optimizer sgd
--lars

Args

solo.methods

solo.losses

Args

Method

Data
Callbacks

Extras AutoUMAP

...

Pretrain
dataloader

Checkpointer

Dataset

solo.utils

Hardware
GPU

support
TPU

support

CPU

Extra features
Mixed

precision
Gradient

accumulation

Loggers
Distributed

training

Pytorch Lightning
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User

Args

Method
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Momentum

Figure 45. Overview of solo-learn.

In Figure 45, we present an overview of how a training pipeline with solo-learn is carried
out. In the bottom, we show the packages and external data at each step, while at the top, we
show all the defined variables on the left and an example of the newest defined variable on the
right. First, the user interacts with solo.args, a subpackage that is responsible for handling all
the parameters selected by the user and providing automatic setup. Then, solo.methods interacts
with solo.losses to produce the selected self-supervised method. While solo.methods contains
all implemented methods, solo.losses contains the loss functions for each method. Afterwards,
solo.utils handles external data to produce the pretrain dataloader, which contains all the
transformation pipelines, model checkpointer, automatic UMAP visualization of the features, other
backbone networks, such as ViT [480] and Swin [481], and many other utility functionalities. Lastly,
this is given to a PL trainer, which provides hardware support and extra functionality, such as,
distributed training, automatic logging results, mixed precision and much more. We note that
although we show all subpackages working together, they can be used in a standalone fashion with
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minor modifications. Apart from that, we have documentations in the folder docs, downstream
tasks in downstream, unit tests in tests and pretrained models in zoo.

6.3.4. Comparison to Related Libraries

The most related libraries to ours are VISSL [465] and Lightly [466], which lack some of our
key features. First, we support more modern SSL methods, such as BYOL, NNCLR, SimSiam,
VICReg, W-MSE and others. Second, we target researchers with fewer resources, namely from 1 to
8 GPUs, allowing much faster data loading via DALI. Lastly, we provide additional utilities, such as
automatic linear evaluation, support to custom datasets and automatically generating UMAP [482]
visualizations of the features during training.

6.3.5. Experiments

6.3.5.1. Benchmarks. We benchmarked the available SSL methods on CIFAR-10 [483], CIFAR-
100 [483] and ImageNet-100 [484] and made public the pretrained checkpoints. For Barlow Twins,
BYOL, MoCo V2+, NNCLR, SimCLR and VICReg, hyperparameters were heavily tuned, reaching
higher performance than reported on original papers or third-party results. Table 34 presents the
top-1 and top-5 accuracy values for the online linear evaluation. For ImageNet-100, traditional
offline linear evaluation is also reported. We also compare with the results reported by Lightly in
Table 36.

6.3.5.2. Nvidia DALI vs traditional data loading. We compared the training speeds and
memory usage of using traditional data loading via Pytorch Vision4 against data loading with
DALI. For consistency, we ran three different methods (Barlow Twins, BYOL and NNCLR) for 20
epochs on ImageNet-100. Table 35 presents these results.

Table 34. Online linear evaluation accuracy on CIFAR-10, CIFAR-100 and ImageNet-100. In brackets, offline
linear evaluation accuracy is also reported for ImageNet-100.

Method
CIFAR-10 CIFAR-100 ImageNet-100

Acc@1 Acc@5 Acc@1 Acc@5 Acc@1 Acc@5

Barlow Twins 92.10 99.73 70.90 91.91 80.38 (80.16) 95.28 (95.14)

BYOL 92.58 99.79 70.46 91.96 80.16 (80.32) 94.80 (94.94)

DeepCluster V2 88.85 99.58 63.61 88.09 75.36 (75.40) 93.22 (93.10)

DINO 89.52 99.71 66.76 90.34 74.84 (74.92) 92.92 (92.78)

MoCo V2+ 92.94 99.79 69.89 91.65 78.20 (79.28) 95.50 (95.18)

NNCLR 91.88 99.78 69.62 91.52 79.80 (80.16) 95.28 (95.28)

ReSSL 90.63 99.62 65.92 89.73 76.92 (78.48) 94.20 (94.24)

SimCLR 90.74 99.75 65.78 89.04 77.04 (77.48) 94.02 (93.42)

Simsiam 90.51 99.72 66.04 89.62 74.54 (78.72) 93.16 (94.78)

SwAV 89.17 99.68 64.88 88.78 74.04 (74.28) 92.70 (92.84)

VICReg 92.07 99.74 68.54 90.83 79.22 (79.40) 95.06 (95.02)

W-MSE 88.67 99.68 61.33 87.26 67.60 (69.06) 90.94 (91.22)

4https://github.com/pytorch/vision
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Table 35. Speed and memory comparison with and without DALI on
ImageNet-100.

Method DALI 20 epochs 1 epoch Speedup Memory

Barlow
Twins

1h 38m 27s 4m 55s - 5097 MB

✓ 43m 2s 2m 10s 56% 9292 MB

BYOL
1h 38m 46s 4m 56s - 5409 MB

✓ 50m 33s 2m 31s 49% 9521 MB

NNCLR
1h 38m 30s 4m 55s - 5060 MB

✓ 42m 3s 2m 6s 64% 9244 MB

Table 36. Comparison with
Lightly on CIFAR10.

Method Ours Lightly

SimCLR 90.74 89.0

MoCoV2+ 92.94 90.0

SimSiam 90.51 91.0

6.3.6. Conclusion

Here, we presented solo-learn, a library of self-supervised methods for visual representation
learning, providing state-of-the-art self-supervised methods in Pytorch. The library supports
distributed training, fast data loading and provides many utilities for the end-user, such as
online linear evaluation for better prototyping and faster development, many training tricks, and
visualization techniques. We are continuously adding new SSL methods, improving usability,
documents, and tutorials. Finally, we welcome contributors to help us at https://github.com/
vturrisi/solo-learn.

6.3.7. Relevant publications

• V. Turrisi da Costa, E. Fini, M. Nabi, N. Sebe and E. Ricci, ”solo-learn: A Library of
Self-supervised Methods for Visual Representation Learning”, Journal of Machine Learning
Research, 23(56):1-6, January 2022. [485].
Zenodo record: https://zenodo.org/record/6363321.

6.3.8. Relevant software/datasets/other outcomes

• The Pytorch implementation can be found in
https://github.com/vturrisi/solo-learn.

6.4. Uncertainty-guided Source-free Domain Adaptation

Contributing partner: UNITN

6.4.1. Introduction and methodology

Deep neural networks have proven to be very successful in a myriad of computer vision tasks such
as categorization, detection, and retrieval. However, much of the success has come at the price
of excessive human effort put into the manual data-labelling process. Since collecting annotated
data can be prohibitive and impossible at times, domain adaptation (DA, see [486] for an overview)
methods have gained increasing attention. They enable training on unlabelled target data by
conjointly leveraging a previously labelled yet related source data set while mitigating domain-
shift [487] between the two. Such methods predominantly comprise of minimizing statistical moments
between distributions [488–491], using adversarial objectives to maximize domain confusion [492,493],
or reconstructing data with generative methods [494].

Albeit successful, the preceding methods mandate access to the source data set during the
target adaptation phase as they require an estimate of the source distribution for the alignment.
With the emergence of regulations on data privacy and bottleneck in data transmission for large
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Figure 46. Illustrative sketch of SFDA on a labelled source domain (�, �) and an unlabelled target domain

(ï, �) potentially containing additional classes (�). The top-row shows conventional methods which ignore
model uncertainties; the bottom-row shows our method which incorporates uncertainties about the predictive
model, enabling uncertainty-guided SFDA that is more robust to distribution shifts

data sets, access to the source data can not always be guaranteed. Thus, paving the way to a
relatively new and more realistic DA setting, called source-free DA (SFDA, [486]), where the task
is to adapt to the target data set when the only source of supervision is a source-trained model.
SFDA facilitates maintaining data anonymity in privacy-sensitive applications (e.g., surveillance
or medical applications) and at the same time reduces data transmission and storage overhead.
Towards this goal, recently, several SFDA methods have been proposed that utilize the hypotheses
learned from the source data [120,454,495]. Notably, SHOT [120] – an Information Maximization
(IM) [496] based SFDA method – has demonstrated to work reasonably well on DA benchmarks,
sometimes outperforming traditional DA methods. While promising, these conventional SFDA
techniques do not account for the uncertainty in the predictions of the source model on the target
data. As a by-product, solely maximizing mutual information [496] on the target data can lead to
erroneous decision surfaces (see Figure 46 top).

This research argues that quantification of the uncertainty in predictions is essential in SFDA.
Depending on the inductive biases of the model, the source model may predict incorrect target
pseudo-labels with high confidence, e.g., due to the extrapolation property in ReLU networks [497].
In the literature, uncertainty-guided methods have been proposed in the context of traditional UDA
and SFDA settings, employing Monte Carlo dropout to estimate the uncertainties in the model
predictions [121,498]. However, MC dropout requires specialized training and specialized model
architecture, suffers from manual hyperparameter tuning [499], and is known to provide a poor
approximation even for simple (e.g., linear) models [500–502].

In this research, we propose to construct a probabilistic source model by incorporating priors
on the network parameters, inducing a distribution over the model predictions, on the last layer
of the source model. This enables us to perform an efficient local approximation to the posterior
using a Laplace approximation [508,509]. This principled Bayesian treatment leads to more robust
predictions, especially when the target data set contains out-of-distribution (OOD) classes (see
Figure 46 bottom) or in case of strong domain shifts. Once the uncertainty in predictions is
estimated, we selectively guide the target model to maximize the mutual information [496] in the
target predictions. This alleviates the alignment of the target features with the wrong source
hypothesis, resulting in a DA scheme that is robust to mild and strong domain shifts without
tuning. We call our proposed method Uncertainty-guided Source-Free AdaptatioN (U-SFAN).
Our approach requires no specialized source training or specialized architecture, opposed to exiting
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Table 37. Comparison of the classification accuracy on the Office-Home for the closed-set setting using ResNet-50.
High overall performance signifies milder distributional shift between domains. The improvement of U-SFAN upon
SHOT is moderate, but competitive w.r.t. A2Net [503] or SHOT++ [504], which require complex training objectives

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg.

ResNet-50 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DANN [492] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

DWT [491] 50.3 72.1 77.0 59.6 69.3 70.2 58.3 48.1 77.3 69.3 53.6 82.0 65.6

CDAN [505] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8

SAFN [506] 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3

SHOT-IM [120] 55.4 76.6 80.4 66.9 74.3 75.4 65.6 54.8 80.7 73.7 58.4 83.4 70.5

LSC [507] 57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3

U-SFAN (Ours) 58.5 78.6 81.1 66.6 75.2 77.9 66.3 57.9 80.6 73.6 61.4 84.1 71.8

A2Net [503] 58.4 79.0 82.4 67.5 79.3 78.9 68.0 56.2 82.9 74.1 60.5 85.0 72.8

SHOT++ [504] 57.9 79.7 82.5 68.5 79.6 79.3 68.5 57.0 83.0 73.7 60.7 84.9 73.0

SHOT [120] 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8

U-SFAN+ (Ours) 57.8 77.8 81.6 67.9 77.3 79.2 67.2 54.7 81.2 73.3 60.3 83.9 71.9

Table 38. Comparison of the OS classification accuracy on the Office-Home for the open-set setting using
ResNet-50. U-SFAN improves over SHOT without the need for nearest-centroid pseudo-labelling in the case of
open-set SFDA

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg.

ResNet-50 53.4 52.7 51.9 69.3 61.8 74.1 61.4 64.0 70.0 78.7 71.0 74.9 65.3

ATI-λ [515] 55.2 52.6 53.5 69.1 63.5 74.1 61.7 64.5 70.7 79.2 72.9 75.8 66.1

OpenMax [516] 56.5 52.9 53.7 69.1 64.8 74.5 64.1 64.0 71.2 80.3 73.0 76.9 66.7

STA [517] 58.1 53.1 54.4 71.6 69.3 81.9 63.4 65.2 74.9 85.0 75.8 80.8 69.5

SHOT-IM [120] 62.5 77.8 83.9 60.9 73.4 79.4 64.7 58.7 83.1 69.1 62.0 82.1 71.5

SHOT [120] 64.5 80.4 84.7 63.1 75.4 81.2 65.3 59.3 83.3 69.6 64.6 82.3 72.8

U-SFAN (Ours) 62.9 77.9 84.0 67.9 74.6 79.6 68.8 61.3 83.3 76.0 63.9 82.3 73.5

works (e.g., [121,510]), introduces little computational overhead, and decouples source training and
target adaptation.

6.4.2. Experimental results

We conduct experiments on four standard DA benchmarks: Office31 [511], Office-Home [512],
Visda-C [513], and the large-scale DomainNet [514] (0.6 million images). For the experiments
in the open-set DA setting we follow the split of [120] for shared and target-private classes.

6.4.2.1. Evaluation protocol We report the classification accuracy for every possible pair of
source 7→ target directions, except for the Visda-C where we are only concerned with the transfer
from synthetic 7→ real domain. For the open-set experiments, following the evaluation protocol
in [120], we report the OS accuracy which includes the per-class accuracy of the known and the

unknown class and is computed as OS = 1
K+1

∑K+1
k=1 acck, where k = {1, 2, . . . ,K} denote the

shared classes and (K + 1)th is the target-private or OOD classes. This metric is preferred over the

known class accuracy, OS∗ = 1
K

∑K
k=1 acck, as it does not take into account the OOD classes.

6.4.2.2. State-of-the-art Comparison We compare our U-SFAN with UDA and SFDA
methods on multiple data sets for closed-set and open-set settings. First, we compare U-SFAN with
the baselines on the most common benchmark of office-home for both closed-set and open-set
settings. As can be seen from Tables 37 and 38 we improve the performance over majority of the
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baselines. Especially, we consistently improve over SHOT-IM with our method. We also combine
the nearest centroid pseudo-labelling, used in SHOT [120], with U-SFAN (indicated as U-SFAN+
in Tables 37 and 39a), and we find that it further helps improving the performance. Notably, the
recently proposed A2Net [503] (which just addresses closed-set SFDA) outperforms our U-SFAN
in a couple of data sets, but uses a combination of several loss functions. Interplay of multiple
losses can be hard to tune in practice. On the other hand, our method is simpler, more versatile
and works for both the SFDA settings. Given the performance of the SFDA baseline methods in
Office-home and visda-c are relatively high and closer to each other, the domain shift can be
considered milder with respect to more challenging data set like domain-net.

Table 39. (a) Comparison of the classification accuracy on the Visda-C for the closed-set DA, pertaining to the
Synthetic → Real direction, using ResNet-101. † indicates the numbers of [120] that are obtained using the official
code from the authors. Note that several SFDA methods perform equally well for visda-c, hinting at saturating
performance. (b) Comparison of the average accuracy on the Domainnet for the closed-set SFDA using ResNet-50.
The source column indicates the domain where the source model has been trained. The data set being challenging
(exhibiting strong domain-shift), the improvement with our U-SFAN over [120] is substantial

(a) Visda-C

Method Acc.

ResNet-101 52.4

CDAN+BSP [518] 75.9

SAFN [506] 76.1

SHOT-IM† [120] 80.3

U-SFAN (Ours) 81.2

3C-GAN [519] 81.6

A2Net [503] 84.3

SHOT† [120] 82.4

U-SFAN+ (Ours) 82.7

(b) Domainnet

Source SHOT-IM [120] U-SFAN

clipart 25.04 30.88

infograph 21.58 26.44

painting 23.89 29.91

quickdraw 10.76 10.44

real 21.74 29.32

sketch 28.87 29.99

Avg. 21.98 26.13

When we compare U-SFAN with SHOT-IM on the challenging SFDA benchmark domain-net
the advantage of our U-SFAN over SHOT-IM becomes imminent (cf. Table 39b). Different from
the previous data sets, the difficulty in mitigating domain-shift for domain-net is evident from the
low overall performance of both SHOT-IM and U-SFAN. This data set can be seen as a real-world
example of strong domain-shift. The improvement in the performance of U-SFAN over SHOT-IM
for domain-net demonstrates that incorporating the uncertainty in the model’s predictions plays a
crucial role in SFDA. The conventional approach may overfit to noisy model predictions, leading to
poor performance. Whereas, U-SFAN can capture the uncertainty in predictions and down-weight
the impact of noisy predictions.

6.4.3. Conclusions

Our contributions as follows. (i) We emphasize the need to quantify uncertainty in the predictions
for SFDA and propose to account for uncertainties by placing priors on the parameters of the source
model. Our approach is computationally efficient by employing a last-layer Laplace approximation
and greatly decouples the training of the source and target. (ii) We demonstrate that our proposed
U-SFAN successfully guides the target adaptation without specialized loss functions or a specialised
architecture. (iii) We empirical show the advantage of our method over SHOT [120] in the closed-set
and the open-set setting for several benchmarks tasks and provide evidence for the improved
robustness against mild and strong domain shifts.
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6.4.4. Relevant publications

• S. Roy, M. Trapp, A. Pilzer, J. Kannala, N. Sebe, E. Ricci, and A. Solin, Uncertainty-guided
Source-free Domain Adaptation, European Conference on Computer Vision (ECCV’22) [520].
Zenodo record: https://zenodo.org/record/7566109.

6.4.5. Relevant software/datasets/other outcomes

• The Pytorch implementation can be found in
https://github.com/roysubhankar/uncertainty-sfda.

6.4.6. Relevance to AI4media use cases and media industry applications

Our uncertainty-guided SFDA approach provides a solution to the challenging problem where the
task is to adapt to the target data set when the only source of supervision is a source-trained
model. This situation can occur frequently in several media industry applications. Specifically,
our approach could be used in use case UC2B by providing solutions to analyze the visual content
thanks to being able to generalize under domain-gap.
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7. Deep quality diversity (Task 3.6) – detailed description

Contributing partners: UM

QD algorithms have been recently introduced to the EC literature as a way of handling deceptive
search spaces. The goal of these algorithms is “to find a maximally diverse collection of individuals
(with respect to a space of possible behaviors) in which each member is as high performing as
possible” [7]. The inspiration for such approaches is natural evolution which is primarily open-
ended—unlike the objective-based optimization tasks to which EC is often applied. While the
rationale of open-ended evolution has been previously used as an argument for genetic search
for pure behavioral novelty, QD algorithms re-introduce a notion of (localized) quality among
individuals with the same behavioral characteristics. QD algorithms attempt to balance between
their individuals’ quality and their population’s diversity, and thus media content which have strict
quality requirements, such as games that are playable from start to finish, are the ideal arena for
advancing quality-diversity.

The aim of Task 3.6 is to couple Deep Neural Network (DNN) architectures with divergent search
for transforming exploration, aiming for both diverse and high quality outcomes. Experiments in
this deep-learning-based QD search (deepQD) approach during the reported period are aligned on
two main directions:

D1 improve the definition of diversity based on learnt representations.

D2 promote diversity and quality in existing deep learning generative architectures for media.

7.1. Learned Representations as Diversity Metrics to Maximize

Contributing partners: UM

7.1.1. Introduction and methodology

Determining an effective representation for content in QD algorithms is crucial to achieve better
search space coverage and high-quality output. To this end, UM has investigated using learned
content representations through deep learning to enhance a generator’s definition of novelty, with
the aim of achieving superior open-ended complexity and diversity [521]. In typical solutions for
Procedural Content Generation (PCG) via QD [522], generators use designer-defined representations
for generating and evaluating content using algorithms such as MAP-Elites [11]. However, designing
the right representation can be very difficult for complex tasks and can introduce search biases,
harming the potential of the outputs. Recent studies on achieving better open-ended quality and
diversity in PCG-QD have focused on using an intrinsic definition for novelty, which is typically
calculated using a learned representation based on the system’s own output.

This work is based on the Deep Learning Novelty eXplorer (DeLeNoX) algorithm [523], which
approaches intrinsically defined novelty by assessing diversity in terms of a higher-level representation,
determined by a Convolutional Neural Network (CNN) autoencoder. By allowing the generator to
adjust its measure for novelty according to its own observations, DeLeNoX is able to continually
adapt its focus to search beyond its current biases, a concept which is critical for achieving open-
ended evolution. Several solutions have applied novelty defined in a learned latent space to a
variety of tasks, such as 2D artifacts [524, 525], discovering interesting behaviors in robots [526]
and data efficient search space illumination [527]. However, this approach has remained untested
for generating content in 3D domains. On a high level, DeLeNoX alternates between phases
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Figure 47. Average reconstruction error (%) and 95% confidence interval tested on four datasets of buildings using
the final autoencoder from each experiment (after the 10th round of exploration). Results for the Random AE
experiment are omitted due to its poor performance (reconstruction error > 90%) across all tests.

of exploration and transformation. During the exploration phase, the latent space defined by
the current autoencoder is explored as thoroughly as possible by applying constrained novelty
search [528] to neuroevolution [529]. Repair functions ensure individuals abide to a set of basic
desired rules in place of an objective function. During transformation, the most novel individuals
from each population form a training set to retrain the autoencoder, modifying the latent space (and
distance function) and opening up new areas of the solution space to explore. The new autoencoder
is used for the next iteration of the algorithm which can continue until stopping criteria are met.
More details on the two phases of the algorithm and the approach taken for building representation
can be found in the paper.

In this contribution to T3.6, we build upon the DeLeNoX algorithm, expanding it to generate
more complex 3D structures. More specifically, we design a QD generator to autonomously create
interesting Minecraft buildings using an intrinsic and open-ended definition of novelty. Sandbox
games such as Minecraft [530] are arguably the perfect canvas to illustrate an artificial system’s
creativity: their open-ended gameplay allows the player to create any structure that can be expressed
as a set of voxels. Our findings suggest that redefining the latent space using novel data with a
diverse range of structural complexity improves the generator’s ability to find more complex and
novel features in its output.

7.1.2. Experimental Results

Since our method focuses on the transformation of the search space through a latent vector when
assessing novelty, the experiment explores different ways of training the AE and includes two
baselines. The first baseline is a static AE which was trained on the seed populations and is not
retrained during the transformation phase. The second baseline is the random AE, wherein each
transformation phase a new autoencoder is generated with random weights and is used as-is for
the following exploration phase. The remaining three methods use different training sets during
the transformation phase. The novelty archive AE (NA-AE) combines all novelty archives from
each population in the previous exploration phase to form the training set for the autoencoder.
The latest set AE (LS-AE) combines only the 100 most novel final individuals of the populations
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Figure 48. Voxel-based KL Divergence of the populations with respect to each experiment after every round of
exploration (left) and each experiment’s populations from the seed populations used to start evolution (right).
Results are averaged across all 10 populations using a 95% confidence interval. Iteration zero depicts the average
diversity of the seed populations.

in the previous exploration phase into a training set of 1000 individuals, while the full history
AE (FH-AE) combines the final individuals in every population of every exploration phase so far
to train the autoencoder. The experiments were run for 10 iterations of the algorithm, evolving
10 separate populations of 200 individuals each. Each exploration phase runs 100 generations of
CPPN-NEAT, and transformation retrains the autoencoder for 100 epochs. Novelty was calculated
using the average Euclidean distance to the 15 nearest neighbors in the latent space, and up to 3
individuals are inserted into the novelty archive per generation. For these experiments, autoencoders
were trained to compress the 20×20×20×5 lattices into latent vectors of 256 real values. The first
iteration of each experiment uses the same set of seed populations, which are also used to pre-train
an autoencoder.

We use Kullback-Leibler (KL) divergence as our metric for assessing voxel diversity which has
proven efficient for comparing game levels [531, 532]. We also measure the correlation between
this KL divergence measure and each experiments’ distance measure in the latent space, as this
provides an insight into the regularization of the latent space and the novelty function’s ability
to group meaningfully similar individuals together. We also evaluate the reconstruction accuracy
of the autoencoders which directly quantifies the model’s ability to identify high-level patterns
in the buildings and therefore discover more meaningful novel features. Finally, we provide a
qualitative comparison between experiments by visualizing the structures generated and observing
the differences in complexity and patterns found to be novel.

7.1.2.1. Reconstruction Error Figure 47 shows the reconstruction error measure tested across
four different datasets to visualize the autoencoders’ accuracy across a variety of inputs. The seed
and final populations refer to populations at the start (before evolution) and end (end of 10th
exploration phase) of each respective experiment. The “Cubes” dataset consists of 200 buildings
made by randomly generating cuboid hulls of different sizes and applying the repair pipeline to
produce material lattices. The “Medieval” dataset consists of a population of buildings generated
using the “AHouseV5” filter by Adrian Brightmoore [533] in MCEdit, re-assigning the materials
for each voxel through the repair pipeline. Unsurprisingly, the random AE performs very poorly
across all four datasets, followed by LS-AE which struggled to reconstruct anything except its own
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Figure 49. Visualization of individuals from each experiments’ final population sorted according to their novelty
score (minimum, median, maximum). To evaluate novelty the final autoencoder from each experiment was used
(excluding the seed and static AE populations which used the seed model).

final population. The NA-AE proved to be the most robust model when given completely unseen
data, displaying the best reconstruction accuracy for the Medieval and Cubes datasets. The FH-AE
shows the best performance on its final populations, though (like the static AE) struggled slightly
compared to NA-AE on completely unseen data. The NA-AE seems to benefit from having the
largest amount of (and most diverse) training data for transformation compared to the rest of the
experiments.

7.1.2.2. Voxel KL-Divergence The results in Figure 48 show that whilst the LS-AE and
FH-AE produced the least diverse individuals compared to their own populations, these same
individuals were the most diverse from the initial seeds. On the other hand, the static AE produces
more diverse content in the voxel space, without varying over time even in comparison to the initial
seeds; this is expected as the autoencoder is not retrained between exploration phases. Interestingly,
the NA-AE produces a similar trend to the static AE in both measures, even though it is trained
on the largest dataset of individuals during transformation. The random AE produces marginally
more diverse content for both measures, albeit with a larger deviation which is likely caused by
the randomized weights of the autoencoder. Our results also show that there is a clear linear
correlation between the two diversity measures for the NA-AE experiment’s final populations, with
a Pearson correlation of 0.84. However, the LS-AE and FH-AE distance functions both produce
significantly weaker correlations between the two measures, with a Pearson correlation of 0.53 and
0.35 respectively.

7.1.2.3. Qualitative Comparison By looking at these examples in Figure 49 we can get a
qualitative idea of how novelty and complexity is evolving over time. The seed population and static
AE share similar high-level patterns which is understandable given they use the same autoencoder
and originate from the same latent space. The effect of the lack of training for the random AE
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experiment is clearly reflected in results which are far noisier than the other experiments. The
LS-AE, FH-AE and NA-AE experiments show slight differences in the overall structures generated
compared to the seed set, though there is no significant jump in structural complexity. This
indicates that whilst novelty search is promoting diversity in the latent space, it does not guarantee
diversity in the phenotype space and does not explicitly evolve towards desired qualities as in
quality-diversity algorithms such as MAP-Elites [11].

7.1.3. Relevant publications

• Matthew Barthet, Antonios Liapis and Georgios N. Yannakakis: ”Open-Ended Evolution for
Minecraft Building Generation,” in IEEE Transactions on Games, 2022 (accepted). [534].
Zenodo record: https://zenodo.org/record/7879128.

7.1.4. Relevant software/datasets/other outcomes

• The article published as the culmination of this research is available as an interactive paper
(which allows for better interaction with its content) at
https://minecraft.institutedigitalgames.com/https://minecraft.institutedigitalgames.

com/.

7.1.5. Relevance to AI4media use cases and media industry applications

Our tools on deep learned diversity metrics are applicable to any creative domain as they provide
novel ways to generate diverse content without requiring ad-hoc designer-specified directions for
this diversity. However, they ideally contribute to Use Case 5 (AI for Games) as experiments have
so far focused on generating diverse in-game structures for voxel based games such as Minecraft.
This work can be extended to tackle other creative domains relevant to Use Case 5 such as visuals
or sound.

7.2. Quality Diversity search on the Latent Space

Contributing partners: UM

7.2.1. Introduction and methodology

A direct application of the deepQD vision is by combining latent space representations with evolution
driven by QD search to change the latent parameters of an artifact. In this case, we focus on AI
Art generators and attempt to address the visual diversity of the output through a QD algorithm,
named NSLC. Our proposed methodology combines refinement and exploration cycles to generate
visually diverse images. The refinement cycle uses VQGAN latent vector backpropagation to convert
random noise into desirable images, whilst the exploration cycle employs NSLC on the latent vector.
We use a pre-trained VQGAN model based on the WikiArt dataset [535], which contains over
81,000 images across various art styles. The generated images have dimensions of 384 by 384 pixels,
which the VQVAE quantises into square blocks of 16 by 16 pixels. The image is thus represented as
a latent vector of 576 integers representing indices from the VQVAE code book.

To begin the experiment, each latent vector is randomised using fractal noise and its CLIP
embedding is obtained. In subsequent iterations, we employ the negated cosine similarity of CLIP
as a loss function for backpropagation. The goal is to refine the latent vector to generate an image
that aligns better with the given semantic prompt. Figure 50 visualises this process. Since the
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Figure 50. Refinement iterations consisting of CLIP-guided backpropagation.

latent vector consists of integers, backpropagation is actually performed on the internal tensor
representation within VQGAN, which consists of floating-point numbers. The code used is based
on the Pixray5 Python library.

During exploration the latent vectors undergo mutation operations in which 5% of its genes
(randomly selected) are replaced with random integers between 0 and 16,384 (the code book size).
This mutation rate allows for perceptible changes in the image without making it unrecognisable.
We consider the 15 nearest individuals to calculate both the novelty and the local competition
scores. The top three novel individuals in each generation are added to the novelty archive, which is
reset at the start of each exploration cycle. This approach strikes a balance between computational
requirements and maintaining diversity.

To process the novelty and local competition scores as a multi-objective optimization problem,
we employ the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [536] using the Pymoo
Python library [537]. A minimal Pareto front is calculated based on the two objectives, and
individuals closer to this front dominate the remaining population and are selected for the next
generation. If more individuals are needed, another Pareto front is calculated and individuals are
selected accordingly. In cases where there are more individuals on the Pareto front than required,
individuals are selected to introduce sparsity based on the Manhattan distance within the search
space.

Determining the diversity of the generated images was a considerable challenge. The concept of
diversity plays a crucial role in our NSLC problem definition, and it thereby greatly influences the
outcome of the exploration cycles. While humans can easily perceive visual similarities between two
images, quantifying similarity or diversity in a straightforward metric presents several challenges.
We hereby explore two distinct methods, namely Chromatic and Vision Transformer diversity, and
more detail on these approaches can be found in the paper.

5https://github.com/pixray/pixray
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Figure 51. Structure of the experiments alternating between GAN refinement and NSLC exploration cycles.

7.2.2. Experimental Results

The experiments were conducted using five Semantic Prompts commonly employed by the commu-
nity6. These were “a lonely house in the woods (SP1)”, “a pyramid made of ice (SP2)”, “artificial
intelligence (SP3)”, “cosmic love and attention (SP4)”, and “fire in the sky (SP5)”.

Initially, a population of 500 images is generated from latent vectors encoded from a set of
randomly generated fractal noise images. This same initial population is used for all algorithm
variations and across all prompts. To establish a baseline, the backpropagation refinement process
is run without interruption for each initial latent vector, generating the final baseline population
(referred to as GAN-BSL). Preliminary experiments have shown that the image composition stabilises
after 600 iterations, with minimal changes occurring beyond this point.

For the NSLC experiments, the refinement process is interrupted at intervals of 100, 200, 300,
and 400 iterations, capturing the latent vectors at each point to create an initial population for
NSLC evolutionary cycles. These exploratory cycles evolve for 50 generations, guided by either ViT
(NSLC-ViT experiment) or HSV (NSLC-HSV experiment) distance metrics. The resulting evolved
population is then subjected to a final backpropagation cycle of 200 iterations for a total of 600
refinement iterations throughout the experiment. Figure 51 provides a visual representation of this
process.

Assessing the novelty and quality of the generated output is a complex task [538]. In this work,
we align these concepts with the quality-diversity characteristics of NSLC and employ the following
performance metrics for comparing different algorithms:

• Mean fitness: This metric calculates the average CLIP score across all 50 images in the
population, representing the overall quality.

• Mean ViT diversity: This measures the average ViT distance from the 15 nearest neighbors
per individual, considering only the current population for finding nearest neighbors (no
archive).

• Mean HSV diversity: Similar to mean ViT diversity, this metric calculates the average
HSV distance from the nearest neighbors, using the HSV metric for measuring distance and
finding the nearest neighbors.

The process followed by the algorithms tested is of equal interest as the product at the end of
600 iterations [539]. Figure 52a shows how the mean fitness (CLIP score) fluctuates throughout the

6https://github.com/lucidrains/big-sleep
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(a) Mean population fitness (b) Mean HSV diversity (c) Mean ViT diversity

Figure 52. Progression of the performance metrics over GAN iterations. The iterations at which evolutionary
NSLC cycles were performed are marked in red.

different cycles of the experiment. The uninterrupted GAN-BSL exhibits an initial rapid increase
in fitness over the first 20 iterations and slowly improves thereon. In the NSLC experiments, the
evolved population’s fitness drops by an average of 12% for NSLC-HSV and by 21% for NSLC-ViT
at the start of each evolutionary cycle. This drop remains almost equally substantial when NSLC is
applied at later iterations, even though the images’ composition is well-established at those stages.
After each NSLC cycle, the GAN rapidly restores the CLIP score to a similar level as the GAN-BSL
at the same iteration. At the end of the 600 iterations, all three algorithms reach a similar mean
fitness score, with the NSLC variants commonly reaching slightly higher CLIP scores than the
baseline. Overall, NSLC-HSV exhibits a more stable performance, reaching on average 1.5% higher
mean fitness than GAN-BSL, whilst, NSLC-ViT has more fluctuations between prompts and reaches
an average increase of 0.7% from the GAN-BSL mean fitness. The biggest increase in CLIP score is
for SP3, where NSLC-HSV outperforms GAN-BSL by 3.9% in terms of mean fitness.

Figures 52b and 52c illustrate the mean diversity of the population evaluated using both image
distance metrics for all three experiments (GAN-BSL, NSLC-ViT, NSLC-HSV), despite this not
being the target novelty measure in all cases. Both image distance metrics show a rapid increase in
diversity over the first 20 GAN iterations. This may be attributed to the fact that the initial noise
evaluates to a low diversity, compared to the forming images, despite their tendency towards a
generic style imposed by the manifold. The diversity of the GAN-BSL stays fairly stable after these
first few iterations, or tends to drop. This is most pronounced in SP5 for both diversity measure;
we hypothesise that the (literal) prompt itself pushes images that are fairly similar in colour (red
and blue) and in terms of image classification.

The NSLC variants exhibit an increase in diversity after each exploration cycle for the distance
metric targeted by novelty search. Interestingly, NSLC-HSV manages to increase both HSV diversity
and ViT diversity, even if it evolves towards the former. On average, in each exploration cycle
NSLC-ViT increases ViT diversity by 25% while NSLC-HSV increases ViT diversity by 10% (per
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prompt). NSLC-ViT however underperforms in terms of HSV diversity, with minor or no increases
after each cycle. On the other hand, with NSLC-HSV we observe an average increase of 43% in
HSV diversity after each cycle (per prompt).

The population resulting after an NSLC cycle is more diverse but less fit, and during GAN
cycles the diversity quickly drops as CLIP score increases. These refinement iterations tend to lower
the ViT diversity, surprisingly more than in the GAN baseline experiment, despite both NSLC
variants managing to increase ViT diversity. Furthermore, GAN iterations rapidly increase ViT
diversity from the random seed images, but not from the noisy images produced by NSLC cycles at
iterations 100, 200, 300, 400. After 600 iterations, the final images of NSLC-HSV have an average
of 6.3% increase in HSV diversity compared to GAN-BSL but an average 11.5% decrease in ViT
diversity, per prompt. The final images for NSLC-ViT however are less diverse for both ViT and
HSV compared to the GAN baseline (by 5.8% and 13.7% respectively).

7.2.3. Relevant publications

• Marvin Zammit, Antonios Liapis and Georgios N. Yannakakis: ”Seeding Diversity into AI
Art,” in Proceedings of the International Conference on Computational Creativity, 2022. [540].
Zenodo record: https://zenodo.org/record/6545663.

7.2.4. Relevance to AI4media use cases and media industry applications

Our algorithms for generating interesting art from prompts can be used by content creators and
the media industry as new way of prompting human creativity through output that is guaranteed
to be visually diverse. This work ideally contributes to Use Case 5 (AI for Games) where it can be
used to help generate interesting visuals for game artworks and in-game content.

7.3. Cross-domain Quality-Diversity search

Contributing partners: UM

7.3.1. Introduction and methodology

As an extension to the QD work in Section 7.2, we need not only evolve the latent representation of
the image, but could also evolve the prompt itself. In the follow-up research, which is still ongoing
and described below, we evolve a longer prompt (as game description) along with the associated
image it represents. The contribution below focuses on the cross-facet (text to image) evaluation,
which acts as Quality in the QD paradigm, while facet-specific Diversity measures drive the search
of each component of the final artifact. Moreover, the below study leverages a highly successful and
extendable AI algorithm, MAP-Elites [11]. In our proof of concept experiment, we produce the titles
and descriptions by employing a GPT-2 language model. We first extract a dataset composed of
video game titles and descriptions from the Steam7 platform’s games catalogue. By stripping away
titles which are not video-games (applications, videos, etc...) and those which do not have a listing
in the English language, we end up with a list of approximately 72,000 titles and corresponding
descriptions.

We then fine-tuned a first GPT-2 model on game titles. Since the corpus was not large, we used
the smallest variation of the model, which has 124 million parameters. The model was trained by
the list of titles delimited by a beginning and an end token, given in the format ”|< begin >|game

7https://store.steampowered.com/
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Figure 53. The mutation strategy for the image modality.

Figure 54. The mutation strategy for the text modality.

title|< end >|”. During inference, the begin token is supplied to the fine-tuned model and a novel
title is generated. We generated 100 titles in this manner and chose 7 which we hypothesised would
offer enough potential diversity in the corresponding descriptions and the generated images. The
selected titles were “Neon Moon”, “Lion King”, “Hexgrave”, “Fantasy Fables: The Legend of the
Flying Sword”, “The Princess of Thieves”, “The Shadow Warrior 2: Shadows of the Past”, “Hooey!
You Got a Monster!?”. A second GPT-2 model of the same size was fine-tuned on both the game
titles and their accompanying descriptions, in the format ”|< begin >|game title|< body >|game
description|< end >|”. During inference, the hypothetical titles generated by the first model were
delimited by the begin and body tokens, and fed into the fine-tuned descriptions model, resulting
in a corresponding hypothetical description. 100 descriptions for each of the chosen titles were
generated as an initial population.

To generate the cover images for the games, both the title and descriptions were passed to a
Stable Diffusion model as a semantic prompt in the format ”title, description”. In addition to this,
the model can also be given negative prompts in order to avoid specific occurrences in the output
image. For all generated images, the string “duplication, ugly, text, bad anatomy” was used as
a negative prompt to improve the aesthetic quality of the output. An initial population of 100
text-image pairs was thus generated for each title. We used the cosine similarity between the CLIP
embeddings of the prompt and image as a measure of fitness for the genetic algorithm.

The selection strategy for new candidates to evolve is based on an UCB algorithm [541] taking
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into account frequency of individual selection, which has been shown to improve the MAP-Elites
coverage of its feature map [542]. Upon selection, the individual is subjected to a mutation of
either its image or text, with an equal probability for each modality. The mutation strategy for
the image modality is a phenotypic one, and is carried out in two steps. First an AugMix [543]
image augmentation function from the Torchvision software library [544] is applied. The resulting
image is then used as an input to a Stable Diffusion image-to-image, text-guided model, together
with the original prompt (Figure 53). In order to modify the description, a stochastic selection of a
space or punctuation character is made. The text is truncated from the chosen point on, and the
remaining portion is introduced back into the fine-tuned descriptions GPT-2 model to generate
a new rendition of the omitted segment. To prevent the initial part of the text from remaining
unchanged, a 20% probability of beginning the rewriting process anew has also been incorporated
(Figure 54).

In order to have a more meaningful BC, we used Latent Dirichlet Allocation (LDA) [545] to
classify the descriptions from the Steam video game dataset into topics. Since this algorithm
requires prior knowledge of the number of topics for classification, we trained the algorithm on a
number of topics varying from 4 to 30, and perplexity and complexity metrics were recorded for
each in order to determine the optimal number of topics. From this initial study, the LDA model
with 16 topics was determined to be the most suitable. Each description is processed using this
topic modeller and a resulting set of probabilities to fit within each topic is given. In the event
that the most likely subject of a description fails to attain a probability of at least 40%, or if there
exists a statistical equivalence among the highest probabilities, the description is deemed to be
unclassified.

The selected BC was a combination of the image complexity and colourfulness. Image complexity
was calculated by applying Holistically-Nested Edge Detection (HED) [546] to the image and taking
the ratio of resulting edge pixels to the total pixels in the image. This is reminiscent of previous
image complexity calculations which were based on Sobel or Canny filters [547], but HED outlines
are generally more accurate and less noisy than either of these filters. Image colourfulness is based
on the quantitative measure of the perceived colourfulness or saturation of an image [548]. It aims
to capture the amount of variation and intensity of colours present in an image. The images were
grouped into 4 ’bins’ of complexity and 4 of colourfulness, resulting in a BC of 16 bins, to match
the amount of topics in the textual modality.

Throughout this work, we also investigated an enhancement to the original MAP-Elites algorithm
when applied to different modalities. During the offspring creation process at each generation of
the algorithm, only one modality is mutated. We propose that the newly generated modality, say
an image, is compared to the descriptions of the individuals in the same axis of the feature map
since all of these belong to the same BC bin. The match that has the highest fitness greater than
the individual already present in the respective cell is placed accordingly. We call this placement
method MEliTA. This is illustrated in Figure 55.

7.3.2. Experimental Results

To facilitate a comparative analysis between the baseline MAP-Elites placement and the MEliTA
placement methods, a series of experiments were conducted for each selected game title, employing
both algorithms. A total of 10 independent runs were performed for each method. Each experiment
consisted of 2000 generations, wherein one individual was chosen for mutation in each generation.
The mean fitness, coverage and Quality Diversity score were computed for the final state of the
feature map and Wilcoxon Rank Sum tests [549] were carried out on these values batched by game
titles, to identify any statistically significant differences in the resulting values. The tests were also
carried out on the global values, i.e. across all titles. Results of these experiments are in Table 40,
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(a) One modality is mutated and a transverse evaluation of the fitness with the existing individuals’ other modality is
carried out.

(b) The new text-image pair is replaced in a single cell where the fitness is highest and exceeds the current elite in that
location.

Figure 55. The novel transverse assessment method being proposed for offspring placement in the MAP-Elites
feature map.

with significantly higher values for MElitA in several cases.
It is evident that there is a significant increase in the mean fitness of the individuals within the

feature maps. The QD score and coverage were also noticed to be often higher, but not consistently
enough to be statistically significant. It was also noticed that the transverse assessment led to more
stagnation in the image composition, as mutated individuals from the same parent image were
frequently distributed across other cells. Overall, this method shows promise in maximising fitness
across the feature map, but it needs to be studied further.
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MAP-Elites baseline MEliTA

Title Mean fitness Coverage QD Score Mean fitness Coverage QD Score

T1 0.267 0.477 32.631 0.286 0.475 34.860

T2 0.265 0.345 23.557 0.313 0.349 27.926

T3 0.265 0.532 36.140 0.280 0.491 35.125

T4 0.262 0.399 26.817 0.278 0.366 26.045

T5 0.266 0.405 27.584 0.286 0.370 27.009

T6 0.254 0.305 19.862 0.285 0.285 20.773

T7 0.285 0.441 32.127 0.300 0.459 35.283

Global 0.267 0.415 28.388 0.290 0.399 29.574

Table 40. Results showing the mean fitness, coverage and QD score across all runs for each experiment. Green cells
denote a statistically significant higher value (Wilcoxon Rank Sum test p-value < 0.05).

7.3.3. Relevance to AI4media use cases and media industry applications

Our tools on Map Elites with Transversal Assessment are applicable to any multi-faceted creative
domain (e.g. film-making), but are ideally contributing to Use Case 5 (AI for Games) where
content of different facets combine into a playable experience. Experiments so far have focused
on conceptual design of games’ descriptions (text) and concept art (visuals) but extending this to
background music (sound) as an additional facet can also connect it to other activities undertaken
in Use Case 5.

7.4. User-Controllable Quality Diversity Search

Contributing partners: UM

7.4.1. Introduction and methodology

In this contribution, we introduce a novel IEC algorithm called User Controlled MAP-Elites
(UC-ME) aiming to provide a high degree of user control, with a reduced degree of user fatigue.
We showcase that this is achievable by exploiting the illumination capabilities of QD algorithms.
We implement this concept by modifying the basic operation of MAP-Elites [550], a popular QD
algorithm used also in the contribution of Section 7.3, and devising the following interaction loop: we
constrain the algorithm’s operation within a window that covers a small region of the feature map,
where it locally expands the archive for a number of generations. Afterwards, design alternatives
are sampled from within the window and presented to the designer. Finally, the user’s selection
determines where the window will move towards next.

UC-ME starts by producing a number of initial individuals through a random initialization
method and placing them in the MAP-Elites archive according to their behavioral characterization.
This step seeds the archive to enable interaction with the human user. The initial selection window
of size w×w is centered at the cell with the mean BC values of existing elites, or the nearest
elite if that cell is unoccupied. The window size (w) is a parameter of UC-ME which should be
much smaller than the resolution of the feature map. After the algorithm has been initialized,
the interactive session can begin. During an interactive session, the following steps are repeated
indefinitely, until the designer decides to end it. The algorithm samples D design alternatives, from

Intermediate Outcomes of New Learning Paradigms Research 129 of 197



within the selection window, to be shown to the designer as options to select from, who selects one
preferred design. The selection window is centered at the coordinates of the designer’s last selection.
The algorithm operates for Ne evaluations, selecting parents from within the window. The mutated
offspring are evaluated and placed at their corresponding archive cell, based on their Behavioral
Characterization coordinates, without being constrained by the window. In case an offspring lands
on an already occupied cell, the individual with the highest fitness survives.

The algorithm samples a number of design alternatives to present to the user, from within
the selection window. We only test UC-ME with four alternatives in this work, and examine six
methods for Design Alternatives Sampling (DAS), which are all stochastic to some degree. Random
(AR) samples 4 elites from the window at random. Quadrants (AQ) and Squares (AS) split the
window into 4 equal sections, using the diagonals (AQ) or the x-y axes (AS). One individual is
sampled randomly from each section. Edges (AE) samples one individual at random from each of
the 4 edges of the window. If no individual is on the edge, then the nearest individuals to that
edge are preferred. Corners (AC) samples one individual per corner of the window, or the nearest
individual to that corner (as in AE). In Medoids (AM ) the coordinates of the individuals within
the selection window are used as data points in a k-medoids clustering algorithm, where k = 4 in
this work. The four medoids of these clusters are shown to the user.

We follow the methodology of [12] for our use case of layout generation, where the problem
definition is a set of topological and other constraints, and the output is a geometrical solution
that respects these constraints. We summarize the process for this use case below; more details can
be found in [12]. We chose to focus on this complex problem for two reasons: first, architectural
layouts are characterized by many quantifiable, yet subjective, features, making them ideal for
testing MI-CC methods. Second, this task offers an opportunity to test the proposed methodology
on a constrained domain, showcasing its extensibility to other MAP-Elites variants.

7.4.2. Experimental Results

As a specific case study for architectural layout generation, we set up an experiment with a specific
design specification for a medium-size apartment, algorithm parameters, controllable (artificial)
users to test the algorithm. We also identified a plethora of performance metrics in order to
assess the general and user-specific efficacy of the algorithm. More detail on the parameters of
the algorithm, the performance metrics used, and our implementation of artificial users to test
the performance of our approach can be found in the paper. Results shown below are from 10
independent runs, and significance is established via Student’s t-test with p < 0.05.

Comparisons between DAS methods: Table 41 summarizes a comparison between different
DAS methods. Treating each artificial user as a separate experiment, we evaluate in how many
pairwise comparisons the DAS method had significantly better metrics than another method,
after 10 selections. With 6 DAS methods (i.e. 5 comparison per method) and 12 artificial users,
the maximum number in each cell is 60. The Bonferroni correction [551] is applied for multiple
comparisons. Note that we also tested for all other metrics (pertaining to QD and USC), but there
was almost no difference between the DAS methods.

Table 41 indicates that the Edges and Corners DAS methods have a clear advantage in local
diversity. This is expected, as both methods prioritize individuals that are as far away from the
selection window’s center as possible. Intuitively the Corners method is slightly better at local
diversity as its first choices have the absolute maximum distance of all candidates in the window.
We note that in terms of local mean User Selection Criterion (USC) and USC efficiency there are no
clear winners, with AE , AS and AM being slightly more efficient than other methods. Even before
10 selections, AC tends to reach the edge of the feasible space with the best USC (see Fig. 57)
and after that the window moves erratically—and inefficiently. Based on the findings of Table 41,
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Parameter AR AQ AE AS AC AM

Local Diversity 0 0 48 0 58 13

Local Mean Fitness 17 2 0 2 0 31

Local Mean USC 0 2 2 1 7 0

USC Efficiency 0 10 10 10 7 6

Table 41. Comparison between all DAS Methods for local QD metrics. Values show how many times this DAS
method was significantly better (p < 0.05) than another DAS method in the same experiment. Results are collected
after 10 selections.

Figure 56. Charts display the value of Max and Mean USC of four different artificial users (U1, U4, U9 and U11),
comparing the Quadrants (AC) and Medoids (AM ) DAS methods with the baseline (MAP-Elites without user
control). Values are averaged across 10 different runs and shaded regions capture the 95% confidence interval.

the Corners DAS method has the best performance due to a higher diversity of shown individuals,
while still being fairly efficient. The Medoids method shows fitter individuals to the user than other
DAS methods, while still being somewhat efficient at adapting to the USC. We thus test these DAS
methods against a baseline MAP-Elites.

Comparisons with MAP-Elites: Based on the comparisons between DAS methods, we focus
on comparing the Corners and Medoids methods against a baseline MAP-Elites which does not
consider the user’s taste and performs unguided exploration of the search space. The baseline
implements FI-MAP-Elites [12] and randomly selects random individuals to mutate, alternating
between the two archives.

Our results show that unguided MAP-Elites has better coverage of the problem space and thus
a higher QD score, across all experiments. This is not surprising, as UC-ME drives search towards
specific parts of the problem space (and regions of the feature map), while MAP-Elites covers
as much of the feature map as possible. We also note that there are no differences in terms of
maximum fitness. This is somewhat surprising, since different parts of the feature map (targeted
by different users) may not have equally good fitnesses. It seems that finding a highly fit individual
is not challenging in this use case.

As expected, the unguided exploration of the baseline MAP-Elites performs worse than both
UC-ME versions for maximum and mean USC score of all elites in the archive. The AM method
is less efficient at reaching very high USC scores, compared to AC ; this is not surprising since
the latter moves the selection window toward regions of the problem space with high USC faster.
Mainly due to a higher mean USC, it is not surprising that the mean W-USC is higher for UC-ME
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Figure 57. Behavioral space exploration for the baseline MAP-Elites (bottom row) and UC-ME with Corners DAS
guided by U3 (middle row), for the first 5 selections. Their shared color scale (shown at the bottom) represents
fitness P̄s ∈ [0.6, 1]. The top row shows coverage differences: red cells are discovered only by the baseline, blue cells
are discovered only by UC-ME and gray cells are common. In these figures the x axis is C̄s ∈ [0.44, 0.86] and the y
axis is Ōθ ∈ [0.61, 0.97].

variants compared to the baseline. The higher coverage of the baseline, however, leads to higher
values in the sum of W-USC scores among all elites, similarly to the QD Score.

Figure 56 shows a comparison between the progression of mean USC and max USC for four
indicative artificial users: two consistent (U1, U3) and two that change criteria after 5 selections (U9,
U11). It is evident from Figure 56 that while the unguided MAP-Elites can accidentally find regions
of the problem space with a high USC (i.e. max USC keeps increasing), this is not a guarantee
for the broader population (mean USC may increase or decrease) depending on which parts of the
space are more easily reachable. As expected, UC-ME variants consistently improve both USC
measures as the archive is driven by local QD towards specific parts of the space.

Figure 56 also shows how the algorithms handle abrupt changes in user criteria after the 5th
selection (U9, U11). U9 has a more abrupt change as it suddenly targets the opposite of its previous
criterion, causing a drop in USC. It takes several user interactions to move the window towards
more appropriate regions of the problem space, but after 5 selections from the criterion change,
UC-ME approaches the mean and max USC of the baseline which has been evolving for both high
C̄s and low C̄s (both captured in h9). Given enough time, both methods surpass the baseline
(e.g. after 25 selections). U11 is not as “aggresssive” in changing its mind; indeed, even unguided
MAP-Elites can find individuals with high Ōθ, which is the USC from 6th selection onward. Since
the selection window does not have to retrace its steps, as with U9, the UC-ME methods can find
comparable or slightly better individuals to the baseline after 5 more selections, and much better
individuals given enough time.

The progress of UC-ME can also be visualized through the feature map itself. Figure 57 shows
how coverage changes after each user selection (or the same evaluation threshold for MAP-Elites).
In addition, the figures show in red the selection window of UC-ME as it moves towards higher
USC scores (in this case that of U3). We focus on the AC method, as the most efficient. The top
row of images in Figure 57 illustrates the differences between UC-ME and MAP-Elites exploration
patterns: in gray we see the common cells discovered by both methods, in magenta we see the cells
discovered only by MAP-Elites and in blue we see the cells discovered only by UC-ME. We see that
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cells at higher USC values exclusively belong to UC-ME. The higher coverage of MAP-Elites is due
to most cells occupying lower C̄s and Ōθ values, which are undesirable for U3. Figure 57 also shows
how the selection window moves first towards a higher C̄s; once it reaches the edge of the feasible
space and can not find individuals with higher scores in that direction, it moves towards higher Ōθ

scores. We also see that within the first 3 selections, UC-ME with AC has found the edges of the
feasible space with the highest USC scores and starts moving around fairly haphazardly in that
vicinity, leading to more selections and improved quality of individuals in that specific region of the
problem space.

7.4.3. Relevant publications

• Konstantinos Sfikas, Antonios Liapis and Georgios N. Yannakakis: ”Controllable Exploration
of a Design Space via Interactive Quality Diversity,” in Proceedings of the Genetic and
Evolutionary Computation Conference Companion, 2023. [552].
Zenodo record: https://zenodo.org/record/8054933.

7.4.4. Relevance to AI4media use cases and media industry applications

Our algorithms for Interactive Quality-Diversity search contribute to Use Case 6 (AI for Human
Co-Creation) in terms of a new way of interacting with an evolving computational process while
taking advantage of the important concept of quality-diversity balance. While this work is not
directly related to the application of music creation, the algorithms are domain-agnostic and can be
integrated with generative algorithms for music provided that the quality and diversity of generated
musical artifacts can be somehow evaluated.

7.5. Enhancing Preference Learning with Neuroevolution

Contributing partners: UM

7.5.1. Introduction and methodology

A complementary direction that focuses on merging evolution (even if not QD evolutionary search
specifically) with machine learning pipelines is the work on RankNEAT. In this case, the focus is on
the application domain, i.e. affective computing as the study of emotions, their manifestations and
expressions, and the ways to capture (model) them computationally [553]. For such tasks, the last
few years have seen a rapidly growing interest in the use of neural networks that are able to classify
subjectively defined labels. This family of learning-to-rank or preference learning algorithms [554]
that train neural networks—such as RankNet [555], DeepRank [556] and LambdaMART [13]—yield
good performance by relying primarily on gradient descent methods. Subjectively defined labels,
however, including human demonstrations (e.g. creative tasks, navigation traces and paths) or
human annotations (e.g. of emotion or aesthetics) yield highly complex, deceptive and noisy
loss landscapes for a neural network to learn. Assuming that the plasticity of neuroevolutionary
processes would be beneficial for such loss landscapes, we test the hypothesis that evolutionary
search would be a better optimizer for neural network training in preference learning (PL) tasks
compared to Stochastic Gradient Descent.

To test our hypothesis, we explore the efficacy of neuroevolutionary search in PL tasks by
building on the efficient and popular RankNet [555] architecture and enhancing its search capacity
through neuroevolution. In particular, we introduce a novel algorithm named RankNEAT that relies
on the Siamese neural network architecture of RankNet and learns to rank via NeuroEvolution of
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Augmenting Topologies (NEAT) [557]. Unlike traditional gradient-based PL methods, RankNEAT
resembles the process of plasticity [558], which induces changes in both the coupling strength
and the spatial organization of synapses in biological neural networks. RankNEAT learns to
rank subjectively defined labels with high degrees of accuracy through its ability to optimize the
synaptic parameters such as the network’s weights and the edge architecture simultaneously. We
test RankNEAT (neuroevolution) and compare it against the vanilla RankNet (stochastic gradient
decent) in the task of player affect modeling across three games, using the AGAIN [559] dataset
of arousal-annotated gameplay videos. Player modeling [560] is an important subfield in game
research since it promotes the development of reliable human computer interaction systems and
consequently improves the users’ experience.

Our current approach feeds images of gameplay to a pretrained vision transformer, while the
last fully-connected layer of the network is then trained to predict ordinal values of arousal, using
RankNet or RankNEAT. Results indicate that RankNEAT is superior to SGD (RankNet) in training
PL models of arousal in the majority of experiments performed. Our key findings suggest that
RankNEAT is a viable PL paradigm which achieves comparable or significantly higher performances
to RankNet. In this first experiment, RankNEAT optimizes the edge topology of the networks’ last
layer, resembling an evolutionary feature selection strategy that eliminates unnecessary features
from the observed input space.

7.5.2. Experimental Results

This work aims to leverage neuroevolution for preference learning, assuming that its global opti-
mization strategy may prove beneficial compared to gradient descent. Thus, the performance metric
in our experiments is the accuracy in predicting the ranking between unseen pairs of gameplay
footage windows. Specifically, we use a ten-fold cross-validation strategy for splitting the data into
training and test sets. We follow a leave-X-participants out method for cross-validation, where X
is set between 6 and 11 participants depending on the game and fold. To address the randomness
of weight initialization, genetic operators, and SGD, results are averaged across 5 independent
runs [561] throughout this section (including the 95% confidence interval between these 5 runs).
Throughout the experiments, we perform three tests per game by varying the preference threshold
(Pt) between 0.15, 0.25 and 0.50.

Parameter Tuning: In terms of RankNet, we tune the batch size since the benefits of the
adjustment of this parameter is two-fold. On the one end, the batch size is inversely proportional
to the number of updates per epoch, affecting the speed of the training process. On the other
end, the ratio of learning rate to batch size is a key element influencing the SGD dynamics [562].
When it comes to RankNEAT, there is no single correct choice of parameters for all problems
due to interdependencies between hyperparameters such as population size and crossover [563].
Although the compatibility threshold (ct = 3), elitism per species (eps = 2), and mutation rates
(0, 0.5 for nodes and edges, respectively) were tuned according to some preliminary experiments,
the population size p was adjusted based on a more systematic approach since it influences both
the training time and the robustness of the learner [564].

Figure 58 shows how across all three games large bn values lead to a quick increase in accuracy
for RankNet, but subsequent epochs see a drop as the process overfits to the training set. Evidently,
with small bn values testing accuracy increases more slowly but has the potential to reach higher
values. Based on this finding, we will use bn = 10 as the best parameter in experiments of the
following experiment. Evolution on the other hand understandably benefits from larger populations:
for instance with p = 1000 we see a quick optimization at the first generation but relatively small
improvements after that. Since with p = 100 the test accuracy reaches similar values as with
p = 1000 within a few generations, we choose p = 100 in the experiments reported in the remainder
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Figure 58. Impact of the population and batch size to the performance of the two algorithms.

of this work for its significantly lower computational cost.
RankNEAT versus RankNet: Figure 59 shows that as training progresses RankNet still

is prone to overfitting, even though we chose bn = 10 because it did not overfit during the short
training runs of the previous experiment. In all cases, test accuracy for RankNet drops after
the first 100 iterations, often significantly (e.g. in Figure 59a). On the other hand, evolution
starts performing poorly but steadily increases at later generations. While evolution assesses its
individuals in terms of accuracy in the training set and consistently improves there, it is evident
that the models are also able to perform well (despite some fluctuations between generations) in
the test set. At the same computational effort (1, 500 iterations), RankNEAT yields between 1%
and 5% higher test accuracies from RankNet, on average, across the 9 experiments performed (with
RankNEAT significantly outperforming RankNet in 5 of our 9 tests). Taking the best models
discovered, on average, within these 1, 500 iterations as a whole, we derive the results of Table
42. Here, we see that the results are comparable in several cases, although for the Pirates! game
RankNEAT consistently performs better. It is worth noting that all models regardless of method
underperform in Pirates! We hypothesize that RankNEAT may be able to perform better in more
challenging problems.

Apart from the fact that RankNEAT performs global optimization, we expect that the custom
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Figure 59. Accuracy (and 95% confidence intervals) over evaluations for the RankNEAT and RankNet models. The
black dotted line shows the (random) baseline accuracy of 50%.

Table 42. Best accuracies (%) achieved by each model (RankNEAT vs RankNet) for the Endless, Pirates!, and
Run’N’Gun test-beds, across three preference threshold values, Pt. Values are averaged across 5 independent runs.
The average test accuracy of the best run (of 5) is also included within square brackets.

Pt = 0.5 Pt = 0.25 Pt = 0.15

RankNEAT RankNet RankNEAT RankNet RankNEAT RankNet

Endless 76.2 ±1.5 [77.3] 76.9 ±1.6 [77.9] 70.6 ±1.6 [71.7] 71.5 ±1.6 [72.1] 68.1 ±1.3 [69.2] 68.5 ±1.3 [69.1]

Pirates! 67.8 ±1.9 [69.6] 65.8 ±2.2 [66.9] 65.2 ±1.8 [66.5] 62.6 ±1.6 [63.5] 63.6 ±1.9 [64.7] 61.3 ±1.4 [62.1]

Run’N’Gun 73.6 ±2.5 [76.3] 73.7 ±3.0 [74.8] 70.6 ±2.3 [72.3] 70.2 ±2.3 [71.4] 68.4 ±1.9 [69.5] 67.8 ±2.0 [69.1]

operators that add or delete edges are especially powerful for this problem. Our version of
RankNEAT does not allow for larger topologies to emerge but both speciation and topology changes
in the edges are expected to have an impact. We expect that deleting an edge can act as a feature
elimination mechanism and remove features that do not play a role in predicting arousal. Indeed,
we observe that the best models of Table 42 for RankNEAT have between 5% and 6% fewer edges
than the fully connected SGD network (RankNet with 768 edges). Due to the stochastic nature of
the edge removal operator, this “feature selection” requires several generations to be impactful, but
may largely be responsible for the good performance of the models.

Qualitative findings: Results presented in the previous section show that player arousal can
be modeled based on general-purpose representations such as video frames and, consequently, pixels.
Drawing inspiration from the study of Makantasis et al. [565], we constructed the Class Activation
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Maps (CAM) in order gain insights on which regions of the frames contributed the most to the
final result. We observe that important predictors of arousal across games are regions containing
information about the player, such as the avatar’s position, life, game time, and score. Furthermore,
the regions that contain information about the enemies’ avatars are also very important for the
model. In two out of three games, the model manages to mask out some of the redundant information
in the environment, such as empty space in Endless or the sky background in Run’N’Gun. For
Pirates!, however, such patterns are less clear, and the model precludes the powerups from high
importance regions. This may explain the relatively low accuracy value achieved on this game.

7.5.3. Relevant publications

• Kosmas Pinitas, Konstantinos Makantasis, Antonios Liapis and Georgios N. Yannakakis:
“RankNEAT: Outperforming Stochastic Gradient Search in Preference Learning Tasks,” in
Proceedings of the Genetic and Evolutionary Computation Conference, 2022. [566].
Zenodo record: https://zenodo.org/record/7879220.

7.5.4. Relevance to AI4media use cases and media industry applications

Our RankNEAT algorithm can be applied widely within any affective computing and affect modeling
application; in the context of the AI4Media use cases, it contributes to Use Case 5 (AI for Games)
by providing a tool for modelling the subjective human experiences of players to dynamically adapt
the game itself according to the user’s (predicted) engagement or arousal levels.
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8. Learning to count (Task 3.7) – detailed description

Contributing partners: CNR

“Learning to Count” is a task having to do with supervised learning approaches for training estimators
of quantities. There are two classes of problems that are being addresses in this task, and that may
be usefully viewed as forming two different subtasks, i.e.,

• “Learning to quantify” (LQ – a.k.a. quantification). This subtask is concerned with training
unbiased estimators of class prevalence via supervised learning, i.e., learning to estimate, given
a sample of objects, the percentage of objects that belong to a given class. This task originates
with the observation that “CC”, the trivial method of obtaining class prevalence estimates,
is often a biased estimator, and thus delivers suboptimal quantification accuracy. This bias
is particularly strong when the data exhibits dataset shift, i.e., when the joint distribution
of the dependent and the independent variables is not the same in the training data and
in the unlabelled data for which predictions must be issued. Quantification is important
for several applications, e.g., gauging the collective satisfaction for a certain product from
textual comments, establishing the popularity of a given political candidate from blog posts,
predicting the amount of consensus for a given governmental policy from tweets, or predicting
the amount of readers who will find a product review helpful.

• “Learning to count objects”. This subtask has to do with using machine learning approaches
in order to train estimators of the number of objects (which may be inanimate objects, such
as cars, but may also be animate objects, such as people or animals) in visual media, such as
still images or video frames. Example applications of these techniques are, e.g., counting the
number of cars in a video frame (in order to estimate traffic volume or car park occupancy),
or counting the number of people in a still image (say, in order to estimate the amount of
people taking part in a rally).

8.1. QuaPy: A Python-Based Framework for Learning to Quantify

Contributing partners: CNR

8.1.1. Introduction and methodology

We here present QuaPy, a framework written in Python that provides implementations of the most
important tools for research, development, and experimentation, in LQ. Some of the authors who
have published papers on the field of quantification have also made available software packages
implementing their methods and baselines. However, such software repositories are often tied to
specific applicative domains, are limited to reproducing experimental results from specific papers,
or lack proper documentation and wiki references. While all these implementations represent
valuable resources that demonstrate how to implement and use specific algorithms, to the best of
our knowledge none among the existing software packages strive to define a proper framework that
jointly caters for all steps of the quantification pipeline, from data preparation to the visualization
of results, in a unified way. QuaPy is a flexible and extensible framework that aims at filling this
gap.

A quantifier is defined in QuaPy as a model that can be fit on some training data, so that the
fitted model can estimate class prevalence values for unlabelled data.
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Quantification methods can be classified as belonging to the aggregative, non-aggregative, or
meta classes. Aggregative methods are characterized by the fact that quantification is obtained as
an aggregation of the outputs returned by a classification process for the individual documents.
Non-aggregative methods analyse instead the sample of unlabelled documents as a whole, without
resorting to the classification of individual data items. Finally, meta-quantifiers are built on
top of other quantifiers, and generate their predictions by analysing the predictions made by
the underlying quantifiers. QuaPy provides implementations of aggregative methods (such as
Classify and Count, Adjusted Classify and Count, Probabilistic Classify and Count, Probabilistic
Adjusted Classify and Count, and Forman’s variants of ACC, including X, MAX, T50, and
Median Sweep). Other important aggregative methods being provided are the Saerens-Latinne-
Decaestecker method (SLD), HDy, and other methods based on Explicit Loss Minimization, such
as SVM(KLD), SVM(NKLD), SVM(Q), SVM(AE), and SVM(RAE). Currently, QuaPy does not
provide implementations of non-aggregative quantifiers, but provides implementations of quantifier
ensembles, including the well-known ones called Averaging, Training Prevalence, Distribution
Similarity, and Performance. QuaPy also provides an implementation of a deep-learning-based
method, i.e., QuaNet.

QuaPy allows a set of binary quantifiers, one for each class, to be assembled into a single-label
multi-class quantifier, by adopting a “one-vs-all” strategy. This takes the form of computing
prevalence estimates independently for each class (i.e., via binary quantification) via independently
trained binary quantifiers, and then normalizing the resulting vector of prevalence values (via
L1-normalization) so that these values sum up to one.

QuaPy makes available a number of datasets that have been used for experimentation purposes
in the quantification literature, and specifically:

• Reviews: a collection of 3 datasets of customer reviews. All reviews are classified according
to (binary) sentiment polarity.

• Twitter Sentiment: 11 datasets of tweets labelled by sentiment. Similarly to the Reviews
datasets, these are high-dimensional datasets. These datasets use three sentiment labels
(Positive, Neutral, Negative), and are thus useful for testing non-binary quantification methods.

• UCI: 33 binary datasets from the UCI Machine Learning repository. Differently from the
previous datasets, these non-textual datasets are low-dimensional (with dimensionalities
ranging from 3 to 256), thus providing diversity, in terms of the type of data, with respect to
the previous two sets of datasets.

Several error measures have been proposed in the literature, and QuaPy implements a rich set of
them, such as absolute error, relative absolute error, squared error, KL Divergence, and normalized
KL Divergence. Functions which return the average values of the same measures across different
samples are also available.

An environment for experimenting with quantification must not only be endowed with several
evaluation measures, but it also must allow the experimentation to be carried out according to
different evaluation protocols. QuaPy implements both the Natural Prevalence Protocol (NPP)
and the Artificial Prevalence Protocol (APP). In the NPP, the test set is sampled randomly, so that
most samples exhibit class prevalence values not to different from those of the test set. In the APP,
the test set is instead sampled in a controlled way, in order to generate samples characterized by
different, pre-specified prevalence values, so as to cover, with uniform probability, the full spectrum
of class prevalence values. In the APP, the user specifies the number of equidistant points to be
generated from the interval [0,1]. For example, if n prevs=11 then, for each class, the prevalence
values [0.0, 0.1, ..., 0.9, 1.0] will be used. This means that, for two classes, the number of different

Intermediate Outcomes of New Learning Paradigms Research 139 of 197



sampled prevalence values will be 11 (since, once the prevalence of one class is determined, the
other one is also).

Quantification has long been regarded as a by-product of classification, which means that the
model selection (i.e., hyperparameter optimization) strategies customarily adopted in quantification
have simply been borrowed from classification. It has been argued that specific model selection
strategies should be adopted for quantification. That is, model selection strategies for quantification
should minimize quantification-oriented loss measures, and be carried out in a variety of scenarios
exhibiting different degrees of distribution shift.

QuaPy supports quantification-oriented model selection by implementing a grid-search explo-
ration over the space of hyperparameter combinations that evaluates each such combination by
means of a given quantification-oriented error metric, and according to either the APP (the default
value) or the NPP.

QuaPy implements some plotting functions that can be useful in displaying the performance of
the tested quantification methods:

• Diagonal plot: The diagonal plot shows a very insightful view of the quantifier’s performance,
i.e., it plots the predicted class prevalence (on the y-axis) against the true class prevalence
(on the x-axis), averaging across all samples characterized by the same true prevalence.
Unfortunately, this visualization device is inherently limited to binary quantification (one can
simply generate as many diagonal plots as there are classes, though, by indicating which class
should be considered the target of the plot).

• Error-by-Shift plot: This plot displays the quantification error made by a quantifier as a
function of the distribution shift between the training set and the test sample, averaging across
all samples characterized by the same amount of distribution shift. Both quantification error
and distribution shift can be measured in terms of any measure among those implemented in
QuaPy, and can be computed and plotted both in the binary case and in the non-binary case.

• Bias-Box plot: This plot aims at displaying, by means of box plots, the bias that any
quantifier exhibits with respect to the training class prevalence values. The bias can be
broken down into different bins, e.g., distinguishing the bias in cases of low, medium, and
high prevalence shift.

In conclusion, the goal of QuaPy, a Python-based package that makes available a rich set of
quantification methods, tools, experimental protocols, and datasets, is that of supporting an efficient
and scientifically correct experimentation of quantification methods. We think that QuaPy will
be of help to machine learning researchers that work on developing new quantification algorithms,
as it provides them with many baselines to compare against, datasets to test their methods on,
and tools that implement all the typical steps of quantification-based experimentation, from data
preparation to the visualization of results. We think that QuaPy will be of help also to researchers
and practitioners in other disciplines who simply need to apply quantification in their own work,
as it provides them with a streamlined workflow, a wide choice of different approaches, and quick
access to the package thanks to the support of installation based on pip. QuaPy is an open-source
project, licensed under the BSD-3 licence; its repository will be updated following the advances in
quantification research, and it is open to contributions of new methods, tools, and datasets.

For more details on this work please check the full paper [567].

8.1.2. Relevant publications

• Alejandro Moreo, Andrea Esuli, and Fabrizio Sebastiani. QuaPy: A Python-based framework
for quantification. Proceedings of the 30th ACM International Conference on
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Knowledge Management (CIKM 2021), Gold Coast, AU, pp. 4534–4543. [567].
The paper appears on Zenodo at https://zenodo.org/record/5560941.

8.1.3. Relevant software/datasets/other outcomes

• The QuaPy framework for LQ can be found at https://github.com/HLT-ISTI/QuaPy.

8.1.4. Relevance to AI4media use cases and media industry applications

Learning to quantify is important for the media industry, since it allows to monitor temporal trends
of indicators relevant to journalism, such as public opinion on specific topics (see Section 8.3.5) and
the frequency of journalistic news belonging to specific classes (see Section 8.4.5). The software
library described in this section makes a strong contribution to the research agenda of learning to
quantify and to the applicability of the related techniques in the media sector (among others), by
making state-of-the-art LQ software publicly available to researchers and practitioners alike.

8.2. Ordinal Quantification through Regularization

Contributing partners: CNR

8.2.1. Introduction and methodology

The vast majority of the quantification methods proposed so far deal with the quantification task in
which Y is a plain, unordered set; this essentially means the standard binary (n = 2) or multiclass
(n > 2) quantification tasks. Very few methods, instead, deal with OQ, the task of performing
quantification on a set of n > 2 classes on which a total order “≺” is defined. Ordinal quantification
is important, though, because ordinal scales arise in many applications, especially ones involving
human judgments. For instance, in a customer satisfaction endeavour one may want to estimate how
a set of reviews of a certain product is distributed across the set of classes Y ={1Star, 2Stars, 3Stars,
4Stars, 5Stars}, while a social scientist might want to find out how inhabitants of a certain region
are distributed in terms of their happiness with health services in the area (Y ={VeryUnhappy,
Unhappy, Happy, VeryHappy}).

In this work, we contribute to the field of OQ in a number of ways.
First, we develop and make publicly available two datasets for evaluating OQ algorithms, one

consisting of textual product reviews and one consisting of telescope observations. Both datasets
are from scenarios in which OQ arises naturally, and are generated according to a strong, well-tested
protocol for the generation of datasets oriented to the evaluation of quantifiers. This contribution
fills a gap, because datasets previously used for the evaluation of OQ were not adequate.

Second, we perform an extensive experimental comparison (using the two previously mentioned
datasets) among the most important OQ algorithms that have been proposed in the literature;
this is important, since some of them had been compared with each other on a testbed that was
likely inadequate, while some other algorithms had been developed independently (i.e., in the
unawareness) of the previous ones, and had thus never been compared with them.

Third, we propose new OQ algorithms, which introduce regularization into existing quantification
methods. We experimentally compare our proposals with the existing state of the art and make the
corresponding code publicly available.

We use the following notation. By x ∈ X we indicate a data item drawn from a domain X , and
by y ∈ Y we indicate a class drawn from a set of classes Y = {y1, ..., yn}, also known as a codeframe,
on which a total order “≺” is defined. The symbol σ denotes a sample, i.e., a non-empty set of
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unlabelled data items in X , while L ⊂ X × Y denotes a set of labelled data items (x, y) which we
will use for training our quantifiers. By pσ(y) we indicate the true prevalence of class y in sample σ,
while by p̂Mσ (y) we indicate an estimate of this prevalence as obtained by a quantification method
M that receives σ as an input, where 0 ≤ pσ(y), p̂

M
σ (y) ≤ 1 and

∑
y∈Y pσ(y) =

∑
y∈Y p̂Mσ (y) = 1.

We use as baselines for our methods some important multiclass quantification methods which do
not take ordinality into account. These methods provide the foundation for their ordinal extensions
which we propose in this work.

These multiclass methods are CC, Probabilistic Classify and Count (PCC), Adjusted Classify
and Count (ACC) [568], Probabilistic Adjusted Classify and Count (PACC) [569], and the Saerens-
Latinne-Decaestecker method (SLD) method [570].

We use as additional baselines some important methods proposed within experimental physics,
among which quantification methods

Similar to the adjustment of ACC, experimental physicists have proposed adjustments that
solve for p the system of linear equations that ACC and PACC solve. However, these “unfolding”
quantifiers differ from ACC in two regards.

The first aspect is that the hard classifier h of that ACC and PACC use is often (although not
always) replaced by a partition c : X → {1, . . . , d} of the feature space, so that

[q]i =
1

|σ|
· |{x ∈ σ : c(x) = i}|

Mij =
|{(x, y) ∈ V : c(x) = i, y = yj}|

|{(x, y) ∈ V : y = yj}|

(17)

and M ∈ Rd×n. Another possible choice for c is to partition the feature space by means of a decision
tree; in this case (i) it typically holds that d > n, (i) and c(x) represents the index of a leaf node.

The second aspect is that “unfolding” quantifiers regularize their estimates in order to promote
solutions that are the most plausible solutions in OQ. Specifically, these methods employ the
assumption that neighbouring classes have similar prevalence values; depending on the algorithm,
this assumption is encoded in different ways. This assumption is quite reasonable, since the
“smoothness” of the histogram that represents the distribution is arguably the only aspect that
differentiates an ordinal distribution from a non-ordinal multiclass distribution.

The Regularized Unfolding (RUN) method has been used by physicists for decades. It estimates
the vector p of class prevalence values by minimizing a loss function L : Rn → R over the estimate
p̂; L consists of two terms, i.e., a negative log-likelihood term to model the error of p̂, and a
regularization term to model the plausibility of p̂.

The second term of L is a Tikhonov regularization term 1
2 (Cp )

2
. This term introduces an

inductive bias towards solutions which are plausible with respect to ordinality. The Tikhonov
matrix C is chosen in such a way that term 1

2 (Cp )
2
measures the smoothness of the histogram

that represents the distribution, i.e.,

1

2
(Cp )

2
=

1

2

n−1∑
i=2

(−[p]i−1 + 2[p]i − [p]i+1)
2

(18)

Combining the likelihood term and the regularization term, the loss function of RUN is given by

L(p̂; M,q, τ,C) =

d∑
i=1

(
M⊤

i p̄− [q̄]i · ln(M⊤
i p̄)

)
+

τ

2
(Cp̂ )

2
(19)

and an estimate p̂ is chosen by minimizing L numerically over p̂. Here, τ ≥ 0 is a hyperparameter
which controls the impact of the regularization.
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The Iterative Bayesian Unfolding (IBU) method revolves around an expectation maximization
approach with Bayes’ theorem, and thus has a common foundation with the SLD method. The
E-step and the M-step of IBU can be written as the single, combined update rule

p̂(k)σ (yi) =

d∑
j=1

Mij · p̂(k−1)
σ (yi)∑n

l=1 Mlj · p̂(k−1)
σ (yl)

[q]i (20)

In this work we develop algorithms which extend ACC, PACC, and SLD with the regularizers
from RUN and IBU. Through this extension, we obtain o-ACC, o-PACC, and o-SLD, the OQ
counterparts of these well-known non-ordinal quantification algorithms. In doing this, since we
employ the regularizers but not any other aspect of RUN and IBU, we preserve the general
characteristics of ACC, PACC, and SLD. In particular, our methods continue to work with classifier
predictions, i.e., we do not employ the categorical feature representation from Equation 17, which
RUN and IBU employ, and we do not use the Poisson assumption of RUN. Therefore, our extensions
are “minimal”, in the sense that they directly address ordinality without introducing any undesired
side effects in the original methods.

o-ACC and o-PACC, our ordinal extensions to ACC and PACC build on the finding reported
in [571, Theorem 4.1], which states that the solution of the equation on which ACC and PACC
are based corresponds to a minimum-norm least-squares solution. Namely, among all least-squares
solutions p̂LSq = argminp∥q−Mp∥22, which by themselves do not need to be unique, the solution
to that equation is the one that also minimizes the quadratic norm ∥p∥22. The resulting equation is
thus conceptually similar, although not necessarily equal, to a regularized estimate which employs
the quadratic norm for regularization. In particular, both equations simultaneously minimize a
least-squares objective and the norm of their candidate solutions. Note that the regularization
function herein is, unlike the regularization from RUN, unrelated to the ordinal nature of the
classes.

To obtain the true OQ methods o-ACC and o-PACC, we replace the minimum-norm regu-
larization with the regularization term of RUN (see Equation 18). Through this replacement,
we minimize the same objective function as ACC and PACC, i.e., a least-squares objective, but
regularize towards solutions that we deem more plausible for OQ.

o-SLD, our ordinal variant o-SLD leverages the ordinal regularization of IBU in SLD. Namely,
our method does not use the latest estimate directly as the prior of the next iteration, but a
smoothed version of this estimate. To this end, we fit a low-order polynomial to each intermediate
estimate p̂(k) and use a linear interpolation between this polynomial and p̂(k) as the prior of the
next iteration. Like in IBU, we consider the interpolation factor as a hyperparameter through
which the strength of this regularization is controlled.

8.2.2. Experimental results

We conduct our experiments on two large datasets that we have generated for the purpose of
this work, and that we make available to the scientific community. The first dataset, named
Amazon-OQ-BK, consists of product reviews labelled according to customer’s judgments of quality,
i.e., 1Star to 5Stars. The second dataset, Fact-OQ, consists of telescope observations labelled by
one of 12 totally ordered classes. Hence, these data sets originate in practically relevant and diverse
applications of OQ.

In our main experiment, we compare our proposed methods o-ACC, o-PACC, and o-SLD, with
several baselines, i.e., (i) the existing OQ methods OQT [572] and ARC [573]; (ii) the “unfolding”
OQ methods IBU and RUN; (iii) the non-ordinal methods CC, PCC, ACC, PACC, SLD. We
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Table 43. Average performance in terms of NMD (lower is better). For each data set (Amazon-OQ-BK and
FACT-OQ), we present the results of the two protocols APP and APP-OQ. The best performance in each column is
highlighted in boldface. According to a Wilcoxon signed rank test with p = 0.01, all other methods are significantly
different from the best method.

method
Amazon-OQ-BK Fact-OQ

APP APP-OQ APP APP-OQ

CC .0526 ± .019 .0344 ± .013 .0534 ± .012 .0494 ± .011

PCC .0629 ± .022 .0440 ± .017 .0651 ± .017 .0621 ± .017

ACC .0229 ± .009 .0193 ± .007 .0582 ± .028 .0575 ± .028

PACC .0209 ± .008 .0176 ± .007 .0791 ± .048 .0816 ± .049

SLD .0172 ± .007 .0154 ± .006 .0373 ± .010 .0355 ± .009

OQT .0775 ± .026 .0587 ± .027 .0746 ± .019 .0731 ± .020

ARC .0641 ± .023 .0477 ± .015 .0566 ± .014 .0568 ± .016

IBU .0253 ± .010 .0197 ± .007 .0213 ± .005 .0187 ± .004

RUN .0252 ± .010 .0198 ± .007 .0222 ± .006 .0194 ± .005

o-ACC .0229 ± .009 .0188 ± .007 .0274 ± .007 .0230 ± .006

o-PACC .0209 ± .008 .0174 ± .007 .0230 ± .006 .0178 ± .004

o-SLD .0173 ± .007 .0152 ± .006 .0327 ± .008 .0289 ± .007

compare these methods on the Amazon-OQ-BK and FACT-OQ datasets, and under the APP
and APP-OQ protocols.

Each method is allowed to tune the hyperparameters of its embedded classifier using the samples
of the validation set. We use logistic regression on the Amazon-OQ-BK dataset and probability-
calibrated decision trees on the Fact-OQ dataset; this choice of classifiers is motivated by common
practice in the fields where these data sets originate, and from our own experience that these
classifiers work well on the respective type of data. After the hyperparameters of the classifier are
optimized, we apply each method to the samples of the test set.

The results of this experiment are summarized in Table 43. These results show that our proposed
methods outperform the competition on both data sets if the ordinal APP-OQ protocol is employed.
More specifically, o-SLD is the best method on Amazon-OQ-BK while o-PACC is the best method
on Fact-OQ. Moreover, o-SLD is consistently better or equal to SLD, o-ACC is consistently better
or equal to ACC, and o-PACC is consistently better or equal to PACC, also in the standard APP
protocol in which smoothness is not imposed.

For more details on this work and additional experiments please check the full paper [574].

8.2.3. Relevant publications

• Mirko Bunse, Alejandro Moreo, Fabrizio Sebastiani, Martin Senz. Ordinal quantification
through regularization. Proceedings of the 33rd European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML/PKDD 2022), Grenoble, FR, Volume V, pp. 36–52. [574]
The paper appears on Zenodo at https://zenodo.org/record/7090067.

• Mirko Bunse, Alejandro Moreo, Fabrizio Sebastiani, Martin Senz. Ordinal quantification
through regularization. Presented at the LWDA Workshop on Knowledge Discovery,
Data Mining and Machine Learning (LWDA 2022), Hildesheim, DE. (Oral presentation
only, no paper was produced.) [575]
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8.2.4. Relevant software/datasets/other outcomes

• The code and the datasets for reproducing the results reported in [574] are available at
https://github.com/mirkobunse/ecml22 (code), https://zenodo.org/record/7090095,
and https://zenodo.org/record/7081208 (datasets).

8.2.5. Relevance to AI4media use cases and media industry applications

Ordinal quantification, and the work that CNR has carried out on it, has important applicative
potential in the media industry, especially in the field of monitoring public opinion and its trends.
Indeed, since opinion is often expressed on an ordinal scale (as in, e.g., product reviews, which are
often evaluated on an ordinal five-point scale), monitoring such trends requires the ordinal nature
of the scale to be taken into account in the quantification algorithm, so as to deliver increased
prediction accuracy.

8.3. Tweet Sentiment Quantification: An Experimental Re-Evaluation

Contributing partners: CNR

8.3.1. Introduction and methodology

In a 2016 paper, Gao and Sebastiani [14] (hereafter: [GS2016]) have argued that, when the
objects of analysis are tweets, the vast majority of sentiment classification efforts actually have
quantification as their final goal, since hardly anyone who engages in sentiment classification of
tweets is interested in the sentiment conveyed by a specific tweet. We call the resulting task
tweet sentiment quantification. [GS2016] presented an experimental comparison of 8 important
quantification methods on 11 Twitter datasets annotated by sentiment, with the goal of assessing
the strengths and weaknesses of the various methods for tweet sentiment quantification. That paper
became then influential and a standard reference on this problem, and describes what is currently
the largest comparative experimentation on tweet sentiment quantification.

In this work, we argue that the experimental results obtained in [GS2016] are unreliable, as a
result of the fact that the experimental protocol used in that paper was weak. We thus present
new experiments in which we re-test all 8 quantification methods originally tested in [GS2016]
(plus some additional ones that have been proposed since then) on the same 11 datasets used in
[GS2016], this time using a now consolidated and much more robust experimental protocol. These
new experiments (whose number is 5,775 times larger than the number of experiments conducted
in [GS2016], even without counting the experiments on new quantification methods that had not
been considered in [GS2016]) return results dramatically different from those obtained in [GS2016],
and thus give us a new, more reliable picture of the relative merits of the various methods on the
tweet sentiment quantification task.

There are two main experimental protocols that have been used in the literature for evaluating
quantification; we will here call them the Artificial-prevalence Protocol (APP) and the Natural-
prevalence Protocol (NPP).

The APP consists of taking a standard dataset8, split into a training set L of labelled items and
a set U of unlabelled items, and conducting repeated experiments in which either the training set
prevalence values or the test set prevalence values of the classes are artificially varied by means of

8By “a standard dataset” we here mean any dataset that has originally been assembled for testing classification
systems; any such dataset can be used for testing quantification systems too.
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subsampling (i.e., by removing random elements of specific classes until the desired class prevalence
values are obtained). In other words, subsampling is used either to generate s training samples
L1 ⊆ L, ..., Ls ⊆ L, or to generate t test samples U1 ⊆ U , ..., Ut ⊆ U , or both, where the class
prevalence values of the generated samples are predetermined and set in such a way as to generate
a wide array of distribution drift values. This is meant to test the robustness of a quantifier
(i.e., of an estimator of class prevalence values) in scenarios characterized by class prevalence
values very different from the ones the quantifier has been trained on. For instance, in the binary
quantification experiments carried out in [568], given codeframe Y = {y1, y2}, repeated experiments
are conducted in which examples of either y1 or y2 are removed at random from the test set in
order to generate predetermined prevalence values for y1 and y2 in the samples U1, ..., Ut thus
obtained. In this way, the different samples are characterised by a different prevalence of y1 (e.g.,
pU (y1) ∈ {0.00, 0.05, ..., 0.95, 1.00}) and, as a result, by a different prevalence of y2. This can be
repeated, thus generating multiple random samples for each chosen pair of class prevalence values.
Analogously, random removal of examples of either y1 or y2 can be performed on the training set,
thus bringing about training samples with different values of pL(y1) and pL(y2).

This protocol had been criticised because it may generate samples exhibiting class prevalence
values very different from the ones of the set from which the sample was extracted, i.e., class
prevalence values that might be hardly plausible in practice. As a result, one may resort to the NPP,
which consists instead of conducting experiments on “real” datasets only, i.e., datasets consisting
of a training set L and a test set U that have been sampled IID from the data distribution. In
other words, no extraction of samples from the dataset is performed by perturbing the original class
prevalence values; instead, a single train-and-test run is performed, using the original training set L
as the training sample L and the original test set U as the test sample U .

The experimentation conducted by [GS2016] on tweet sentiment quantification is indeed an
example of the NPP, since it relies on 11 “original” datasets of tweets annotated by sentiment,
i.e., no extraction of samples at prespecified values of class prevalence was performed. However,
while in classification an experiment involving 11 different datasets probably counts as large and
robust, this does not hold in quantification if only one test per dataset is conducted. The reason is
that, since the objects of quantification are sets of documents in the same way that the objects of
classification are individual documents, testing a quantifier on just 11 sets of documents should be
considered, from an experimental point of view, a drastically insufficient experimentation, akin to
testing a classifier on 11 documents only.

Unfortunately, finding a large enough set (say, 1,000 or more) of datasets sampled IID from the
respective data distributions is nearly impossible; this indicates that extracting a large enough num-
ber of samples from the same dataset is probably the only way to go for evaluating quantification.9

Indeed, most recent quantification works (e.g., [577–585]) adopt the APP, and not the NPP.
As a result, we should conclude that the experimentation conducted in [GS2016] is weak, and that

the results of that experimentation are thus unreliable. We thus re-evaluate the same quantification
methods that [GS2016] tested (plus some other more recent ones) on the same datasets, this time
following the by now consolidated and much more robust APP; in our case, this turns out to involve
5,775 as many experiments as run in the original study, even without considering the experiments
on quantification methods that had not been considered in [GS2016]).

9An example set of experiments that use the NPP on a large enough set of test sets is the one reported in [576],
where the authors test quantifiers on 52× 99=5,148 binary test sets. This results from the fact that, in using the
RCV1-v2 test collection, they consider the 99 RCV1-v2 classes and bin the RCV1-v2 791,607 test documents in 52
bins (each corresponding to a week’s worth of data, since the RCV1-v2 data span one year) of 15,212 documents each
on average. However, it is not always easy to find test collections with such a large amount of classes and annotated
data, and this limits the applicability of the NPP. It should also be mentioned that, as Card and Smith [577] noted,
the vast majority of the 5,148 RCV1-v2 binary test sets used in [576] exhibit very little distribution shift, which
makes the testbed used in [576] unchallenging for quantification methods.
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8.3.2. Experimental results

We have carried out experiments in order to re-assess the merits of different quantification methods
under the lens of the APP. We have conducted all these experiments using QuaPy10, a software
framework for quantification written in Python that we have developed and made available through
GitHub. QuaPy was presented in Section 8.1.11 As the measures of quantification error we use
Absolute Error (AE) and Relative Absolute Error (RAE).

The quantification methods used in [GS2016], that we also use in this paper, are Classify
and Count (CC), Adjusted Classify and Count (ACC), Probabilistic Classify and Count (PCC),
Probabilistic Adjusted Classify and Count (PACC), the Saerens-Latinne-Decaestecker method
(SLD), SVM(KLD), SVM(NKLD), and structured output methods such as SVM(Q). We also
consider other structured output methods such as SVM(AE) and SVM(RAE), and ensemble
methods such as E(PACC)Ptr and E(PACC)AE. We also report results for HDy and QuaNet.

The datasets on which we run our experiments are the same 11 datasets on which the experiments
of [GS2016] were carried out. [GS2016] makes these datasets available already in vector form; we
refer to [GS2016] for a fuller description of these datasets.

In [586], detailed experimental results are reported, including results of a paired sample, two-
tailed t-test that we have run, at different confidence levels, in order to check if other methods are
different or not, in a statistically significant sense, from the best-performing one.

An important aspect that emerges from the results is that the behaviour of the different
quantifiers is fairly consistent across our 11 datasets; in other words, when a method is a good
performer on one dataset, it tends to be a good performer on all datasets. Together with the fact
that we test on a large set of samples, and that these are characterised by values of distribution
shift across the entire range of all possible such shifts, this allows us to be fairly confident in the
conclusions that we draw from these results.

A second observation is that three methods (ACC, PACC, and SLD) stand out, since they
perform consistently well across all datasets and for both evaluation measures. In particular, SLD
is the best method for 7 out of 11 datasets when testing with AE, and for all 11 datasets when
testing with RAE. PACC also performs very well, and is the best performer for 3 out of 11 datasets
when testing with AE. The fact that both ACC and PACC tend to perform well shows that the
intuition according to which CC predictions should be “adjusted” by estimating the disposition of
the classifier to assign class yi when class yj is the true label, is valuable and robust to varying
levels of distribution shift. The same goes for SLD, although SLD “adjusts” the CC predictions
differently, i.e., by enforcing the mutual consistency between the posterior probabilities and the
class prevalence estimates.

By contrast, these results show a generally disappointing performance on the part of all
methods based on structured output learning, i.e., on the SVMperf learner. Note that the fact that
SVM(KLD), SVM(NKLD), SVM(Q) optimise a performance measure different from the one used
in the evaluation (AE or RAE) cannot be the cause of this suboptimal performance, since this
latter also characterises SVM(AE) when tested with AE as the evaluation measure, and SVM(RAE)
when tested with RAE.

In conclusion, the results of our experiments show that a re-evaluation of the relative merits of
different quantification methods on the tweet sentiment quantification task was necessary. We have
shown that the experimentation previously conducted in [GS2016] was weak, since the experimental
protocol that was followed led the authors of this study to conduct their evaluation on a radically
insufficient amount of test data points. We have then conducted a re-evaluation of the same methods
on the same datasets according to a more robust, and now widely accepted, experimental protocol,

10https://github.com/HLT-ISTI/QuaPy
11Please see branch tweetsent
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which has led to an experimentation on a number of datapoints 5,775 times larger than the one of
[GS2016]. In addition to these experiments, we have also tested some further methods, some of
which had appeared after [GS2016] was published.

This experimentation has proven necessary for at least two reasons. The first reason is that
some evaluation functions (such as KLD and NKLD) that had been used in [GS2016] are now
known to be unsatisfactory, and their use should thus be deprecated in favour of functions such
as AE and RAE. The second reason, and probably the most important one, is that the results
of our re-evaluation have radically disconfirmed the conclusions originally drawn by the authors
of [GS2016], showing that the methods (e.g., PCC) that had emerged as the best performers in
[GS2016] tend to behave well only in situations characterised by very low distribution shift; on the
contrary, when distribution shift increases, other methods (such as SLD) are to be preferred. In
particular, our experiments do justice to the SLD method, which had obtained fairly bland results
in the experiments of [GS2016], and which now emerges as the true leader of the pack, thanks to
consistently good performance across the entire spectrum of distribution shift values.

For more details on this work and additional experiments please check the full paper [586].

8.3.3. Relevant publications

• Alejandro Moreo and Fabrizio Sebastiani. Tweet sentiment quantification: An experimental
re-evaluation. PLOS ONE 17(9): 1–23, 2022. [586].
The paper appears on Zenodo at https://zenodo.org/record/6366468.

8.3.4. Relevant software/datasets/other outcomes

• The code and the datasets for reproducing the results reported in [586] are available at
https://github.com/HLT-ISTI/QuaPy/tree/tweetsent (code) and https://zenodo.org/

record/4255764 (datasets).

8.3.5. Relevance to AI4media use cases and media industry applications

Tweet sentiment quantification, and the work that CNR has carried out on it, has important
applicative potential in the media industry, especially in the field of monitoring public opinion (e.g.,
on a political candidate, on a governmental policy, etc.). Plots of the trends of public opinion often
appear on media portals (e.g., public opinion on one or more presidential candidates, that feature
on media portals right before preseidential elections), and the presented techniques allow these
plots to be generated from Twitter with an accuracy higher than it can be obtained via traditional
classification techniques.

8.4. Multi-Label Quantification

Contributing partners: CNR

8.4.1. Introduction and methodology

In this work, we describe and compare many different (aggregative) MLQ methods. In order to
better assess their relative merits, we subdivide them into four different groups, depending on
whether the correlations between different classes are exploited in the classification phase (i.e., by
the classifier which provides input to an aggregative quantifier), or in the aggregation phase (i.e., in
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the phase in which the individual predictions are aggregated), or in both phases, or in neither of
the two phases.

The first and simplest such group is that of MLQ methods that treat each class as completely
independent, and thus solve n independent binary quantification problems. We call such an
approach BC+BA (“binary classification followed by binary aggregation”), since in both the
classification phase and the aggregation phase we treat the multi-label task as n independent binary
tasks; we thus disregard, in both phases, the correlations among classes when predicting their
class prevalence values. This is similar to the Binary Relevance (BR) problem transformation for
classification, and consists of transforming the multi-label dataset L into a set of binary datasets
L1, . . . , Ln in which Li = {(x,1[yi ∈ Y ]) : (x, Y ) ∈ L} is labelled according to Yi = {0,1}, since
the datapoints are relabelled using the indicator function 1[z] that returns 1 (the minority class) if
z is true or 0 (the majority class) otherwise. BC+BA methods then train one quantifier qi for
each training set Li. At inference time, the prevalence vector for a given sample σ is computed
as pBC+BA

σ = (pq1σ (1), pq2σ (1), . . . , pqnσ (1)). Although this is technically a multi-label quantification
method, BC+BA is actually the trivial solution that we expect any truly multi-label quantifier to
beat.

A second, less trivial group is that of MLQ methods based on the use of binary aggregative
quantifiers that receive input from (truly) multi-label classifiers. Methods in this group consist of n
independent binary aggregative quantifiers that rely on the (hard or soft) predictions returned by
a classifier natively designed to tackle the multi-label problem. Each binary quantifier takes into
account only the predictions for its associated class, disregarding the predictions for the other classes.
This represents a straightforward solution to the MLQ problem, as it simply combines already
existing technologies (binary aggregative quantifiers built via off-the-shelf methods and (truly)
multi-label classifiers built via off-the-shelf methods). In such a setting, the classification stage is
influenced by the class-class correlations, but the quantification methods in charge of producing
the class prevalence estimates for each class do not pay attention to any such correlation, and are
disconnected from each other. Since methods in this group will consist of a (truly) multi-label
classification phase followed by a binary quantification phase, we will refer to this group of methods
as MLC+BA.

We next propose a third group of MLQ systems, i.e., ones consisting of natively multi-label
quantification methods that receive ad input the outputs of n independent binary classifiers.

Methods like these represent a non-trivial novel solution for the field of quantification, because
no natively multi-label quantification method has been proposed so far in the literature; we here
propose some such methods. In order to clearly evaluate the merits of such a multi-label aggregation
phase, as the underlying classifiers we use independent binary classifiers only. For this reason, we
will call this group of methods BC+MLA.

The methods in the fourth and last group that we consider consist of combinations of a (truly)
multi-label classification method and a (truly) multi-label quantification method among our newly
proposed ones; this allows to exploit the class dependencies both at the classification stage and at
the aggregation stage. We call this group of methods MLC+MLA.

In order to generate members of these four classes, we already have off-the-shelf components for
implementing the binary classification, multi-label classification, and binary aggregation phases,
but we have no known method from the literature to implement multi-label aggregation; in the next
sections we propose two novel methods of this type, one based on exploiting class-class correlations
at the aggregation stage by means of regression, and the other based on exploiting class-class
correlations at the aggregation stage by means of label powersets.
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8.4.2. Experiments

We have carried out a number of experiments in order to evaluate the performance of the different
methods for MLQ that we have presented in the previous sections. Our goal here is to provide an
answer to the question: “Which among the four groups of multi-label quantification methods tends
to perform best?”

To this aim, we choose one representative instance from each group, and carry out the experiments
using all the datasets. We perform this choice by combining the following components:

• As the binary classification method, we choose logistic regression, and use the implemen-
tation of it available from scikit-learn.12 We consider LR a good choice, given that it is
a probabilistic classifier that already provides fairly well calibrated posterior probabilities
(which is of fundamental importance in PCC, PACC, and SLD), and given that, as indicated
by previously reported results [567], it tends to perform well. A set of LR classifiers are used
when testing the BR method.

• As the multi-label classification method, we adopt stacked generalization [587] (SG). We
use our own implementation (since the implementation of stacked generalization available from
scikit-learn only caters for the single-label case)13, that relies on 5-fold cross-validation
to generate the intermediate representations (in the form of posterior probabilities) given as
input to the meta-learner, concatenated with the original input features. The base members of
the ensemble consist of binary Likelihood Regret classifiers as implemented in scikit-learn.

• As the binary aggregation method Q, we experiment with methods CC, PCC, ACC,
PACC, SLD. For all these methods we use the implementations made available in the QuaPy
open-source library [567].14

• As the multi-label aggregation method, we use the regressor-based strategy for quan-
tification that we dub RQ. We implement this method as part of the QuaPy framework.
For training the base quantifier q we experiment again with all methods such as CC, PCC,
ACC, PACC, SLD, while as the internal regressor which receives its input from the base
quantifier q we use linear Support Vector Regression, for which we use the scikit-learn
implementation.15 As the held-out validation set LR needed for training the regressor we use
a set consisting of 40% of the training datapoints, chosen via iterative stratification [588, 589]
as implemented in scikit-multilearn.16 We call this aggregation method SVR-RQ.

The methods we use in this experiment thus amount to the combinations illustrated in Table 44.
Following [590], we perform model selection by using, as the loss function to minimize, a

quantification-oriented error measure (and not a classification-oriented one), and by adopting the
same protocol used for the evaluation of our quantifiers. That is, model selection is carried out by
first splitting the training set L into two disjoint sets, i.e., (a) a proper training set Ltr and (b) a
held-out validation set Lva consisting of 40% of the labelled datapoints. For splitting the training
set, we again rely on the iterative stratification routine of scikit-multilearn. We use Ltr to train
the quantifiers with different combinations of hyperparameters, while from Lva we extract, via the
ML-APP, validation samples on which we assess, via AE (the same measure we use in the evaluation
phase), the quality of the hyperparameter combinations. We explore the hyperparameters via

12https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
13https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingClassifier.html
14https://github.com/HLT-ISTI/QuaPy
15https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html
16http://scikit.ml/stratification.html
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Table 44. Methods we use as instances of the four types of methods.

Type Classification Aggregation

BC+BA LR Q∈{CC,PCC,ACC,PACC,SLD}
MLC+BA SG Q∈{CC,PCC,ACC,PACC,SLD}
BC+MLA LR Q∈{CC,PCC,ACC,PACC,SLD} + SVR-RQ

MLC+MLA SG Q∈{CC,PCC,ACC,PACC,SLD} + SVR-RQ

grid-search optimization, and use the best configuration to retrain the quantifier on the entire
training set L after model selection. During the model selection phase, for the ML-APP we use the
same parameters k and g that we use in the test phase, but we reduce the number of repetitions m
to 5 in the datasets with fewer than 90 classes, and to 1 in the other datasets, in order to keep the
computational burden under reasonable bounds.

The results we have obtained for the different choices of the base quantifier are reported in
Table 45 for SLD, our best-performing multiclass quantification method. The results clearly show
(see especially the last two rows) that there is an ordering BC+BA ≺ MLC+BA ≺ BC+MLA
≺ MLC+MLA, in which ≺ means “performs worse than”, which holds, independently of the
base quantifier of choice, in almost all cases. The same experiments also indicate that there is a
substantial improvement in performance that derives from simply replacing the binary classifiers with
one multi-label classifier (moving from BC+BA to MLC+BA or from BC+MLA to MLC+MLA),
i.e., from bringing to bear the class-class correlations at the classification stage, and that there is
an equally substantial improvement when binary aggregation is replaced by multi-label aggregation
(switching from BC+BA to BC+MLA or from MLC+BA to MLC+MLA), i.e., when the
class-class correlations are exploited at the aggregation stage. What also emerges from these
results is that, consistently with the above observations, the best-performing group of methods
is MLC+MLA, i.e., methods that explicitly take class dependencies into account both at the
classification stage and at the aggregation stage.

Note that methods that learn from the stochastic correlations among the classes perform much
better than methods that do not, even in the low shift regime. Overall, the best-performing method
on average is MLC+MLA when equipped with PCC as the base quantifier.

The reader might wonder why we do not use as a baseline the system presented in the only paper
in the literature that tackles multi-label quantification, i.e., [591]. There are several reasons for
this: (a) the authors do not make the code available; (b) the method is computationally expensive,
and as a result the authors test it on a single dataset whose codeframe consists of 16 classes only;
using this method on our 15 datasets, whose codeframes count up to 983 classes, and 125 classes
on average, would be prohibitive; (c) the method is essentially a calibration strategy for binary
classification, which means that it falls in the group of “naive” BC+BA methods since it does not
tackle at all the multi-label nature of the MLQ problem.

For more details on this work and additional experiments please check the full paper [592].

8.4.3. Relevant publications

• Alejandro Moreo, Manuel Francisco, Fabrizio Sebastiani. Multi-Label Quantification. ACM
Transactions on Knowledge Discovery and Data. [592].
The paper appears on Zenodo at https://zenodo.org/record/8178996.
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Table 45. Values of AE obtained in our experiments for different amounts of shift using SLD as the base quantifier.
The number of test samples generated for each dataset exceeds 10,000, though there is a variable number of samples
allocated in each region of shift. Boldface indicates the best method for a given dataset and shift region.
Superscripts † and ‡ denote the methods (if any) whose scores are not statistically significantly different from the
best one according to a Wilcoxon signed-rank test at different confidence levels: symbol † indicates 0.001 < p-value
< 0.05 while symbol ‡ indicates 0.05 ≤ p-value. For ease of readability, for each pair {dataset, shift} we colour-code
cells via intense green for the best result, intense red for the worst result, and an interpolated tone for the scores
in-between.
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Emotions .2169 .0549 .0710 .0509 .2189 .0719 .0791 .0652 .2088 .0890 .0822 .0717

Scene .0407 .0433 .0337 .0424 .0467 .0753 .0497 .0709 .0487 .1012 .0628 .0881

Yeast .2557 .0948 .0511 .0500 .2607 .1192 .0889 .0827 .2939 .1438 .1362 .1171

Birds .0759 .0284 .0196 .0281 .0819 .0312 .0255 .0312 .1089 .0355† .0358† .0351

Genbase .0011 .0004 .0039 .0005 .0011 .0003 .0042 .0005 .0010 .0003 .0041 .0005

Medical .0233 .0133 .0190 .0129 .0211 .0135 .0263 .0131 .0189 .0133 .0312 .0132

tmc2007 500 .0384 .0248 .0202 .0187 .0526 .0407 .0285 .0230 .0546 .0432 .0330 .0228

Ohsumed .0294 .0186 .0173 .0185 .0316 .0232 .0189 .0232 .0321 .0250 .0200 .0250

Enron .0918 .0208 .0183 .0182 .0915 .0253 .0238 .0243 .0838 .0261† .0258 .0263†

Reuters-21578 .0050 .0039 .0048 .0040 .0177 .0055 .0079 .0056 .0956 .0088 .0112 .0083

RCV1-v2 .0109 .0089 .0090† .0088 .0185 .0110 .0151 .0113 .0340 .0173 .0261 .0178

Mediamill .2040 .0237 .0151 .0145 .2204 .0444 .0238 .0223 .2481 .0695 .0308 .0282

Bibtex .0819 .0103 .0100 .0101 .0919 .0116† .0137 .0116 .1084 .0128‡ .0183 .0127

Corel5k .1043 .0098 .0140 .0178 .1041 .0101 .0145 .0177 .1043 .0099 .0155 .0182

Delicious .1406 .0137 .0095 .0100 .1511 .0155 .0110 .0114 .1345 .0155 .0106 .0108‡

Average .0842 .0219 .0189 .0182 .0862 .0346 .0296 .0285 .0957 .0562 .0466 .0459

Rank Average 3.8 2.5 2.1 1.7 3.7 2.3 2.3 1.8 3.7 2.3 2.3 1.7

8.4.4. Relevant software/datasets/other outcomes

• The code for reproducing the results reported in [592] is available at https://github.com/
manuel-francisco/quapy-ml/.

8.4.5. Relevance to AI4media use cases and media industry applications

Multi-label quantification, and the work that CNR has carried out on it, has important applicative
potential in the media industry, since news stories (the main unit of meaning in journalism) are the
quintessential example of multi-labelled data items (a news story may typically belong to more
than one topical class, e.g., be about HomeNews and HealthPolicies at the same time). Multi-label
quantification allows one to monitor through time how frequent the news stories belonging to a
specific class are, thus allowing to detect trends in the relevance of different issues and in readers’
interest.

8.5. Other contributions related to Learning to Quantify (Task 3.7)

Contributing partners: CNR

Other contributions related to LQ made by CNR in the reporting period are the following:

• A monograph on LQ was published (open-access) by Springer Nature [593]; three of its four
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authors (Esuli, Moreo, Sebastiani) are with CNR.

• A data challenge centred on LQ was organized at the CLEF 2022 international conference [594–
596]; all of its organizers are with CNR. The data challenge was successful, and six teams
from around Europe participated.

• Two international workshops on LQ were organized. LQ 2021 [597–599], the 1st edition of
this international workshop series, was co-located with CIKM 2021, and was run entirely
online. LQ 2022 [600], the 2nd edition, was co-located with ECML/PKDD 2022, and was
run in hybrid form. LQ 2023, which will be co-located with ECML/PKDD 2023, is currently
being organized, and will also run in hybrid form. For each of these three workshops, two out
of four co-organizers (A. Moreo and F. Sebastiani) are with CNR.

• An 8-hour course on LQ (https://tinyurl.com/4vhsnzjv) was given in March 2023 by A.
Moreo and F. Sebastiani (both CNR) within the Artificial Intelligence Doctoral Academy
(AIDA). The recording of this course is available from the YouTube channel of the CNR
Artificial Intelligence for Media and Humanities (AIMH) research group (https://www.
youtube.com/@aimhlabisti-cnr5153).

• A half-day tutorial on LQ will be offered by A. Moreo and F. Sebastiani (both CNR) at
ECML/PKDD 2023 in September 2023.

• A talk on LQ (titled “Exit the Needle, Enter the Haystack: Supervised Machine Learn-
ing for Aggregate Data” – https://tinyurl.com/6yr6hycf) by F. Sebastiani was given
at the AICafé seminar series of the Artificial Intelligence Doctoral Academy (AIDA). The
recording of this course is available from the YouTube channel of the CNR Artificial In-
telligence for Media and Humanities (AIMH) research group (https://www.youtube.com/
@aimhlabisti-cnr5153).

• A keynote talk about LQ titled “Quantification: Estimating Class Prevalence via Supervised
Learning” was given by A. Moreo (CNR) at the 2022 Workshop on Machine Learning for
Astroparticle Physics and Astronomy (ML-ASTRO 2022), co-located with INFORMATIK
2022, Hamburg, DE, September 2022.

8.5.1. Relevant publications

• Andrea Esuli, Alejandro Moreo, and Fabrizio Sebastiani. LeQua@CLEF2022: Learning to
Quantify. Proceedings of the 44th European Conference on Information Retrieval
(ECIR 2022), Stavanger, NO, pp. 374–381, 2022. [594]
The paper appears on Zenodo at https://zenodo.org/record/6367103.

• Andrea Esuli, Alejandro Moreo, Fabrizio Sebastiani, and Gianluca Sperduti. A concise
overview of LeQua 2022: Learning to quantify. Proceedings of the 13th Conference and
Labs of the Evaluation Forum (CLEF 2022), Bologna, IT, pp. 362–381. [595]
The paper appears on Zenodo at https://zenodo.org/record/7090065.

• Andrea Esuli, Alejandro Moreo, Fabrizio Sebastiani, and Gianluca Sperduti. A detailed
overview of LeQua 2022: Learning to quantify. Working Notes of the 13th Conference
and Labs of the Evaluation Forum (CLEF 2022), Bologna, IT. [596]
The paper appears on Zenodo at https://zenodo.org/record/7090031.

• Andrea Esuli, Alessandro Fabris, Alejandro Moreo, and Fabrizio Sebastiani. Learning to
Quantify. Springer Nature, Cham, CH, 2023. [593]
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• Juan José del Coz, Pablo González, Alejandro Moreo, and Fabrizio Sebastiani (eds.). Pro-
ceedings of the 1st International Workshop on Learning to Quantify (LQ 2021),
Gold Coast, AU, 2021. [597]

• Juan José del Coz, Pablo González, Alejandro Moreo, and Fabrizio Sebastiani. Learning
to Quantify: Methods and Applications (LQ 2021). Proceedings of the 30th ACM
International Conference on Knowledge Management (CIKM 2021), Gold Coast,
AU, pp. 4874–4875. [598]
The paper appears on Zenodo at https://zenodo.org/record/6418155.

• Juan José del Coz, Pablo González, Alejandro Moreo, and Fabrizio Sebastiani. Report on the
1st International Workshop on Learning to Quantify (LQ 2021). SIGKDD Explorations
24(1):49–51, 2022. [599]
The paper appears on Zenodo at https://zenodo.org/record/7090007.

• Juan José del Coz, Pablo González, Alejandro Moreo, and Fabrizio Sebastiani (eds.). Pro-
ceedings of the 2nd International Workshop on Learning to Quantify (LQ 2022),
Grenoble, FR, 2022. [600]
The proceedings appear on Zenodo at https://zenodo.org/record/7093004.

8.5.2. Relevant software/datasets/other outcomes

• The datasets used in the LeQua 2022 data challenge [594–596] are available on Zenodo at
https://zenodo.org/record/6546188

8.5.3. Relevance to AI4media use cases and media industry applications

Learning to quantify is important for the media industry, since it allows to monitor temporal trends
of indicators relevant to journalism, such as public opinion on specific topics (see Section 8.3.5)
and the frequency of journalistic news belonging to specific classes (see Section 8.4.5). The work
described in this section contributes in various ways to increasing our knowledge of learning to
quantify.
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9. Ongoing Work and Conclusions

9.1. Ongoing work

Below, we briefly summarize the ongoing work associated to each task.

9.1.1. Lifelong and on-line learning (Task 3.1)

CEA is: (1) investigating the advantages and limitations of using large pre-trained models in
continual learning, (2) studying the feasibility of predicting which incremental learning approach
(algorithm, backbone, pre-training vs. supervised training) should be used for a specific use case
without resorting to precomputed resources, and (3) exploring ways to adapt large pre-trained
models for computation- and memory-constrained devices.

UNITN is looking into GCD, a recently proposed open-world problem, which aims to auto-
matically cluster partially labeled data. The main challenge is that the unlabeled data contain
instances that are not only from known categories of the labeled data but also from novel categories.
This leads traditional novel category discovery (NCD) methods to be incapacitated for GCD, due
to their assumption of unlabeled data are only from novel categories. One effective way for GCD is
applying selfsupervised learning to learn discriminate representation for unlabeled data.

AUTH will continue working on the proposed framework for neural models that combines and
unifies OOD, incremental/continual/lifelong learning, and neural distillation. Specifically, AUTH
will look into the problem of reliable knowledge assessment in teacher-student network frameworks.
The primary objective is to establish a clear definition of knowledge within Teacher-Student network
frameworks and develop an assessment methodology to evaluate the knowledge of individual agents
and potential teachers.

UNIFI is working on a novel learning protocol in which a large model (also known as foundation
model) undergoing Continual Learning will be replaced by an improved one that has been learned
from scratch in a compatible way elsewhere (e.g., on a remote server). In recent times, there has
been a growing trend of fine-tuning pretrained models, which are becoming larger in size. To handle
this, learning is increasingly being performed remotely using specialized servers with high computing
capacities. These models are then fine-tuned locally to adapt them to specific tasks of interest.
However, when large pre-trained models are re-trained from scratch to take advantage of new
data, innovative architectures or other advanced learning techniques, it is crucial that the locally
fine-tuned model be seamlessly replaced. This replacement should incorporate these advancements
without disrupting the visual search service, particularly through the outdated extracted features
in the gallery-set.

9.1.2. Manifold learning and disentangled feature representation (Task 3.2)

QMUL will continue to focus on Visual-Language models and ways of improving their discriminative
ability (e.g., in terms of Zero-Shot classification) by means of learning better and more disentangled
representations in their joint image-text spaces. More specifically, we will focus on (i) fine-tuning
VL models and/or prompt learning for domain-specific tasks (e.g., facial expression recognition),
and (ii) learning to separate representations of the different visual modalities in VL model’s joint
image-text space in order to improve its discriminative ability.

JR will base upon the work done for improving out-of-distribution performance of neural
network models with manifold mixing model soups. There are several research directions which
are worth investigating: (a) investigate its performance for models outside the vision domain, e.g.
from NLP or audio; (b) improve the capability of the algorithm for the case when the layers of the
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finetuned models are diverging more; (c) adding a second phase of the model soup algorithm where
the optimization of all component coefficients is done simultaneously.

UNIFI will continue to work on generative models on non-linear (manifold) domains focusing
on models capable of generating in the combined spatial-temporal domain. More specifically, we will
focus on generation of long-term sequences of dynamically changing human behaviour. This targets
the generation of trajectories that can model the temporal evolution of landmarks or joints of the
body in a smooth and natural way (e.g., for the synthesis of facial expressions, talking heads or
human body movement, in interaction or computer graphics applications). New ways of separating
the temporal and spatial generation of dynamic behavior will be also be investigated.

UNITN will continue to investigate the underlying structure of the latent spaces of deep
generative models with the goal of performing semantically meaningful latent traversals. We will
look into modeling latent structures with a learned dynamic potential landscape, thereby performing
latent traversals as the flow of samples down the landscape’s gradient. Inspired by physics, optimal
transport, and neuroscience, these potential landscapes could be learned as physically realistic
partial differential equations, thereby allowing them to flexibly vary over both space and time.
To achieve disentanglement, multiple potentials could be learned simultaneously, and could be
constrained by a classifier to be distinct and semantically self-consistent. This solution can be
integrated as a regularization term during training, thereby acting as an inductive bias towards the
learning of structured representations, ultimately improving model likelihood on similarly structured
data.

9.1.3. Transfer learning (Task 3.3)

BSC will continue studying the trade-offs between performance, carbon footprint and computational
requirements of transfer learning methods as in the presented contribution. We will now benchmark
newer, state-of-the-art transfer learning methods like Low-Rank Domain Adaptation (LoRA) and
extensions of it (e.g. LoKR, etc.). We will also include source-target transferability metrics (i.e.
metrics that assess how transferable is the knowledge of a pre-trained model for a given new task)
instead of a manual classification of the target datasets.

UNITN is investigating the application of TTDA-Seg where both efficiency and effectiveness
are crucial. We will look into a backward-free approach for TTDA-Seg which is utilizing each
instance to dynamically guide its own adaptation in a non-parametric way, which avoids the error
accumulation issue and expensive optimizing cost.

CEA is studying the possibility to diversify training datasets in a programmatic manner by:
(1) combining sets of semantic queries adapted per class, pre-trained foundation models, and visual
clustering and (2) using prompting of multimodal pre-trained models with diversified semantic
queries.

CNR is currently working on assessing transfer learning (TL) abilities in the context of
heterogeneous domains, with a specific focus on the domains of language and vision in Vision-and-
Language (VL) models. Despite promising results on multimodal tasks, recent literature has shown
that models integrating image and text are highly susceptible to statistical bias present in large-scale
training data. CNR researchers are thus focusing their analysis on Video-and-Language models,
and constructing a benchmark revolving around the concepts of action, pre-state, and post-state
(i.e., change-of-state verbs). The benchmark focuses on the temporally ordered (sub)phases of
these events, to provide the research community with a tool to better understand and diagnose the
integration of the video and textual domains.
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9.1.4. Deep quality diversity (Task 3.6)

UM is carrying out promising experiments following up on activities reported under Section 7.3
intending for a high-impact journal publication around Computational Creativity. Following this,
upcoming research will focus on the one side on algorithmical advances that leverage more recent
ML algorithms (including e.g. transformer architectures) with QD evolutionary search, and on the
other side on designing and developing applications that better take advantage of these algorithms
and make them available to the broader public. On the latter note, work so far has focused on
experimental validation, but building an interface and interaction paradigm for a “real-world”
creative problem will allow us to test the algorithms in real-world settings. This is an important
direction and test, since the goal of research in T3.6 (and AI4Media more broadly) is assisting
human users via (explainable) AI.

UNITN will organize together with UM the ”Computer Vision for Games and Games for
Computer Vision (CVG)” workshop, to be held on November 23, 2023, as part of the British
Machine Vision Conference (BMVC) in Aberdeen, UK. The workshop aims to foster collaboration
and knowledge exchange between the computer vision and games research communities, which
have traditionally operated independently. The symbiotic relationship between video games and
computer vision has been significant, with virtual worlds serving as valuable sources of training
data and testbeds for computer vision models. Moreover, computer vision advancements have
revolutionized the creation and possibilities within artificial game worlds. However, several research
questions and technical challenges still remain unaddressed in both fields.

9.1.5. Learning to count (Task 3.7)

CNR is currently working on the development of deep neural networks for LQ. In particular, CNR
is studying the suitability to this task of permutation-invariant operators for set processing. Among
these, CNR is currently investigating the potential benefits of histogram-based functions, in a new
architecture that has been dubbed HistNetQ.

CNR is also working on the application of LQ for estimating the effectiveness, via any chosen
evaluation function, of a classifier when applied to unlabelled sets that exhibit dataset shift with
respect to the data the classifier has been trained on.

Additionally, CNR is working on the problem of tailoring quantification approaches to the
particular type of shift that the set of unlabelled data exhibits; this ia an important problem, since
until now quantification approaches have mostly been tested on prior probability shift only.

9.2. Conclusions

In this deliverable, we presented the current research results of WP3 regarding the new learning
paradigms, specifically on the tasks: 3.1 (lifelong and on-line learning), 3.2 (manifold learning and
disentangled feature representation), 3.3 (transfer learning), 3.6 (deep quality diversity), and 3.7
(learning to count).

Several new methodologies bringing novel solutions and state-of-the-art results are presented.
These include new approaches for NCD, CIL, knowledge quantification metrics, and a teacher-
student network framework which supports “learning by education”, which fall under the category
of lifelong and on-line learning (Task 3.1). The presented works are particularly relevant to the use
cases of AI4Media, since they can significantly reduce the catastrophic forgetting in a scenario with
several updates being rehearsal-free (i.e., no episodic memory), and where a gallery’s features in a
visual search systems does not require to be re-computed (re-indexed) when the model is updated
in a lifelong learning scenario.
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Under the task of manifold learning and disentangled feature representation (Task 3.2), in this
deliverable we presented several works that have been published in top conferences of Computer
Vision and Machine Learning and include a plethora of methods for finding meaningful representation
schemes for both the generative and the discriminative learning paradigms. In the generative
regime, we presented works on studying the structure of latent spaces of generative methods (such
as GANs) by discovering semantic paths that govern the generation process, allowing this way
visual content generation (e.g., image editing). Moreover, we presented work on learning meaningful
feature representations, along with metrics that model data manifolds better (i.e., by adopting
the hyperbolic geometry), lead to better and more discriminative features, and, thus, improve
significantly the performance in visual understanding tasks (such as image retrieval). Advances in
both generative and discriminative regimes are particularly useful in media generation and visual
content analysis use cases of AI4Media.

Important contributions, showing improved state-of-the-art results, have been demonstrated
for transfer learning (Task 3.3) as well. The state-of-the-art source-free open domain adaptation
approaches that have been proposed, especially those incorporating uncertainty in the source model
predictions, can be particularly useful to the use cases of AI4Media, towards discovery of new
visual content (and its adaptation), improving tagging and search capabilities, and being able to
generalize under domain-gap.

Moreover, we reported important developments in deep quality diversity (Task 3.6) for providing
novel ways to generate diverse content without requiring ad-hoc designer-specified directions for this
diversity, and combine content of different facets into a playable experience. Also, developments in
Task 3.6 allow for modelling the subjective human experiences of players to dynamically adapt the
game itself according to the user’s (predicted) engagement or arousal levels, serving very relevant
use cases of AI4Media. The proposed algorithms for Interactive Quality-Diversity search contribute
to human co-creation) in terms of a new way of interacting with an evolving computational process
while taking advantage of the important concept of quality-diversity balance.

Several novel approaches have been developed for the problem of “Learning to quantify” (Task
3.7), including an open-source framework written in Python. The most important contributions in
this task include work on ordinal and multi-label quantification, as well as a systematic comparison
of LQ methods on the task of tweet sentiment quantification. The results of this task have led to
several solutions towards visual content analysis and, thus, can be of service for many use cases of
AI4Media.

In summary, the activity so far has been very intense and successful, both in terms of published
articles (19 conference and 6 journal articles) and in terms of open-source software and tools. The
work reported in this deliverable is of top quality (published in the most prestigious venues of the
community) and reflects the active involvement of all partners towards achieving the goals of WP3
in particular and those of AI4Media in general. Ongoing work and future plans of all partners
regarding the tasks presented in this deliverable are also very promising, convincingly reassuring
the good continuation of the work according to the original planning.
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[229] K. Kärkkäinen and J. Joo, “Fairface: Face attribute dataset for balanced race, gender, and
age,” arXiv preprint arXiv:1908.04913, 2019.

[230] B. Doosti, S. Naha, M. Mirbagheri, and D. J. Crandall, “Hope-net: A graph-based model
for hand-object pose estimation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6608–6617, 2020.

[231] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of GANs for improved
quality, stability, and variation,” in ICLR, 2018.

[232] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative
adversarial networks,” in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 4401–4410, 2019.

[233] T. Karras, M. Aittala, S. Laine, E. Härkönen, J. Hellsten, J. Lehtinen, and T. Aila, “Alias-free
generative adversarial networks,” Adv. Neural Inform. Process. Syst., vol. 34, 2021.

[234] A. Brock, J. Donahue, and K. Simonyan, “Large scale GAN training for high fidelity natural
image synthesis,” ArXiv preprint, vol. abs/1809.11096, 2018.

[235] Y. Shen, Y. Xiong, W. Xia, and S. Soatto, “Towards backward-compatible representation
learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

[236] D. Bau, J.-Y. Zhu, H. Strobelt, B. Zhou, J. B. Tenenbaum, W. T. Freeman, and A. Torralba,
“GAN dissection: Visualizing and understanding generative adversarial networks,” in ICLR,
2019.

[237] C. Yang, Y. Shen, and B. Zhou, “Semantic hierarchy emerges in deep generative representations
for scene synthesis,” IJCV, vol. 129, no. 5, pp. 1451–1466, 2021.

[238] Y. Shen and B. Zhou, “Closed-form factorization of latent semantics in GANs,” in CVPR,
2021.

[239] Y. Shen, C. Yang, X. Tang, and B. Zhou, “InterFaceGAN: Interpreting the disentangled face
representation learned by GANs,” 2020.

[240] D. Bau, S. Liu, T. Wang, J.-Y. Zhu, and A. Torralba, “Rewriting a deep generative model,”
in ECCV, pp. 351–369, Springer, 2020.

[241] Z. Wu, D. Lischinski, and E. Shechtman, “StyleSpace analysis: Disentangled controls for
stylegan image generation,” in CVPR, 2021.
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