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1 Executive Summary

This deliverable presents the research carried out as part of technical tasks of Work Package 4 of the
AI4Media project, entitled Explainability, Robustness and Privacy in AI. These tasks, T4.2, T4.3,
T4.4 and T4.5, cover the areas of AI Robustness, Explainability, Privacy, and Fairness respectively,
and are accompanied by Tasks 4.1 and 4.6 which cover legal and benchmarking aspects of the Work
Package that are not part of this deliverable. For each contribution in this report, we provide an
overview of the work carried out, as well as references to the publications and software released by
each partner.

This deliverable covers work carried out after the submission of the first deliverable, D4.1, and
includes outcomes produced in the intervening two years, from M13 (September 2021) to M36
(August 2023). A considerable volume of work has been completed during this time, including
contributions from partners (in alphabetical order) AUTH, CEA, CERTH, FhG-IDMT, HES-
SO, IBM, IDIAP, 3IA-UCA, UNIFI, and UNITN. Tasks 4.4 and 4.5 were due to come to
completion with this deliverable, but both will be extended to the end of the project to allow for
additional research to be completed, and delivered as part of D4.7 in August 2024.

Introductory remarks are given in Section 2, covering an overview of the Trustworthy AI field
(Section 2.1), the timeline of Work Package 4 (Section 2.2) and the structure of this document
(Section 2.3).

Contributions towards the Robust AI task (T4.2) are detailed in Section 3. This includes
work on (i) exploring the robustness of an AI-based detection of deep learning manipulations
(known as deepfakes) in images and videos (Section 3.1), (ii) robustness of federated learning model
training, by analysing the impact of different aggregation algorithms (Section 3.2), (iii) addressing
the problem of robust overfitting in adversarial training and designing a novel regularization scheme
to overcome it (Section 3.3), (iv) a new, geometrically-inspired, approach to adversarial training to
improve robustness in neural networks (Section 3.4), and (v) matching a fine-tuned model to its
pre-trained parent/root (Section 3.5).

Contributions towards the Explainable AI task (T4.3) are detailed in Section 4. This includes
work on (i) using visualisations to explain deep learning insights when detecting synthetic audio
(Section 4.1), (ii) designing a new attention mechanism for visual explanations of image classifiers
(Section 4.2), (iii) new learning methods for semantic editing of GANs for generating images
(Section 4.3), (iv) disentangling neuron representations with concept vectors (Section 4.4), (v) a
novel architecture for combining multitask learning and adversarial training (Section 4.5), (vi)
explainability in autonomous driving systems (Section 4.6), (vii) explainability in multi-model AI
systems (Section 4.7), (viii) an analysis of Anchors in text classification systems (Section 4.8),
(ix) explainability through concept-based models (Section 4.9), and (x) an extension of concept
bottleneck models (Section 4.10). An outline of the first Nice Workshop on Interpretability (NWI)
is given in Section 4.11.

Contributions towards the Privacy-enhancing AI task (T4.4) are detailed in Section 5. This
includes work on (i) unlearning in the federated learning setting, a new field of work (Section 5.1),
(ii) continuing work on diffprivlib, a general-purpose library for differential privacy computations in
Python (Section 5.2), (iii) a utility-preserving de-identification approach for data publication using
relation extraction filtering (Section 5.3), (iv) a tool for combining differential privacy, homomorphic
encryption and multiparty computation for secure federated learning (Section 5.4), (v) a graph
neural network with differentially private learning guarantees (Section 5.5), and (vi) the use of a
reversible transformation to create adversarial examples for training (Section 5.6).

Finally, contributions towards the Fair AI task (T4.5) are detailed in Section 6. This includes
work on (i) datasheets that can be passed along with data and machine learning models to highlight
potential risks and recommend appropriate uses (Section 6.1), (ii) fairness of deepfake detection
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systems (Section 6.2), and (iii) debiasing neural networks using explainable AI (Section 6.3).
Ongoing work towards the integration of WP4 components within WP8 Use Cases is outlined

in Section 7.
In summary, the work presented in this deliverable has resulted in:

• 18 conference and workshop papers (ICASSP ‘23, ACL ‘23, ECCV ‘22, CBMI ‘23, CVPR ‘23,
ICML ‘22, ESORICS ‘21, PETS ‘23, UESNIX ‘23, MLSP ‘22, MLSP ‘23, ECML-PKDD ‘23,
IJCAI ‘20, ECML PKDD ‘22, AISTATS ‘23, ICML ‘23, NeurIPS ‘22, IJCAI ‘20) and three
journal articles (Artificial Intelligence ‘23, Ambient Intelligence and Humanized Computing
‘23, Journal of Ambient Intelligence and Humanized Computing ‘23);

• Three technical reports;

• 13 open-source software and tools that are openly shared (e.g., in GitHub).

In addition, four secondments have been carried out in the context of the AI4Media Junior
Fellows Exchange Program, focusing on WP4-related topics and resulting in important outcomes
for trusted AI.
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2 Introduction

2.1 Trustworthy AI Overview

Artificial Intelligence (AI) holds significant importance in the European Union (EU) due to its
potential to foster innovation, drive economic growth, improve public services, and shape social
development. While AI offers immense opportunities and numerous benefits, there are also potential
risks associated with its development such as security vulnerabilities, lack of transparency, privacy
concerns, and bias and discrimination.

Trustworthy AI aims at developing and deploying Machine Learning (ML) technologies that are
reliable, transparent, accountable, and aligned with the democratic and ethical values shared in our
society. Trustworthy AI is typically divided into four broad dimensions: (i) AI robustness, (ii)
Explainable AI, (iii) AI Privacy, and (iv) AI fairness.

AI Robustness focuses on detecting and mitigating adversarial attempts such as the introduction
of misleading or malicious input to push an ML model towards making incorrect decisions or
predictions. These attacks can be achieved through the use of adversarial samples in various data
types (e.g., images, text, etc.) and across a broad range of model architectures.

Traditional ML models, such as deep neural networks, are inherently black boxes or operate
in a black-box setting1 so their decision-making processes are difficult to explain. The lack of
interpretability and transparency in these models can lead to distrust and reluctance to adopt them,
especially in critical applications (e.g., healthcare, finance) where decisions may have a significant
impact on individuals. Explainable AI aims to provide users with transparency and understanding
of how decisions are made by ML models.

AI Privacy focuses on designing and developing techniques to protect individuals’ personal
information including their sensitive information by maintaining its confidentiality and privacy. It
also aims to prevent unauthorized access and misuse as improper handling of personal information
can result on unintended parties accessing individuals’ sensitive information. Such sensitive
information can then be used against the individuals for discrimination or blackmailing. AI models
are typically trained on a large amount of data which in many cases contains sensitive information.
Thus, AI Privacy aims to produce reliable ML models while ensuring that individuals’ privacy is
enhanced.

Finally, AI models can inadvertently learn biases from the data that are trained on, reflecting
and preserving biases and prejudice already present in our society. This can result in discriminatory
treatment in various domains where AI is used such as mortgage lending, hiring, and criminal justice.
AI Fairness aims to address these issues by developing AI models that treat individuals/groups
fairly without favoring or disadvantaging any specific group/individual.

2.2 WP4 Timeline

This work package (WP4) is dedicated to Trustworthy AI. It involves 12 partner institutions, namely
- IBM, IDIAP, UPB, FhG, HES-SO, AUTH, CERTH, UCA, UNITN, CEA, KUL, and UNIFI -
and runs throughout the entire duration of the AI4Media project (Figure 1). WP4 consists of 6
tasks organized as 4 vertical tasks, i.e., Robust AI (Task 4.2), Explainable AI (Task 4.3), Private
AI (Task 4.4), and Fair AI (Task 4.5) and 2 horizontal tasks focusing on the ethical and legal
dimensions of AI within the European Union (Task 4.1) and benchmarking of AI systems (Task
4.6) (see Figure 2).

1A black-box setting refers to a scenario where the user has limited or no access to the internal workings of a
model.
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Figure 1. WP4 four-year timeline, showing the position of the present deliverable (D4.5) with reference to the
lifetime of the AI4Media project.

Figure 2. WP4 Tasks, comprising four vertical tasks (technical) and two horizontal tasks.

During the course of the project, this work package will produce 3 types of deliverables: (i)
toolset where the technical research output produced from the four vertical tasks will be reported, (ii)
legal where the output of the corresponding horizontal task will be reported, and (iii) benchmark for
the other horizontal task. This document consists of the second iteration of the toolset deliverable.
Each iteration of this deliverable will report the contributions of the partners ranging from new
algorithms accompanied by experimental results to toolset modules. In each iteration, we expect
individual contributions to be at various stages of this pipeline as investigations mature.

The second iteration of this deliverable is an extension of the first one (D4.1). In this iteration,
we present the research outputs that each partner achieved, as well as the secondments outcomes
conducted between M13 and M36 of the AI4Media project. This deliverable contains contributions
within the dimensions of AI Robustness, Explainable AI, AI Privacy, and AI Fairness. The last
iteration of this deliverable will be submitted in month 48 and will present updates on the progress
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achieved in each dimension in the last 12 months of the AI4Media Project.

2.3 Document Organisation

This deliverable follows the same structure as D4.1, with a similar structure for all the tasks to ensure
a harmonized presentation of the algorithms/tools that were developed since D4.1. Sections 3- 6
describe the contributions towards each vertical task in Figure 2 (i.e., Robust AI, Explainable AI, AI
privacy, and AI Fairness), respectively. All sections follow the same structure. We briefly introduce
each task, followed by a description of the methods/tools developed by WP4 partners during this
period. Section 7 presents steps taken to integrate WP4 technical outputs with AI4Media Use
Cases and media industry use cases more generally. Finally, Section 8 concludes the deliverable
summarizing the current progress achieved as part of WP4, including an outline of future work
from all partners for the final year of the project.
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3 Robust AI (Task 4.2)

Machine Learning (ML) models are vulnerable to a variety of threat models [1], [2] in which
adversarial samples play a critical role. Adversarial samples consist of inputs (images, texts, tabular
data, etc.) deliberately crafted by an attacker in order to produce a desired response by the ML
model unintended by the model creators.

There exist four broad types of adversarial threat models depending on how an attacker decides
to exploit potential vulnerabilities in an ML model. Poisoning attacks focus on the insertion of
malicious data within the datasets used to train a model while inference attacks intend to infer
private information about a target model or the data used to train it. Evasion attacks, on the other
hand, attempt to modify legitimate input samples in a manner that leads a model to misclassify it,
while extraction attacks aim at extracting the parameters of a third party ML model so as to clone
it.

In the following, we present new contributions to the Robust AI task, which include work on
(i) exploring the robustness of an AI-based detection of deep learning manipulations (known as
deepfakes) in images and videos (Section 3.1), (ii) robustness of federated learning model training,
by analysing the impact of different aggregation algorithms (Section 3.2), (iii) addressing the
problem of robust overfitting in adversarial training and designing a novel regularization scheme to
overcome it (Section 3.3), (iv) a new, geometrically-inspired, approach to adversarial training to
improve robustness in neural networks (Section 3.4), and (v) matching a fine-tuned model to its
pre-trained parent/root (Section 3.5).

3.1 Exploring Robustness of an AI-based Deepfake Detection Service

Contributing partners: IBM, CERTH

3.1.1 Introduction

This work was completed as part of a virtual Junior Fellow Exchange between IBM and CERTH
and is the first of two evaluations of a Deepfake Detection Service created by CERTH - a second
evaluation on fairness is detailed in Section 6.2. The MeVer DeepFake Detection (DFD) service
was created to detect deep learning manipulations in images and videos. The system comprises a
pre-processing pipeline and model ensemble scheme which is used to obtain a DeepFake probability
score indicating whether an input image or video has been manipulated, such as with FaceSwap
or similar tools. The DFD service was previously evaluated using three benchmark DeepFake
datasets (FaceForensics++ [3], CelebDF-V2 [4], and WildDeepFake [5]), and outperformed a publicly
available DeepFake detection model, DeepWare2, proving the design robust.

In addition to proving the efficacy of the DFD service on benchmark datasets, the service was
also exposed to an adversarial attack to evaluate its performance under hostile conditions. Malicious
actors could, for instance, bid to influence the result of the model to allow their deepfake images
and videos to escape detection or similarly influence the model to incorrectly classify innocent
content as deepfakes with the intent to have the content removed or accounts uploading content
banned. The white-box attack chosen for evaluation was Projected Gradient Descent (PGD) [6].
For this attack, it was assumed that the malicious actor had access to all weights of the ensemble
models of the DFD service i.e., a worst-case scenario. The attacks demonstrated that PGD was
successful at decreasing model performance whilst also leaving little to no indication that an attack
had been carried out.

2https://deepware.ai/
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A key assumption of the PGD adversarial attack experiment was that the attackers had access
to all weights of the ensemble models. For proprietary models, this is unlikely to occur as the model
weights would not be directly exposed to the public to protect intellectual property. Whilst the
previous evaluation [7] illustrated service performance degradation in the worst-case scenario, it
did not cover scenarios involving black box attacks, which are far more likely to occur in scenarios
where model predictions are exposed via queries from users. In addition, the previous work did
not evaluate potential defences that could be implemented within the design of both the ensemble
models and DFD service architecture that could aid in mitigating the impact of the attack.

To address these limitations, a black-box attack was selected to evaluate the performance of
the DFD service under conditions where a malicious actor does not have access to the internal
ensemble models but only has access to the predictions made by the service. This scenario has a
much lower barrier-to-entry for malicious actors as they do not require knowledge regarding the
model itself and simply require access to the service. Therefore the focus of this work was to:

• Deploy one of the IBM Adversarial Robustness Toolbox (ART)3 black-box attacks against
the DFD service;

• Integrate defences from ART to mitigate black-box attacks on the DFD service,

and subsequently measure:

• the performance of the DFD service under black-box attack conditions;

• the performance of the DFD service with a defence mechanism applied in normal and attack
scenarios;

• the prediction latency of the DFD service with a defence mechanism applied in normal and
attack scenarios.

3.1.2 Adversarial attack and defense of a Deepfake Detector

The driving motivation of this work was to determine whether black-box attacks have a significant
impact on the performance of the DFD service, as these types of attacks are more likely to occur, and
whether implemented defences can mitigate these attacks whilst also maintaining model performance
under normal conditions.

An engineering solution to black-box attacks would naturally be to define rate-limits, query
quotas or to only expose the model behind an authentication layer; however, even with these
security precautions, determined attackers could yet gain access to the model predictions if they
assumed a benign identity. Therefore, in the spirit of trustworthy AI, it is prudent to evaluate the
robustness of the DFD service under black-box attacks.

3.1.2.1 Black-box attack The black-box attack chosen in this instance was HopSkipJump
(HSJ) [8], a decision-based adversarial attack. As it has shown to require significantly fewer model
queries than other attacks to influence model performance and is also robust in the face of a number
of defences, it was argued to be a good candidate to evaluate the DFD service.

To set up the attack, IBM’s ART [9] was utilized as it is a widely accepted open-source state-of-
the-art tool for evaluating the robustness of machine learning models. The toolbox abstracts the
complexities of executing adversarial attacks by providing a simple interface through which the
model is provided, and adversarial samples are returned.

3https://github.com/Trusted-AI/adversarial-robustness-toolbox
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Table 2. DFD service performance when not under attack.

Dataset

No Attack

Balanced Accuracy AUC

Baseline JPEG-C SPSM Baseline JPEG-C SPSM

CelebDF-V2 80.63% 81.55% 69.85% 91.66% 91.36% 88.40%

FaceForensics++ 69.64% 66.87% 60.62% 74.64% 73.62% 68.03%

WildDeepFake 81.37% 81.48% - 90.77% 90.72% -

In this case, as the DeepFake Detection ensemble model provides a single output probability,
and the HSJ class depends on at least two output values representing the probability of both classes
(DeepFake and not DeepFake), a thin wrapper was used to override the forward pass of the model
and transform the output to a 2-dimensional array representing the probabilities of both classes.
This wrapped model was then passed to ART’s PyTorchClassifier class, which was in turn passed
to the HSJ class to facilitate the adversarial attack.

To carry out the robustness evaluation, each video of each dataset was first fed to the PyTorch-
Classifier unaltered to ascertain the prediction score under normal conditions. Then each video frame
was passed to HSJ to generate an adversarial frame, which was then passed to PyTorchClassifier
to ascertain the prediction score under black-box attack conditions. The L2 distance between the
unaltered and adversarial images was calculated to determine the amount of perturbation applied
in the adversarial image which could prove useful to the DFD service for identifying a black-box
attack by comparing the similarity of queries.

3.1.2.2 Adversarial Defenses As outlined above, an adversarial attack in this case involves
adding perturbations to the frames of the video sent to the DFD service such that it elicits an
incorrect prediction for deepfake classification. The perturbations are designed to be small to
escape detection by human intervention, but large enough to fool the DFD service. Dziugaite et
al. [10] hypothesized an approach to remove the adversarial perturbations from images generated by
attacks, such as HSJ, by applying a widely used image encoding and compression technique, JPEG
Compression, which uses Discrete Cosine Transform to suppress “sharp transitions in intensity
and colour hue” which are imperceivable to the human eye, but influential to trained models.
JPEG compression can be added as a pre-processing step in the DFD pipeline. Spatial Smoothing
(SPSM) [11], proposed by Xu et al., attempts to remove adversarial perturbations by substituting
image colour values with median values computed in a sliding window thus, smoothing local colour
variance (also known as blur). This defence was selected as an alternative pre-processing defence to
JPEG compression to test whether it could yield better performance as it has been shown to be
inexpensive and has high detection rates against state-of-the-art attacks.

3.1.3 Results & Discussion

The baseline performance of the DFD service is illustrated in Table 2 for all three benchmark
DeepFake datasets. The baseline performance is the performance of the service without a defence
or attack applied. The service achieves approx. 80% balanced accuracy and 90% AUC (Area under
the Curve) on two of the three datasets, with FaceForensics++ proving slightly more challenging,
achieving approx. 69% and 74% respectively. Table 3 illustrates the average frame prediction time
per dataset, the maximum being CelebDF-V2 with a latency of 13.56ms. These baseline results
facilitate a comparative analysis of the DFD service under attack and defence conditions.
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Table 3. Average frame (image) prediction time with and without defence applied.

Dataset
Avg. DFD Frame Prediction Latency (ms)

Baseline JPEG-C SPSM

CelebDF-V2 13.56 16.41 14.88

FaceForensics++ 9.528 16.88 15.34

WildDeepFake 9.398 14.95 -

Table 4. DFD service (video) performance when under attack

Dataset

Under Attack (video)

Balanced Accuracy AUC

HSJ JPEG-C SPSM HSJ JPEG-C SPSM

CelebDF-V2 25.34% 50% 50% 21.16% 88.58% 88.08%

FaceForensics++ 32.59% 50% 50% 28.30% 72.66% 67.95%

WildDeepFake 24.76% 50% - 13.00% 88.70% -

On application of the HSJ black-box attack, the performance of the DFD service drops substan-
tially. The HSJ columns of Table 4 illustrate the Balanced Accuracy and AUC achieved across all
datasets when under attack. This indicates the vulnerability of the service to black-box attacks.
Adversarial attacks evaluated with the CelebDF-V2 and WildDeepFake datasets in particular had
the largest drop in performance, with balanced accuracy reducing from approx. 80% to approx. 25%.
To mitigate the attack, two defences were applied. The JPEG-C and SPSM columns of Table 2
illustrate the performance of the DFD service when pre-processing defences were applied and no
attack was implemented. Ideally in this scenario, the pre-processing defence should not negatively
impact the performance of the ensemble model. The JPEG Compression pre-processing defence
had a relatively small impact on the performance of the model, slightly improving performance on
CelebDF-V2 and WildDeepFake datasets and slightly reducing performance on FaceForensics++.
In contrast, SPSM had a much larger negative effect on performance in the attack-free scenario,
reducing balanced accuracy on CelebDF-V2 and FaceForensics++ by approx. 10%. For this reason
and due to computational resources, SPSM was not evaluated on the larger WildDeepFake dataset.

Table 3 also highlights the impact of the pre-processing defences on prediction time. Application
of JPEG compression resulted in increases between 2.8 to 7.4 milliseconds. Spatial Smoothing
resulted in increases of between 1.3 to 5.8 ms. Both defences improve the performance of the DFD
service over the attack scenario but fail to restore performance to an attack-free level. Table 4
illustrates the difference in Balanced Accuracy between a standalone HSJ attack (i.e., no defence

Table 5. DFD service (frame) performance under attack

Dataset

Under Attack (frame)

Balanced Accuracy AUC

HSJ JPEG-C SPSM HSJ JPEG-C SPSM

CelebDF-V2 35.41% 51.34% 52.21% 25.95% 80.57% 83.12%

FaceForensics++ 38.88% 50.57% 51.7% 35.04% 66.89% 65.46%

WildDeepFake 36.18% 51.2% - 26.38% 74.3% -
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applied) and those with a pre-processing defence applied. Further investigation uncovered that,
when pre-processing defences are applied in an attack scenario, the DFD service classifies fewer
frames as deepfake and as such, on aggregation, no video is ultimately classified as containing a
deepfake, resulting in a Balanced Accuracy of 50% across all data sets (for both JPEG compression
and Spatial Smoothing). Table 5 illustrates that, whilst defence performance was similar for each
dataset, SPSM had a higher accuracy frame-by-frame. Whilst the pre-processing defences do
have some mitigating impact, at least at frame-level prediction 5, this analysis indicates that key
perturbations added by the HSJ attack are escaping suppression and removal by both defence
methods under current implementation and that the untuned pre-processor could be removing key
features that the DFD service depends on to identify DeepFakes.

A successful attack against the DFD service, a binary classifier, can be defined as an attack
which flips the original prediction regardless of whether the DFD service prediction was correct.
Figure 3 illustrates the success rate for different L2 distance thresholds when the DFD service is
under attack with and without defences applied. The figure highlights that with an L2 distance
budget of 120, the HSJ attack is successful on over 50% of images (grey line), whilst adding the
JPEG compression defence, reduces the success rate to slightly below 50% of images at the same
L2 distance threshold (red line).

Figure 3. Success rate vs L2 distance threshold. Successful attacks are those which changed the DFD prediction.

In a black-box attack scenario such as HSJ, an adversary needs to query the DFD service
multiple times (depending on the max. number of iterations selected to traverse the boundary)
when generating an adversarial frame with sufficiently low L2 distance between the original and
adversarial frame. Therefore, a potential defence could be to identify queries that are both similar
(based on an L2 distance threshold) and converging. As an extra layer of defence, a monitoring
system could be set up on the DFD service server to monitor consecutive queries from a user.
If multiple queries are submitted which contain frames within a L2 distance threshold, it could
signify a black-box attack. Figure 3 aids in selecting a threshold in this instance. For example,
if all consecutive queries under 120 were filtered out, approx. 50% of successful attacks could
potentially be avoided. The caveat in this case is that legitimate queries may also be included,
and so future work should attempt to identify the optimal threshold at which to filter or flag
potentially malicious queries. One such similar method, proposed by Li et al. [12], named Blacklight,
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relies upon identifying similar queries using probabilistic content fingerprints and has shown to
identify black-box attacks after a relatively low number of model queries. Figure 4 also illustrates
the latency impact an applied pre-processor defence has on HSJ identifying an adversarial frame.
With no defence applied, a batch of adversarial frames took approx. 80s to be generated. When a
pre-processing defence was applied, generation latency rose significantly. In particular, adversarial
batches of images with lower L2 distances took longest to generate (up to 500s).

Figure 4. Time taken to generate batches of adversarial frames (batch size = 32).

3.1.4 Relevance to AI4Media use cases and media industry applications

The robustness evaluation of the MeVer Deepfake Detection Service is relevant to UC1 as it aids
both the creators and users of the AI model better understand its limitations whilst attempting to
detect disinformation. It provides additional transparency over the capability of the model which
can facilitate more informed decisions regarding the deployment of the service and help users better
interpret results and the associated limitations. For example, understanding that the model is
vulnerable to certain black-box attacks would encourage additional scrutiny of requests sent to
a model via an API and understanding that the model is susceptible to white-box attacks may
initiate stricter developer access rules within the company deploying the model. This work is also
relevant to UC2 “AI for News”, as deepfake content becomes more prevalent and journalists must
differentiate between content that is authentic and content which has been created to misinform -
trusting tools which can help discern real from misleading content, such as the MeVer Deepfake
Detection Service, is essential and a robustness evaluation can contribute toward facilitating greater
trust in these tools.

3.2 Federated Model Fusion and Robustness

Contributing partners: FHG-IDMT

The default model fusion algorithm for Federated Learning is embarrassingly simple, basically
it averages the model weights of all clients and continues with that aggregate. Surprisingly, this
works pretty good for a lot of cases where the data distribution is homogeneous between clients
and there are no attackers in the system.
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We performed research on how different aggregation algorithms perform with respect to certain
evaluation criteria and found that large differences in system performance occurs between them,
when one client (or more) sends wrong (“poisoned”) data. This was originally not planned to be
part of Task 4.2, but makes a good case for AI robustness and is therefore mentioned here. A
publication is planned and a more thorough discussion will be put in the next deliverable. For a
quick look at the data, Figure 5 gives a first impression on how different aggregation algorithms
influence the convergence of the trained model. For example, the plots in the upper right corner
show a clear difference between qFedAvg and TWFedAvg, which behave relatively stable in the
presence of poisoned data, while FedAvg does not converge at all. A more thorough analysis will
be presented in the next deliverable and a respective publication.

Tangentially, this hints at the relationship between fairness and robustness of AI systems.
While both are really broad categories (What is fair? What is robust?), a system that lacks strong
fairness properties might also make it easier for an attacker to have a big influence on the model.
A fair training process that tries to compensate for differences in the data distribution might be
automatically more robust against faulty data – whether they come deliberately from an attacker
or are accidental.

Figure 5. Model convergence under the presence of poisoned training data with different aggregation methods.
Federated Averaging (FedAvg) shows oscillation while other approaches show a more stable (and robust) convergence.

3.2.1 Relevance to AI4Media use cases and media industry applications

While robustness is a feature of AI applications that only a few use cases will go without, the
proposed approach deals with robustness within Federated Learning systems. Regarding AI4Media,
there is no Use Case directly dealing with Federated Learning, yet. Regarding the broader media
industry, the outlook of not having to share private data (being it usage, user, or content data), and
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therefore avoiding all the practical hassles of data exchange (usage rights, data exchange contracts,
data privacy laws, . . .) is so promising, that there will be real industry applications for Federated
Learning. On that premise, applications that improve the robustness and fairness (for privacy,
see Section 5.4) of Federated Learning are worth researching on and will be relevant as in other
non-media domains such as medicine or industrial applications.

3.3 Mitigating Robust Overfitting via Self-Residual-Calibration Regu-
larization

Contributing partners: UNITN

Deep Neural Networks (DNNs) are very susceptible to adversarial examples which have been
demonstrated to be threatening in various domains [13], including computer vision [14], [15], natural
language processing [16], [17], and speech recognition [18]. These specific examples may be generated
using various adversarial attack methods [19]–[22], causing the DNNs to behave incorrectly. We
usually categorize adversarial attacks as either white-box or black-box attacks, both of which
have been widely studied and shown in real-world scenarios [15], [23], [24]. It is remarkable that
AutoAttack [25], a recently suggested ensemble of white-box and black-box attacks, has successfully
broken several promising robust models. As a result, enhancing the adversarial robustness of DNNs4

has become essential for the community.
To this end, various defense methods [22], [26]–[33] have been proposed to defend against

different kinds of adversarial attacks [19], [21], [22], [25], which can be mainly categorized into three
groups. The first is input-transformation defenses, aiming to remove the adversarial noise from
the inputs as studied in [10], [30], [34], [35]. The second belongs to certified defenses [27], [33],
[36], which typically provides a tight robustness guarantee. The third promising solution is the
Adversarial Training (AT) methods [21], [22], whose principle is to conduct a min-max optimization.
The vanilla AT is the projected gradient descent based adversarial training (PGD-AT) [22], [29].
Through careful designs of different training schemes, recent works [37] have empirically verified
that PGD-AT is robust to a number of adversarial attacks [19], [21], [22], [25], [38].

Although AT methods are commonly easy to implement and can achieve satisfactory defense
results, they are prone to the risk of overfitting [29]. Briefly speaking, the best performance is
achieved at a specific intermediate checkpoint, but further training will continue to decrease the
robust training loss while increasing the robust test loss. This phenomenon is so-called robust
overfitting. Several works [29], [31] adopted the early stopping strategy to avoid robust overfitting,
in which they usually select the checkpoint by stopping at the first drop of learning rate5. However,
whether the selected checkpoint is the optimal one remains an open problem. Other methods for
solving robust overfitting and improving generalization are using regularization techniques, such as
gradient penalties [37], [39], data augmentation [37], semi-supervised learning [40], and implicit
regularizer [15], [31], [41], [42]. However, Rice et al. [29] observed that most commonly-used
regularizations have a limited effect on addressing robust overfitting and improving generalization.

The purpose of this research is to address the robust overfitting problem in AT and to design a
novel regularization scheme from a new perspective. We begin by an in-depth examination of the
relationship between model calibration and robust overfitting, revealing two intriguing observations
that provide new insights for solving robust overfitting. First, we find that robust overfitting is
associated with confidence level, in which overconfidence on adversarial samples will easily lead to
robust overfitting. Second, we find that there is a trade-off between the confidence of adversarial

4Here, adversarial robustness mainly refers to model’s robustness to the perturbations of input data. Briefly
speaking, a model is robustness when it can defend against most kinds of adversarial attackers.

5The drop of learning rate indicates a special training epoch that requires the reduction of learning rate.
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and natural images. This echoes the existing belief that a trade-off exists between natural and
robust accuracy [31], [43], [44]. It is worth noting that confidence is not equal to accuracy, which
reflects the statement of model calibration.

In response to our new observations, we propose a newly defined regularizer, called Self-
Residual-Calibration (SRC). Specifically, the proposed SRC is defined as the absolute residual
between the natural and adversarial logit features, which has two advantages. First, by minimizing
SRC, the model is encouraged to maintain the trade-off between the confidences of natural and
adversarial samples. Second, SRC can be used to determine if a model is well calibrated during
training. In most cases, the confidence of natural samples is higher than that of adversarial ones,
which causes the SRC to omit the cases with higher confidence of adversarial samples, resulting
in an imbalanced problem. To overcome this drawback of imbalanced training, we introduce a
weighting strategy for adjusting the weights of samples that can satisfy different conditions. This
strategy can be simply formulated by the pinball loss that computes the quantile residual between
the logit features of natural and adversarial images.

Finally, we evaluate different robust models against PGD-attack and AutoAttack on three
benchmarks, including CIFAR-10, CIFAR-100, and SVHN. The experimental results validate the
merits of the proposed SRC over the state-of-the-art (SOTA) methods [31], [37], [42], [45], [46].
Moreover, our SRC is compatible with many regularizations, e.g., CutOut [47], [48], Adversarial
Weight Perturbation (AWP) [49], Semi-supervised Learning [40], Flooding [46], etc. By combining
our SRC with them, the performance can be further improved. For example, with the help of AWP,
our method can obtain about 55.0% adversarial accuracy on CIFAR-10 without using additional
training data.

3.3.1 Experiments

Dataset: We conduct experiments on four datasets, including CIFAR-10 [50], CIFAR-100 [50],
SVHN [51], and Tiny-ImageNet [52]. The results on Tiny-ImageNet can be found in the published
article [53].

Baselines: We mainly compare the proposed SRC6 method with 6 baselines, including PGD-
AT [22]7, ALP [45]8, TRADES [31]9, MART [42]10, AT with Flooding (AT-FL) [46]11, and normal
training on natural images (NT).

Evaluation Protocol: We train robust models using different methods. During testing, we
evaluate the accuracies on (train/test) natural and adversarial samples. In addition, we also evaluate
different model calibrations: reliability diagram and expected calibration error (ECE) [54], [55].

Network Setup: For CIFAR-10/100, we use pre-activation ResNet-18 [56] and WideResNet-
34-20 [57] as the backbones. For SVHN, we use SmallCNN [22] as the backbone, which has three
convolutional layers, followed by two fully-connected layers.

3.3.1.1 Evaluation on Robust Overfitting In this section, we analyze the problem of robust
overfitting for different methods. The comparison results are shown in Table 6 and Figure 6.
Specifically, in Table 6, the “D” columns indicate the difference between the highest and final
checkpoints, reflecting the robust overfitting level. That is, a higher number of “D” means more
serious robust overfitting level. In Figure 6 we show the adversarial loss curves and adversarial

6Note that, “SRC” refers to pinball-based SRC throughout this section.
7https://github.com/locuslab/robust_overfitting
8https://github.com/labsix/adversarial-logit-pairing-analysis
9https://github.com/yaodongyu/TRADES

10https://github.com/YisenWang/MART
11https://github.com/takashiishida/flooding
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CIFAR-10 CIFAR-100 SVHN

Natural PGD-10 AutoAttack PGD-10 PGD-10

FC(↑) BC(↑) D(↓) FC(↑) BC(↑) D(↓) FC(↑) BC(↑) D(↓) FC(↑) BC(↑) D(↓) FC(↑) BC(↑) D(↓)

PGD-AT 84.00 82.73 1.27 45.54 53.43 7.89 42.23 48.30 6.07 21.48 28.30 6.82 57.10 58.17 1.07

ALP 82.86 80.59 2.27 51.55 54.71 3.16 47.87 49.82 1.95 - - - - - -

TRADES 82.83 81.32 1.51 52.78 56.16 3.38 45.79 48.94 3.18 26.86 27.87 1.01 57.25 57.56 0.31

MART 82.10 77.69 4.41 51.62 57.91 6.29 46.01 48.98 2.97 - - - - - -

AT-FL 82.37 82.52 0.15 56.76 57.83 1.19 44.13 45.41 1.28 27.59 28.29 0.7 58.14 58.43 0.29

SRC 81.76 80.58 1.18 54.59 55.58 0.99 50.00 50.39 0.39 27.08 29.14 1.80 57.89 58.07 0.18

SRC (τ=0.5) 83.54 82.75 0.79 53.38 55.30 1.92 49.47 50.86 1.39 - - - - - -

SRC w/ Softmax 82.80 82.29 0.51 54.10 56.70 2.60 49.81 50.93 1.12 - - - - - -

SRC+FL 80.30 80.70 0.40 57.55 57.90 0.35 50.38 50.35 0.03 29.53 29.77 0.24 57.64 57.95 0.31

Table 6. Test robust accuracy (%) on three benchmarks. “Natural” is the natural accuracy. “BC” is the highest test
accuracy observed during training. “FC” is test accuracy on the last epoch. “D” indicates the difference between the
highest and final checkpoints. The symbol ↓ means the lower score is better, and the symbol ↑ means the higher
score is better.

error curves for different methods, which enable us to investigate the problem of robust overfitting
in more detail.

Effectiveness of SRC. As shown in Table 6, the proposed SRC can achieve a smaller
degradation in robust accuracy, indicating that SRC can mitigate robust overfitting. For example,
there is a 0.99 of performance degradation at the last checkpoint on CIFAR-10, which is on par
with the best checkpoint. However, in the results of CIFAR-100 reported in Figure 6(a), we find
that SRC begins to decrease after the second drop of learning rate, where robust overfitting still
exists. Fortunately, we observe that combining Flooding and SRC helps address this problem, while
increasing the robust accuracy (see the black curves shown in Figure 6(a)).

The results in Table 6 indicate that the original SRC can also help improve the robustness at
the best checkpoint, but it will achieve higher “D” scores. Finally, because both logit and softmax
features can reflect the model’s confidence, we use softmax features instead of logit features. We
report the corresponding results in Table 6 and Figure 6. The experimental results show that using
the softmax features helps improve the robustness of the model at the best checkpoint. It can
achieve the best robust accuracy against strong AutoAttack. However, using the softmax features
results in a more oscillating test curve compared to using logit features (see the orange curves in
Figure 6(a)). These results verify the advantage of using logit features for SRC.

3.3.1.2 Evaluation on Robust Performance In this part, we mainly evaluate the robust
performance of our SRC and the baseline methods. Specifically, the natural accuracy and adversary
accuracy of these methods are reported in Tables 6 and 7.

Effectiveness of SRC. From Tables 6 and 7, we observe that the most commonly used
regularization methods help improve the performance against PGD-attack with 10 iterations
(PGD-10). With the help of many valuable tricks [37], the original PGD-AT can still achieve
better performance, especially defending the AutoAttack. Compared to early stopping (ES) [29],
three regularizations, i.e., TRADES, MART, and our SRC, have a performance degeneration on
natural accuracy. Meanwhile, TRADES and MART have a slight performance improvement on
adversary accuracy against AutoAttack, but our SRC can indeed improve the robustness against
the AutoAttack, achieving at least 1.18% improvement.

Results of SRC with Flooding. We can find that AT-FL can reduce the degradation of
the robust performance between the best and last checkpoints, as shown in Table 6. AT-FL helps
finding a more robust model against the PGD-attack, which reaches averaged performance gains
of 2.6%, 1.51%, and 1.52% on three datasets i.e., CIFAR-10, CIFAR-100, SVHN compared to
recent TRADES. However, AT-FL is still sensitive to the recent strong AutoAttack, which has
an 11.93% degradation in robust performance on CIFAR-10. Interestingly, combining Flooding
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(a) Adversarial Loss Curves on CIFAR-10
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(b) Adversarial Loss Curves on CIFAR-100
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(c) Adversarial Loss Curves on SVHN

Figure 6. Learning curves on CIFAR-100 and SVHN for different models, i.e., PGD-AT, TRADES, AT-FL, and
Ours. (Best view in color.)

and the most widely used regularizations like TRADES and MART hurts the performance against
AutoAttack. Instead, combining Flooding and our SRC can achieve satisfactory results under
different adversarial attacks. This verifies the effectiveness of the proposed SRC.

Effectiveness of SRC with AWP. Adversarial Weight Perturbation (AWP) [49] is a recent
SOTA model which can achieve top performance on the leaderboard12 of AutoAttack. Following
the setting in [49], we combine our SRC with AWP, and we report the new combination method
(SRC+AWP) in Table 7. We find that SRC+AWP has an average performance gain of 3.02%

12https://robustbench.github.io/

Intermediate toolset for robust, explainable, fair, and privacy-preserving AI 32 of 151

https://robustbench.github.io/


Method Natural PGD-10 AutoAttack

AT with Tricks [37] 83.40% 54.53% 49.80%

ES [29] 82.73% 53.43% 48.30%

TRADES 81.32% 56.13% 48.94%

MART 77.69% 57.91% 48.98%

SRC 80.58% 55.58% 50.39%

SRC (WRN) 85.84% 58.37% 53.94%

AT-FL 82.34% 57.82% 45.41%

TRADES+FL - 59.16% 46.58%

MART+FL - 58.63% 45.56%

SRC+FL (β = 5.0) 82.29% 57.90% 50.35%

SRC+FL (β = 6.0) 79.27% 57.95% 51.05%

AWP 81.26% 55.76% 50.34%

SRC+AWP 83.95% 57.31% 51.86%

SRC+AWP+FL 77.36% 58.93% 50.94%

SRC+AWP (WRN) 87.19% 59.83% 55.00%

SRC+D 86.13% 58.93% 54.07%

SRC+D+FL 83.40% 59.28% 51.67%

SRC+D (WRN) 90.12% 63.73% 60.01%

FAST [58] 83.34% 47.37% 42.53%

FreeAT [59] 79.31% 46.49% 41.37%

SRC+FGSM 79.03% 50.05% 46.39%

Table 7. Test accuracy on CIFAR-10. “+D” means semi-supervised data augmentation is used. “WRN” means
WideResNet is used. “+FL” means Flooding is used. “+AWP” means the adversarial weight perturbation [49] is
used. PGD-AT is the recent SOTA model with considering many useful tricks [37]. “ES” means the early-stopping
is used.

over SRC, under two adversarial attacks, showing that AWP can benefit the model robustness.
Meanwhile, we further evaluate the adversary accuracy against AutoAttack, when the robust model
is WideResNet-34-20. Under this setting, we notice that SRC+AWP can achieve satisfactory results
on CIFAR-10, and these results are competitive on the leaderboard, without using any extra or
synthesized dataset.

Effectiveness of SRC with Semi-Supervised Learning. Semi-supervised learning, like
the prior works [40], [60], can further improve the robust performance, and it helps defend against
the AutoAttack. We use the same framework as in [40] and add the SRC during training, which
is called “SRC+D”. We find that unlabeled data also has a positive impact on improving the
robustness, which achieves at least 6.03% performance improvement. Furthermore, when replacing
the backbone with WideResNet-34-20, the best robust performance can be achieved. Specifically,
as shown in Table 7, SRC+D (WRN) can reach 60.01% test robust accuracy against AutoAttack,
which can achieve at least top-13 on the leaderboard of AutoAttack. We believe that using other
data augmentation techniques like [61] may help improve the performance further, and we leave it
for the future work.

3.3.2 Conclusions

Overall, in this research, we focus on mitigating the problem of robust overfitting. Our main
innovations are as follows:

1. We observe two intriguing properties through the analysis of different model calibrations.
These properties reflect an important relationship between robust overfitting and model
calibration, motivating us to overcome robust overfitting from a new perspective.
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2. We draw inspiration from our experimental observations and introduce a new regularizer for AT,
which can effectively avoid robust overfitting and consistently improve defense performance.

3. Experiments show that the proposed SRC can achieve SOTA adversarial accuracy against
both PGD-attack and AutoAttack on three commonly used benchmarks.

Our experiments verify that the proposed method can help better defense the cutting-edge
adversarial attack methods. Recent studies show that the multi-modal models like CLIP [62] can
substantially improve the robustness of a model [63]. This advantage is mainly benefited from the
large-scale, diverse, multi-modal data. In our future work, we will also focus on how to handle
robust overfitting and enhance adversarial accuracy against adversarial attacks with the help of
multi-modal models.

3.3.3 Relevant Resources and Publications

Relevant publications:

• H. Liu, Z. Zhong, N. Sebe, and S. Satoh, “Mitigating Robust Overfitting via Self-Residual-
Calibration Regularization”, Artificial Intelligence, vol. 137, Article 103877, April 2023. [53].
Zenodo record: https://zenodo.org/record/7858712.

Relevant resources:

• The Pytorch implementation can be found in
https://github.com/LynnHongLiu/AIJ2023-SRC.

3.3.4 Relevance to AI4Media use cases and media industry applications

Adversarial training is one of the methods used to defend against the threat of adversarial attacks
but it is prone to overfitting. Briefly speaking, the best performance is achieved at a specific
intermediate checkpoint, but further training will continue to decrease the robust training loss
while increasing the robust test loss. This phenomenon is so-called robust overfitting. Our solutions
to avoid robust overfitting are of utmost relevance to all the use cases in which a deep learning
model needs to be learnt. We have discussed in the section the application on image analysis so
the approach could be directly relevant to use cases (a) 3A3 (archive exploration), specifically
3A3-11 Visual indexing and search and (b) 7A3 (Re)organisation of visual content by supporting
the efficient training and organization of image and video collections. However, the approach can
also be applied when other modalities are involved, e.g., 4C3 (audio analysis).

3.4 Geometrically-inspired training scheme for adversarial robustness

Contributing partners: AUTH

A classification system that operates for some specific use case, e.g., a biometric authentication
system, could be vulnerable to adversarial attacks, especially if it is based on a neural network.
Nevertheless, even when the system vulnerabilities are known, in many cases, it is still very
difficult to completely replace the classification system/model that is already installed and running.
Therefore, adversarial robustness methods that can be used in existing neural network architectures
that are relatively easy to implement, e.g., re-train the neural network with different optimization
criteria, are very useful. For this reason, we worked on devising a neural network optimization
method that does not add significant computational overhead to the standard training procedure,
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which is based on geometric criteria. In order to devise those geometric optimization criteria, we
performed a deep dive into one-class classification methods, which were used to define objective
functions that aim to minimize the representation variance between items belonging to the same
class, for instance, vectorized representations of images that are used to identify a user. As will be
shown below, the proposed optimization criteria leads some well known adversarial attacks to fail
more often in transferability attack settings, when compared to standard training or adversarial
training principles.

3.4.1 Overview

In a more technical fashion, adversarial defenses in classification systems aim to increase their ability
to withstand or overcome input perturbation, generated by adversarial attacks. Let a classification
system y = f(x;θ), where f is the model decision function parametrized by θ, x are the model
inputs and y is the model prediction. Robustness is quantified by determining its tolerance to
perturbation ∥p∥< ϵ per se, i.e., f(x;θ) = f(x+ p;θ). Other definitions of adversarial robustness
have been proposed in the past, that focus on altering the classification architecture, e.g., input
filtering [64], Generative methods [65]. Using the above definition of robustness, we consider such
methods irrelevant to the proposed one.

Our work focuses on adversarial defenses that modify the training process of a neural network,
while maintaining the same neural network architecture, only by trying to derive in different
parameters i.e., f(x; θ̃). One approach to this end is to fine-tune or re-train the model by exploiting
adversarial samples, derived by employing one or more adversarial attack methods, calculated
implicitly or explicitly [66], [67]. The main disadvantages of these approaches are the introduced
workflow for calculating the adversarial examples, while at the same time, model classification
accuracy in clean data is negatively affected [68]. Moreover, due to the adversarial attack-specific
nature, there is no guarantee that such defenses remain effective against different types of adversarial
defense. Ultimately, the effectiveness of adversarial defense methods that fall into the above category
seems to rely on achieving the production of as similar intermediate data representations as possible
for both clean and adversarial images belonging to the same specific class. Recently proposed
adversarial defenses showed that incorporating distance-based optimization criteria might achieve
this goal, without requiring re-training the model with adversarial examples [69], [70]. The second
advantage of such methods is that they might employ adversarial training as a complementary step,
providing increased robustness to specific adversarial attacks.

This work extends the recently proposed Hypersperical Class Prototypes (HCP) method [70],
by incorporating novel optimization terms inspired by the present state-of-the-art in deep neural
network-based one-class classification problems. The proposed method does not imply modifications
to the deep neural architectures or the creation of adversarial examples for training purposes.
It is deployed in the form of alternative loss functions that supervise the distribution of final
and intermediate layer activation values. It is shown that the proposed method increases (or at
least does not hinder) the classification accuracy in clean examples, while it provides increased
robustness to adversarial attacks at the same time. The proposed method is evaluated in black-box/
transferability-based adversarial attack settings in image classification tasks.

3.4.2 Robust One-class Classification-based training loss

The developed method alters the training procedure of a standard neural network architecture,
by training in-parallel, additional layer(s) that learn prototype vector centers in the feature space.
By minimizing the variance between various class items representations with their corresponding
prototype vector, we argue that adversarial attacks require to add more noise to the representation,

Intermediate toolset for robust, explainable, fair, and privacy-preserving AI 35 of 151



in order to be successful. Probably the best way to formulate and learn class prototypes, is by
devising one-class classfication methods, since the focus of such methods is to learn the optimal
way to separate each single class from the rest of the dataset.

Let K be the set of layers on which the proposed objectives will be applied to, where gk(x;θ) is
k-th layer representation of some input x. This method aims to learn hyperspherical prototypes in
the k-th layer defined by the prototype matrices A(k) ∈ RC×Lk , where Lk is the dimensionality
of the k-th layer, and radii R|K|×C that will act as one-class classifiers, verifying data sample
activations belonging to the j-th class. To this end, the optimization problem for each sample xi is
the following:

min:
R,Ξ,A(k)

∑
k∈K

C∑
j=1

r2kj +
∑
k∈K

ck

N∑
i=1

ξki (1)

s.t.:
∑
k∈K

C∑
j=1

(
−yij

(
r2kj − ∥gk(xi;θ)− a

(k)
j ∥

2
)
≤ ξki

)
,

ξki ≥ 0

where a
(k)
j is the prototype center for class j, yij = 1 if sample xi belongs to class j, or yij = −1,

otherwise, ξki are the slack variables and ck ≥ 0 is a hyperparameter that allows training error
(i.e., soft margin formulation) relaxing the optimization constraints. The constraints of the above
optimization problem can be optimized by applying the following hinge loss function in every layer
selected in K:

LM =

C∑
j

max
(
ck,−yij

(
r2kj − ∥gk(xi;θ)− a

(k)
j ∥

2
))

. (2)

Both the feature vectors and the prototype vectors are trainable parameters. We employ a value of
ck = 0. The loss value is LM > 0 if and only if the one-class classifier decision function misclassifies
xi. The compactness of the derived class representations is proportional to the learned value of the
corresponding radius rkj .

The above function does not produce loss values for marginal data items, i.e., items lying close
to the hypersphere boundaries. To this end, we employ a contrastive loss term for items belonging
to the same class. We consider a mini-batch of size N is randomly sampled and the contrastive
prediction task is defined on pairs of data representations derived from the mini-batch, resulting in

2N data points. For a pair of data representations z1 = gk(x1,θ)− a
(k)
j , z2 = gk(x2−,θ)− a

(k)
j

belonging to the j-th same class, the loss function is defined as follows:

LC(z1, z2) = −log

(
exp(zT1 z2/T)

exp(zT1 z2/T) +
∑2N

i=2 exp(z
T
1 zi/T)

)
(3)

where zi are the remainder mini batch representations and T is the so-called temperature hyperpa-
rameter (a value of T = 0.25 was used in all our experiments). The introduction of the above loss
term promotes the derivation of similar representations in the feature space, without minimizing
their Euclidean distance.

However, the LC might indirectly increase the Euclidean distance, especially if it is very small,
which is something that is contradicting to adversarial robustness. Therefore, we follow the same
practice and also employ an Angular loss term to complement this contrastive loss:

LA(z1, z2) = ∥zT1 z2∥2. (4)
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Table 8. Classification accuracy of the competing methods.

Method/Dataset CIFAR-10 CIFAR-100 SVHN

Vanilla 93.36 74.04 96.23

Center Loss 93.77 69.75 95.90

PCL [69] 92.30 68.19 95.37

HCP [70] 93.31 72.83 95.85

ROCC 94.46 73.62 96.31

Table 9. Robustness (classification accuracy) in PGD black-box attack, by using the Vanilla ResNet architecture as
attack model.

Method/Dataset CIFAR-10 CIFAR-100 SVHN

Centrer Loss 57.60 40.40 86.59

PCL [69] 61.61 42.55 84.94

HCP [70] 60.67 46.92 86.50

ROCC 65.09 44.97 86.92

Finally, we formulate the proposed learning procedure called Robust One-class Classification
(ROCC) loss function as the combination of the constraints of the abovementioned optimization
terms, as follows:

LROCC = LM + LC + LA. (5)

3.4.3 Experiments

ResNet-101 [71] was employed as the baseline architecture. We have employed the publicly available
CIFAR-10, CIFAR-100 [50] and SVHN [72] datasets. In our first set of experiments, we compare the
classification accuracy of various defences. Table 8 reports the obtained classification accuracy in
the respective datasets. As can be observed, the proposed method outperforms all other adversarial
robustness methods in every case while it even outperformed the vanilla softmax optimization
function in two cases. This can be attributed to the fact that the proposed optimization functions
only consider how to obtain better representations for each class, thus being compatible with any
standard classification loss function.

In our second set of experiments, we evaluate the Robustness of the competing methods to the
iterative projected gradient descent (PGD) [66] attack, with a corresponding parameter e = 0.1.
To this end, we employed the Vanilla ResNet architecture for generating adversarial samples and
inferred their labels by the respective robust models trained using the competing methods. Here
it should be noted that this attack is the strongest form of transferability attacks, since the only
difference between the attack and target architecture are the network parameters. The results are
reported in Table 9. As can be observed, in the 10-class datasets (CIFAR-10, SVHN) the proposed
ROCC method outperformed the competition, except for the CIFAR-100 case.

Finally, in our third set of experiments, we employed the competing architectures to attack
each other, as ”host” and target architectures. We again used the PGD attack with e = 0.1. Here,
it should be expected that the most robust architectures are supposed to a) remain robust in
transferability attacks and b) create strong adversarial samples that are able to fool the other
defenses. As can be observed in Table 10, the proposed ROCC method produces the strongest
transferability attacks among the competition (red), while at the same time, it remains the most
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Table 10. Cross-method black-box PGD attacks in CIFAR-10.

Attack Method/Robust Method Center Loss PCL [69] HCP [70] ROCC

Center Loss - 73.46 75.51 80.53

PCL [69] 69.83 - 75.21 78.90

HCP [70] 78.17 79.47 - 83.34

ROCC 64.01 65.16 67.23 -

robust in the opposite scenario (bold).

3.4.4 Conclusions

This work described an adversarial robustness method by exploiting and re-formulating one-class
classification inspired optimization criteria. The proposed optimization scheme increases adversarial
robustness in black-box adversarial attacks without negative effects on classification accuracy. An
interesting link was found, between one-class classification and adversarial robustness. The proposed
criteria should also be studied in other forms of computer vision problems, e.g., regression-based
problems such as object detection/tracking.

3.4.5 Relevant publications

• V. Mygdalis and I. Pitas, “Exploiting One-Class Classification optimization objectives for
increasing Adversarial Robustness”, IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2023.
Zenodo record: https://zenodo.org/record/8276389

• V. Mygdalis and I. Pitas, “Hyperspherical class prototypes for adversarial robustness”, Elsevier
Pattern Recognition, vol 125, pp 108527, 2022.
Zenodo record: https://zenodo.org/record/5137295

3.4.6 Relevance to AI4Media use cases and media industry applications

This technology provides new optimization objectives for general purpose deep neural network
training that can strengthen and robustify them against adversarial threats. Compatible neural
networks with the developed optimization objectives can be found in several AI4Media use cases.
Such special focus can be found in AI4Media UC1: “AI for Social Media and Against Disinformation”,
in neural networks that are fighting disinformation by detecting deep fakes. More concretely, some
formats of deep fakes that can be produced in an adversarial manner, e.g., by optimizing for fooling
a disinformation detector, will be hindered if this deep fake detector is trained with the developed
technology.

3.5 Matching Pairs: Attributing Fine-Tuned Models to their Pre-Trained
Large Language Models

Contributing partners: IBM
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3.5.1 Overview

Large Language Models (LLMs) or more generally Foundation Models are an emerging technology
of general-purpose AI models trained on large volumes of data which can be fine-tuned for a wide
range of downstream tasks. LLMs, in particular, can generate novel high-quality text and help
drive many downstream applications including machine translation, question answering, and text
summarization systems.

However, training these models is challenging as it requires access to vast amounts of data (text
corpus) and large compute. This has led to a market where developers, who often don’t have access
to such resources, source LLMs from third-parties (which we refer to as base models) and fine-tune
them for specific domain/tasks. With about 450 start-ups working on generative AI13 and over
100,000 models hosted in some repositories 14, there are growing threats like violation of model
licenses, model theft, and copyright infringement. Moreover, recent advances have shown that
generative AI is also capable of producing harmful content [73] which only exacerbates the problems
of accountability within ML supply chains. As approaches like watermarking are shown to be easily
bypassed, there’s a need for developing general purpose solutions to help with forensics. This work
takes the first step to tackle these open challenges by developing defense methods that can attribute
a fine-tuned language model to its base model. Establishing this attribution relationship is the first
line of defence for an AI forensic investigation.

This work formalizes the role of attribution within the supply chain and presents heuristic and
ML based approaches for attribution under different knowledge levels. Furthermore, it shows how
such methods can be made more efficient for constrained settings where an attributor may have
limited access to the model and/or its API. Attribution is an important step in making the AI
model supply chains more robust.

3.5.2 Experiments

This work considers two collections of LLMs — the first one is a set B of pre-trained base LLMs,
and the second one is a collection F of fine-tuned LLMs. It assumes that every model mf ∈ F was
effectively obtained by fine-tuning a model mb ∈ B. The goal of LLM attribution is to design a
function f : F → B that maps a given fine-tuned model mf ∈ F back to its corresponding base
model mb ∈ B. This work trains a classifier to model this function. The classifier captures the
correlations between an arbitrary response and the base model mb. For example, with a prompt p,
this could capture the relationship between a response mb(p) and mb. Similarly, one can capture the
relationship between a response mf (p) and mb where mf is obtained by fine-tuning mb. Assuming
that such correlations are preserved in a base model and fine-tuned model pair, the classifier can
determine the attribution of a fine-tuned LLM.

Given a set of prompts p1, . . . , pK , there are multiple ways to prepare them for the classifier.
One can apply the target base model, or fine-tuned model to get the responses, and concatenate
the prompt and its response. Specifically, this work considers the following input representations
(here, SEP refers to commonly used separators like comma or colon):

• Base model only (IB): “pi mb(pi)”

• Fine-tuned model only (IF): “pi mf (pi)”

• Base model + fine-tuned model (IB+F): “pi mb(pi) SEP pi mf (pi)”

• Separate embeddings for the base model and fine-tuned model.

13https://www.nfx.com/post/generative-ai-tech-market-map
14https://huggingface.co/
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Attribution

Method
K

m# TP
0 1 2 3 4 5 6 7 8 9

HDT KU ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ 5

Perplexity KU ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ 1

TripletNet + P1 KU ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ 3

BERT + IF + P1 KU ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ 6

BERT + IB+F + P1 KU ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ 6

Exact matching KR ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ 5

BERT + IB + P1 KR ✓ - ✓ - ✗ ✗ ✓ ✓ ✓ ✓ 6

BERT + IB + P3 KR ✓ ✗ - ✗ ✗ ✓ ✓ ✓ - ✓ 5

BERT + IB+P1+P2 KR ✓ ✓ ✓ - ✗ ✓ ✓ ✓ ✓ ✓ 8

Table 11. Model Attributions on m# from the different methods. Dashes (–) are used when multiple models (mf )
are attributed to mb. TP denotes True Positives

The second important bit in the design of the attributor is the choice of prompt set. More
specifically, this work considers three approaches: a small set (P1) of edge cases that are distinct
to each corpus, a naive collection (P2) of prompts, and reinforcement learning to select a subset
(P3) from the edge cases.

A summary of the attribution approaches is provided in Table 11 where the approach was tested
on 10 pre-trained models labelled 0-9. The Heuristic Decision Tree (HDT) and perplexity based
solutions provide baseline approaches. HDT uses a series of discriminative heuristics to categorise
F . Similarly, perplexity can be leveraged for measuring attribution by computing the perplexity
of mb relative to the response of mf to prompt p. A lower perplexity would be indicative of an
existing attribution relationship between mb and mf . And finally, the exact match as the name
suggests looks at responses from mb and mf for the same prompts.

Under KU conditions (descirbed in [74]) the baselines of Perplexity and HDT are only able to
correctly attribute 1 and 5 models respectively. Perplexity fails to capture the subtly of attribution,
as repetitive responses lead to lower perplexity and so incorrect attribution. The HDT particularly
fails to account for overlap in pre-training and fine-tuning. For instance, DialoGPT-Large and
mf3 (fine-tuned version of distilgpt2) respond in similar short sentences that leads to incorrect
attribution. The TripletNet baseline performs poorly, only correctly attributing 3 of the models.
Both BERT based attributors are able to attribute more models correctly in comparison to the
baselines.

Examining the models at KR (descirbed in [74]) shows similar performance. The exact match
correctly attributes 5 models and BERT+IB identifies 6 models. BERT+IB+P1 + P2 attributor is
the most successful by correctly attributing 8 models. Note that this model is the most expensive
to train as we have to query a large number of prompts.

3.5.3 Conclusion

This work took initial steps in the LLM attribution problem. It studied LLM attribution in different
settings which limit access to B and F to different levels and provides an interesting and realistic
study of LLM attribution. It considered a variety of different LLMs that were trained on different
datasets, and for different purposes. It postulated that the 10 different LLMs provide a didactic
range of models for LLM attribution. In the experiments, it used pre-existing LLMs that were fine-
tuned by the open-source community to demonstrate the applicability of our methodology. Overall,
our work contributes to the growing understanding of LLM attribution, laying the foundation for
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future advancements and developments in this domain.

3.5.4 Relevant Resources and Publications

Relevant publications:

• Myles Foley, Ambrish Rawat, Taesung Lee, Yufang Hou, Gabriele Picco, and Giulio Zizzo.
2023. Matching Pairs: Attributing Fine-Tuned Models to their Pre-Trained Large Language
Models. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 7423–7442, Toronto, Canada. Association for
Computational Linguistics. [74].
Zenodo record: https://zenodo.org/record/8281959.

Relevant software and/or external resources:

• Model Attribution in Machine Learning, Github repository: https://github.com/IBM/

model-attribution-in-machine-learning

3.5.5 Relevance to AI4Media use cases and media industry applications

Rapid adoption of machine learning across all industries has raised challenges on model ownership
and traceability. For instance, one is likely to face issues on model theft or copyright infringement.
This is particularly relevant for sectors like media industry where generative models are being used
to create content. Given an access to an API for generating content, how can one trust the source
of the API? In this work, we provided a method to establish this relationship and make ML supply
chains more robust.
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4 Explainable AI (Task 4.3)

The last decade has seen a tremendous adoption of AI technology across a wide range of industries.
AI has now become an indispensable part of our society. Accompanying this adoption however
is an increasing concern about the opacity of such systems to human scrutiny. The reasons why
such systems arrive at specific decisions are in most cases unknown to their users. In many cases,
this opacity exists as well for the designers of such systems. This situation is thus one of the main
obstacles that prevent the further adoption of AI technology across society today.

Explainable AI hence attempts to provide tools which enable the generation of explanations
clarifying how a given model reached a decision and are understandable by humans. The method-
ologies and tools presented in this section hence addresses the need in the industry and society
at large for AI models that can provide human understandable explanations of their underlying
mechanisms.

Contributions towards the Explainable AI task (T4.3) include work on (i) using visualisations
to explain deep learning insights when detecting synthetic audio (Section 4.1), (ii) designing a new
attention mechanism for visual explanations of image classifiers (Section 4.2), (iii) new learning
methods for semantic editing of GANs for generating images (Section 4.3), (iv) disentangling
neuron representations with concept vectors (Section 4.4), (v) a novel architecture for combining
multitask learning and adversarial training (Section 4.5), (vi) explainability in autonomous driving
systems (Section 4.6), (vii) explainability in multi-model AI systems (Section 4.7), (viii) an analysis
of Anchors in text classification systems (Section 4.8), (ix) explainability through concept-based
models (Section 4.9), and (x) an extension of concept bottleneck models (Section 4.10). An outline
of the first Nice Workshop on Interpretability (NWI) is given in Section 4.11.

4.1 Deep Learning Insights into Synthetic Audio Detection: An Inter-
pretable Approach Using Saliency Maps

Contributing partners: CERTH

4.1.1 Overview

The rapid proliferation of digital technology has catalyzed an upsurge in the production of high-
quality synthetic audio. While this technological breakthrough offers a plethora of benefits across
numerous sectors, it simultaneously introduces a formidable challenge, that is, distinguishing
synthetic audio from real audio. Consequently, this has prompted the need for robust detection
systems, with deep learning models featuring prominently due to their superior performance.

Nevertheless, these deep learning models often invite criticism for their “black box” nature,
characterized by decision-making processes that hinge on intricate internal operations that are
neither immediately transparent nor understandable to users [75]. This lack of clarity can erect
significant barriers to the practical deployment and user trust in the system’s verdicts.

In order to counteract this limitation, there has been a surge in research endeavors aimed at
augmenting the interpretability of deep learning models. This necessitates making the decision-
making processes of these models more explicit and intelligible [76]. In the context of synthetic
audio detection, enhanced interpretability can provide insights into the specific features the model
leverages to classify an audio sample as synthetic or real.

In the presented approach, the principal aim is to augment the accessibility of synthetic
audio detection models for non-technical users. By leveraging Gradient-weighted Class Activation
Mapping (Grad-CAM) [77], the model’s decision-making process is visualized, thereby transforming
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an otherwise opaque computational process into an understandable and interpretable output. This
strategy is purposely designed to circumvent the need for expertise in spectrogram interpretation,
thereby making the complexity of synthetic audio detection more approachable for users of varying
technical backgrounds.

4.1.2 Methodology

Our interpretative AI solution for synthetic audio detection is primarily designed around the
Grad-CAM [78]. Grad-CAM, a visualization technique developed by Selvaraju et al. [78], is used for
identifying the significant areas within an input that a Convolutional Neural Network (CNN) utilizes
for class distinction. Here, we employed the deep CNN model, VGG16, due to its well-acknowledged
proficiency in image recognition tasks [79].

The methodology begins with the generation of saliency maps from Mel spectrograms of the
audio samples, as shown in Figure 7. Mel spectrograms are a specific kind of spectrograms, which
scale frequency in a way that is intended to mimic the human ear’s response to different frequencies
[80]. The audio data we used is sourced from the Fake-or-Real (FoR) dataset [81]. This dataset
comprises more than 117,000 real speech utterances and 87,000 synthetic phrases, collected from
various open-source datasets and generated using commercial and open-source Text-to-Speech
(TTS) systems. The dataset is gender-balanced and encompasses a variety of voices and recording
devices to avoid overfitting.

The saliency maps are then converted into frequency vectors by summing the pixel intensities
across the time axis for each frequency bin. This process enables us to concentrate on the frequency
regions the model finds critical, effectively eliminating the temporal factor that could introduce
significant variability.

Average saliency maps are computed for each class, synthetic and real, from the training dataset.
These averages serve as a benchmark when comparing the saliency map of a new audio sample.
Here, the comparison is conducted using cosine similarity [82], which quantitatively encapsulates
how similar the pattern of frequency importance of a new sample is to the established patterns for
each class. The use of cosine similarity, a measure of the cosine of the angle between two vectors,
provides an easily interpretable metric for both technical and non-technical users.

To counteract the dominance of less significant areas in the new sample, a thresholding mechanism
is utilized. In this context, a threshold is set for the pixel intensities, where only those exceeding
this threshold are considered ’important’, while others are disregarded. This approach allows the
model to focus only on the highly significant regions within the spectrogram.

By employing this methodology, we can generate an interpretable output, understandable even
without a deep understanding of Mel spectrograms or audio analysis techniques.

4.1.3 Results

The methodology applied in this work unveils crucial aspects of interpretability in synthetic audio
detection, illuminating the decision-making processes of the VGG16 model. Through the use
of Grad-CAM visualizations, distinct areas contributing to the model’s classifications between
synthetic and real audio are graphically presented.

In scrutinizing the average saliency maps (Figure 8, the areas within the frequency domain that
significantly influence the model’s classification decisions are showcased. A visual analysis of these
maps reveals a consistent pattern: the model tends to be more active in lower frequency bands
across both classes, while a stronger activation is observable in higher frequencies for real audio
instances. This pattern might suggest a pivotal role of frequency bands in distinguishing synthetic
audio from real ones, constituting a promising area for future exploration.
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(a)

(b)

(c)

Figure 7. Visualization of the spectrogram, saliency map, and superimposed image of an audio sample. (a) The
spectrogram shows the frequency components of the audio sample over time. (b) The saliency map shows the areas
of the audio sample that are most salient, or attention-grabbing. (c) The superimposed image shows the audio
sample with the saliency map overlaid.

The use of cosine similarity in this context serves as an intuitive metric that provides a window
into the model’s level of confidence when classifying a new instance. A confidence score, calculated
as the absolute difference between the cosine similarity of a new instance with the average saliency
map of the synthetic and real audio classes, is introduced. The larger this score, the more confident
the model is in its classification.

The histogram in Figure 9 visually portrays the distribution of these confidence scores. The
median confidence score is found to be approximately 0.1088, indicating that for a typical sample,
the difference in cosine similarities is about this value. This score should not be interpreted as
a percentage difference but as an absolute difference, which provides a measure of the model’s
ability to distinguish between the synthetic and real audio classes. When considered alongside the
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Figure 8. Average saliency maps for the synthetic (top) and real (bottom) audio classes. The x-axis represents the
time domain from 0 to 251, and the y-axis shows the Mel frequency bins from 0 to 128. The color scheme, depicted
by the legend, illustrates the activation strength from low (blue) to high (red) according to the Jet color map.

observation that most confidence scores lie within a similar range, these findings offer valuable
insights into the model’s decision-making process.

However, it is essential to acknowledge the limitations of this approach. For certain instances,
the confidence scores, derived from the absolute differences of cosine similarities between real and
synthetic audio, might yield values that are quite similar. This scenario may hint at the method’s
struggle to make a definitive distinction between classes, leading to potential errors or contradictive
results compared to the VGG16 classification result.

Though this work employed the FoR dataset, the flexibility of the methodology allows for the
use of other publicly available or custom datasets, paving the way for a broader evaluation of its
performance across diverse data sources.

In summary, the methodology developed in this work presents an interpretable AI solution for
synthetic audio detection, enabling a deep understanding of the complex decision-making process,
accessible to both technical and non-technical audiences.

4.1.4 Relevance to AI4Media use cases and media industry applications

Our methodology is related and intended to be intergrated in UC1’s synthetic audio detection
application. Designed for media professionals in fields like journalism, film, and gaming, our system
aims to provide more than just a ‘real’ or ‘synthetic’ label for the audio samples tested. The goal is
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Figure 9. Distribution of confidence scores, calculated as the absolute difference between cosine similarities of new
instances with the average saliency maps of synthetic and real audio classes. The median confidence score (depicted
by the dashed red line) is approximately 0.1088, indicating that for a typical instance, the difference in cosine
similarities is about this value.

to offer a transparent decision-making process through visual cues and confidence scores. A high
confidence score will provide assurance in the system’s decision, while a lower score will act as a
cue for deeper, human-in-the-loop investigation.

This dual-layered approach is designed with the expectation of significantly enhancing the
reliability and credibility of automated synthetic audio detection. We aim to foster greater trust
and drive wider adoption among media professionals. Moreover, by making the technology more
accessible, we hope to enable a broader range of users in the media industry to effectively utilize
these tools, thereby strengthening the industry’s defenses against misinformation.

4.2 Learning Visual Explanations for DCNN-Based Image Classifiers
Using an Attention Mechanism

Contributing partners: CERTH

4.2.1 Overview

Gradient-based Class Activation Mapping (CAM) ([83], [77], [84], [85], [86]) and perturbation-based
([87], [88], [89], [90]) approaches have shown promising explanation performance. Given an input
image and its inferred class label, these methods generate a CAM, which is re-scaled to the image
size providing the so-called Saliency Map (SM); the SM indicates the image regions that the Deep
Convolutional Neural Network (DCNN) has focused on in order to infer this class. However, these
methods are either based on backpropagating gradients ([77], [84], [85]), producing suboptimal SMs
due to the well-known gradient problems [91], or require many forward passes at the inference stage
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([87], [88], [89], [90]), thus introducing significant computational overhead. Furthermore, the training
dataset is not exploited in the exploration of the internal mechanisms concerning the decision
process of the classifier. Driven by the observed limitations, in this section we present two new
learning-based CAM methods, called L-CAM-Fm and L-CAM-Img, which utilize an appropriate
loss function to train an attention mechanism [92] for generating visual explanations. Both methods
can be used to generate explanations for arbitrary DCNN classifiers, are gradient-free and during
inference require only one forward pass to derive a CAM and generate the respective SM of an
input image.

4.2.2 Methodology

4.2.2.1 Problem formulation Let f be a DCNN model trained to categorize images to one
of R different classes. Suppose an input image X ∈ RW×H×C that passes through f producing
a model-truth label y ∈ {1, . . . , R}, i.e. the top-1 class label inferred by f , and K feature maps
extracted from f ’s last convolutional layer,

A ∈ RP×Q×K , (6)

where,W , H, C and P , Q, K, are the width, height and number of channels of X and A, respectively,
and A:,:,k is the kth feature map. Given the above, the goal of CAM-based methods is to derive
an activation map from the K feature maps, the so-called CAM, and based on it generate the
respective SM, visualizing the salient image regions that explain f ’s decision.

4.2.2.2 Training the attention mechanism Consider a training set of R classes (the same
ones used to train f), where each image X in the dataset is associated with a model-truth label y.
This dataset is used to train an attention mechanism g(),

L(y) = g(y,A), (7)

where L(y) ∈ RP×Q is the CAM produced for a specified X and y. Specifically, the attention
mechanism is implemented as follows

g(y,A) =

K∑
k=1

w
(y)
k A:,:,k + b(y)J, (8)

where, the weight matrixW = [w(1), . . . ,w(R)]T ∈ RR×K and bias vector b = [b(1), . . . , b(R)]T ∈ RR

are the parameters of the attention mechanism, the transpose of vector w(r) = [w
(r)
1 , . . . , w

(r)
K ]T ∈

RK is the rth row of W, w
(r)
k ∈ R is the kth element of w(r), and J ∈ RP×Q is an all-ones matrix.

That is, the model-truth label y at the input of g() is used to select the class-specific weight vector
and bias term from the yth row of W and b, respectively.

To learn the parameters of the attention mechanism we developed two different approaches,
called L-CAM-Fm and L-CAM-Img, with their network architectures depicted in Figs. 10a and
10b, respectively. In both cases, the attention mechanism is placed at the output of the last
convolutional layer of the DCNN and the elements of the derived CAM are normalized to [0, 1]
using the element-wise sigmoid function σ(). In L-CAM-Fm, the CAM produced by the attention
mechanism is used as a self-attention mask to re-weight the elements of the feature maps. Contrarily,
in L-CAM-Img the derived CAM is upscaled and applied to each channel of the input image.

The overall architecture is trained end-to-end using an iterative gradient descent algorithm,
where the attention mechanism’s weights are updated at every iteration, while the weights of f
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(a)

(b)

(c)

Figure 10. The network architectures of the developed approaches: (a) L-CAM-Fm training, (b) L-CAM-Img
training, (c) L-CAM-Fm/-Img inference.

remain fixed to their original values. For both of the developed approaches, we use a loss function
that is made of a Cross Entropy (CE) loss term, an average variation term and a total variation
term. Intuitively, the latter two terms, in synergy with the CE loss, guide the DCNN to learn more
informative, fine-grained SMs, i.e., SMs that contain only a few high-valued elements corresponding
to the image regions contributing mostly to the classifier’s decision.

4.2.2.3 Inference of model decision’s explanation At inference stage, the procedure to
derive the CAM of a test image is the same for both L-CAM-Fm and L-CAM-Img approaches
(see Fig. 10c). That is, the test image is forward-passed through the DCNN to produce the
corresponding feature maps and the model-truth label, which are then forwarded to the trained
attention mechanism for computing the CAM (Eqs. (7), (8)).
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4.2.3 Results

The developed L-CAM-Fm and L-CAM-Img are compared against several top-performing approaches
from the literature with publicly-available implementations, namely, the Grad-CAM [77], Grad-
CAM++ [84], Score-CAM [87], and RISE [89] approaches. Two sets of experiments are conducted
with respect to the employed DCNN classifier, i.e., one using VGG-16 [93] and another using
ResNet-50 [94]. In both cases, we use pretrained models from the PyTorch model zoo 15. In
terms of data, we utilize the ImageNet dataset [95], which is among the most popular datasets in
the visual XAI domain. This dataset contains R = 1000 classes, 1.3 million images for training
and 50K images for testing. Due to the prohibitively high computational cost of the considered
perturbation-based approaches for our comparisons, we use only 2,000 randomly-selected testing
images for evaluation, following an evaluation protocol similar to [87]. Finally, in terms of evaluation
measures, we use the Average Drop (AD) and Increase in Confidence (IC) [84], calculated by
retaining all or the most salient pixels of the SM (i.e., 100%, 50% or 15% of the SM).

The evaluation results are presented in the upper and lower half of Table 12 for VGG-16 and
ResNet-50, respectively. As an ablation study, we also report results for the developed methods
when trained using only the CE loss (denoted as L-CAM-Fm* and L-CAM-Img*). The number
of forward passes, #FW, needed to compute the SM for an input image at the inference stage, is
also shown at the last column of this table. The auxiliary masks used by RISE in the VGG-16
experiment are of size 7× 7 [88] (which contrasts to the other approaches that use 14× 14 feature
maps for this experiment). For a fair comparison, we performed an additional experiment with the
7× 7 feature maps after the last max pooling layer of VGG-16 using our L-CAM-Img, denoted as
L-CAM-Img†. The results of this experiment are reported in the last row of the upper half of Table
12, under the L-CAM-Img’s results (i.e. the ones obtained using the 14 × 14 feature maps). In
addition, qualitative results are shown in Figure 11, while class-specific SM results for two images
containing instances of two different classes are provided in Figure 12. From the obtained results
we observe the following:

i) L-CAM-Img generally outperforms the gradient-based approaches and is comparable in AD,
IC scores to the perturbation-based approaches Score-CAM, RISE; though, contrarily to the latter
requires only one FW instead of 512-8,000 at the inference stage.

ii) L-CAM-Img† using 7×7 feature maps achieves the best performance in VGG-16; our approach
is learning-based and, as the experiments showed, it is easier for it to learn the combination of
the feature maps in the lower-dimensional space. This is consistent with the typical behavior of
learning methods when working with high-dimensional data that may lay in a low-dimensional
manifold (which is often the case with images), i.e. the curse of dimensionality.

iii) L-CAM-Img outperforms L-CAM-Fm, but the latter still generally outperforms the gradient-
based approaches.

iv) Both of the developed approaches provide smooth SMs focusing on important regions of the
image, as illustrated in Figure 11 and can produce class-specific explanations, as depicted in the
examples of Fig. 12.

v) From the ablation study of employing only the CE loss (L-CAM-Fm*, L-CAM-Img*), we see
that incorporating the two additional terms in the loss function is very beneficial.

The findings discussed above, point out the advantages of the developed approaches compared
to other existing state-of-art approaches from the literature. Additional qualitative analysis results
and comparisons, as well as details about the implementation and training of the developed and
compared approaches, can be found in the relevant publication.

15https://pytorch.org/vision/stable/models.html
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Figure 11. Visualization of SMs from various XAI methods superimposed on the original input image to produce
class-specific visual explanations for the VGG-16 (columns 1 to 3) and ResNet-50 (columns 4 to 6) backbones.
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AD(100%)↓ IC(100%)↑ AD(50%)↓ IC(50%)↑ AD(15%)↓ IC(15%)↑ #FW↓

Grad-CAM [77] 32.12 22.1 58.65 9.5 84.15 2.2 1

Grad-CAM++ [84] 30.75 22.05 54.11 11.15 82.72 3.15 1

Score-CAM [87] 27.75 22.8 45.6 14.1 75.7 4.3 512

RISE [88] 8.74 51.3 42.42 17.55 78.7 4.45 4000

L-CAM-Fm* 20.63 31.05 51.34 13.45 82.4 3.05 1

L-CAM-Fm 16.47 35.4 47 14.45 79.39 3.65 1

L-CAM-Img* 18.01 37.2 50.88 12.05 82.1 3 1

L-CAM-Img 12.96 41.25 45.56 14.9 78.14 4.2 1

L-CAM-Img† 12.15 40.95 37.37 20.25 74.23 4.45 1

Grad-CAM [77] 13.61 38.1 29.28 23.05 78.61 3.4 1

Grad-CAM++ [84] 13.63 37.95 30.37 23.45 79.58 3.4 1

Score-CAM [87] 11.01 39.55 26.8 24.75 78.72 3.6 2048

RISE [88] 11.12 46.15 36.31 21.55 82.05 3.2 8000

L-CAM-Fm* 14.44 35.45 32.18 20.5 80.66 2.9 1

L-CAM-Fm 12.16 40.2 29.44 23.4 78.64 4.1 1

L-CAM-Img* 15.93 32.8 39.9 14.85 84.67 2.25 1

L-CAM-Img 11.09 43.75 29.12 24.1 79.41 3.9 1

Table 12. Evaluation results for a VGG-16 (upper half) and ResNet-50 (lower half) backbone classifier using 2,000
randomly-selected testing images of ImageNet. The best and 2nd-best performance for a given evaluation measure
are shown in bold and underline, respectively.

Image Pug Tiger cat Image soccer ball Maltese

Figure 12. Two examples of using class-specific SMs (superimposed on the input image) produced by L-CAM-Img†

on VGG-16 for classes “pug” and “tiger cat” (left) and classes “soccer ball” and “Maltese” (right).
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4.2.4 Relevant Resources and Publications

Relevant publications:

• I. Gkartzonika, N. Gkalelis, V. Mezaris, “Learning Visual Explanations for DCNN-Based
Image Classifiers Using an Attention Mechanism”, Proc. ECCV 2022 Workshop on Vision
with Biased or Scarce Data (VBSD), Springer LNCS vol. 13808, pp. 396-411, Oct. 2022.
DOI:10.1007/978-3-031-25085-9 23 [96]
Zenodo record: https://zenodo.org/record/7572371.

Relevant software and/or external resources:

• The implementation of the reported approaches can be found in https://github.com/

bmezaris/L-CAM.

4.2.5 Relevance to AI4Media use cases and media industry applications

The developed approaches can facilitate the explanation of CNN image classifier decisions. Given
the broad use of these classifiers in several use cases of AI4Media, their output will help to: (i)
better assist story development by showing the parts of the image that affected the most the
estimates of a CNN-based classifier concerning the image’s relevance with a news story (Use Case
2: AI for News - The Smart News Assistant), and (ii) support the creation of metadata for visual
content by providing visual explanations (e.g., in the form of heat-maps) about the detected objects
by CNN-based image classifiers (Use Case 3: AI in Vision - High Quality Video Production &
Content Automation), and (iii) advance both the re-organization of media collections and the
content moderation, by associating the CNN-based classification/categorization labels to images
with human-interpretable visual explanations (Use Case 7: AI for (Re-)organisation and Content
Moderation).

4.3 Wasserstein loss for Semantic Editing with GANs

Contributing partners: CEA

4.3.1 Overview

4.3.1.1 Context and Limits of the SotA Generative Adversarial Networks (GANs) are
known to encode the semantics of the training data in their latent space [97]–[99]. Moving the
latent codes in certain directions results in changing specific semantic attributes (e.g., the smile on
a face) in the generated images [97]. This ability makes GANs great tools to perform image editing,
especially as it can be applied to real images through inversion methods [100]. The process directly
links semantic attributes that are understandable by humans to the internal representation of the
neural networks. It allows a human user to modify this representation, that is usually a vector with
several hundred dimension, with a couple of simple clues she/he can grasp and observe the results.
In that sense, it contributes to make the networks more explainable.

The challenge is to identify the manipulations in the latent space that have the desired effect
on one attribute without affecting others. To obtain such disentangled manipulations, existing
supervised methods leverage the semantic knowledge learned by pretrained attribute classifiers
operating either in the image domain (image classifiers) or directly in the latent domain (latent
classifiers). The key idea is that manipulated latent codes (or the images they produce) shift the
predictions to match the desired outcome [101], [102]. However, classifiers can easily be fooled [103],
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Figure 13. CEA Method overview. For each semantic attribute ( e.g., “Glasses”) we learn a mapping Hk that
moves the distribution of latent codes lacking the attribute to the distribution of codes having that attribute. We
enforce that each latent code is moved near a point that shares similar semantics, thus only changing that attribute.
To preserve identity, the resulting distribution does not entirely match the target distribution.

e.g they can classify with high confidence out-of-distribution samples. As illustrated in Fig. 14 (left),
the latent classifier of [102] steers latent codes outside the distribution resulting in edited images
that are unrealistic. To address this issue we employ an ad hoc L2-regularization to minimize
the norm of the latent editing. While this fixes out-of-distribution edits, Fig. 14 (right) shows
that on MultiMNIST [104] this regularization produces adversarial samples [105] instead, i.e., the
edited latent codes are correctly classified but the corresponding images remain unchanged. This is
not surprising as changing the predicted class while minimizing the L2-norm of the edit precisely
mimics the search for adversarial examples.

Figure 14. Failure cases of a classifier-based method. Latent transformer (LT) [102] learns edits in latent space
under the guidance of a latent classifier. (left) On FFHQ [106] for “’Male’ → ’Female”’: without L2-regularization
on the edited codes, the edited images are unrealistic (as shown in the qualitative result on the left) before reaching
the desired editing. The classifier leads to out-of-distribution regions as it allocates high confidence to regions larger
than that of the training samples [103]. The quantitative analysis on attribute and identity preservation shows
highly degraded results. (right) On MultiMNIST [104] “’1 digit’ → ’2 digits”’: the edited images remain unchanged
(no digit is being added) while the classifier indicates the opposite (predicts 2 digits with high confidence). The
classifier leads to regions close to the decision boundaries where there are adversarial samples. The quantitative
analysis shows that only 32% of images are correctly edited.
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4.3.1.2 Contribution To prevent these issues, we introduce a new formulation for learning
semantic edits in the latent space, leading to a core solution that does not rely on classifiers that is
not subject to the brittle of classifiers. From a global perspective, latent editing can be viewed as an
optimal transport problem [107]. Given a distribution of latent codes sharing some semantics, we
propose to transport it onto the distribution of latent codes that share the same semantics except
for the attribute to be edited. Since the resulting images should not exhibit any other changes than
the desired one, the initial points should be transported “close” to points sharing their semantics;
that is, the transport should be optimal w.r.t. a cost representing the perceptual similarity (13).
To achieve this, we learn transformations in latent space using the guidance of the Wasserstein loss
with an Euclidean cost, in latent space, which can be combined with a Wasserstein loss with a cost
computed in the attribute space to enforce disentanglement.

We applied our method in the latent space of StyleGAN2 to modify the number of digits and edit
facial attributes. We compared quantitatively and qualitatively to the method of Yao et al. (LT)
[102] that relies exclusively on a latent classifier. Without additional regularization, our method
leads to realistic edited images and achieves on-par disentanglement and better identity preservation
than a classifier-based method.

4.3.2 Methodology

The direction used to edit an image may not be the same at each point of the full latent space.
For this, the latent transformer [102] consists to edit according to zedit = z + αH(z), where H is
an affine transform in the latent space. Hence, the direction used to edit depends on the starting
latent code z. In practice, H is learned through the guidance of a multilabel classifier in the latent
space. To enforce disentanglement, a weighted Mean Square Error (MSE) loss is added to minimize
the change of the other attributes, that are not manipulated. They also add a L2 regularization
on the difference between the original and edited latent code to preserve the global layout of the
original image (actually the person’s identity since they work on faces). However, changing the
label of a vector to classify while minimizing the L2-norm with its edit is also the basic scheme
to create adversarial samples [103], [105]. As a consequence, editing methods guided by classifier
can either produce out-of-distribution images that are unrealilstic or adversarial samples that have
wrong attributes (Figure 14).

To avoid these problems, we introduce a new formulation for learning semantic edits in the
latent space of GANs, which does not rely on classifiers and thus avoids the intrinsic shortcomings
identified., and rather pose it as an optimal transport problem. Given two probability distributions
µ, ν and the set Γ of their couplings (that all the joint probabilities γ such that µ and ν are the
marginals of γ), the Wasserstein distance W (µ, ν) is the infimum of the expected “cost” between
µ and ν, this cost being e.g ||x − y||2 for (x, y) ∼ γ ∈ Γ. Intuitively, it represents “how much”
µ needs to be transformed (transported) into ν. Let us consider an attribute of interest ak we
want to edit without changing the others and let note µk

s (resp. µk
t ) be the distribution of latent

codes zk that are negative (resp. positive) with respect to this binary attribute. To increase the
intensity of the attribute ak in the generated images, Hk should transport the distribution of edited
latent codes µ′k

s close to µk
t , while the information encoding other attributes or properties should

remain unchanged (Fig. 13). Hence, we propose to minimize W
(
µ′k

s, µ
k
t

)
, with a cost based on a

weighted Euclidean distance that reflects the possible biases in the collections of training latent
codes. Moreover, to ensure that the edited latent codes share the same attributes as the initial ones,
we propose to minimize a preservation loss W

(
µ′k

s, µ
k
s

)
. In that case, the cost is computed in the

attribute space, thanks to latent classifiers trained to predict the attributes from the latent codes.
It also takes into account the existing correlation between attribute, in order to avoid disentangling
naturally correlated attributes (e.g. “Smile” and “High Cheekbones”), which would be pointless.
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4.3.3 Results

We compared our approach to Latent Transformers on FFHQ and CelebAHQ for face attributes
editing and MultiMNIST for a task consisting in editing the number of digits in images having
between one and four of them. This last is quite original in the field since the attribute to manipulate
is intrinsically discrete while usual evaluations on face consider continuous binary attributes that
can vary continuously (young/old, male/female, smiling or not, wearing glasses or not...). We
apply the editing in the latent space of StyleGAN2 [106] pretrained on FFHQ or MultiMNIST. The
training data are the latent codes of real images previously projected in the W+ latent space using
the pSp encoder [100].

We employ respectively the 30k labeled 1024 × 1024 CelebAHQ images for face editing and
25k 128× 128 MultiMNIST images. To learn a transformation, we use the implementation of the
Wasserstein loss provided by the GeomLoss [108] library. We set the batch size as the minimum
between the number of samples in the source and target distributions and drop the last batch if it
causes a strong imbalance between both. We use Adam optimizer with a learning rate of 0.001.
To avoid overfitting the target distribution, we perform early stopping on a hold-out validation
set. As CelebAHQ contains various biases, we weight the samples and use the disentanglement loss.
Optimal value for λ is 1 for all considered attributes except for “Glasses” (λ = 15). The cost is
computed on all 40 attributes of CelebA [109]. Samples are weighted based on the most common
attributes. We evaluate the methods with three metrics [102]:

• The target attribute change rate indicates the percentage of images for which the target
attribute is indeed modified.

• The attribute preservation rate corresponds to the average number of attributes, apart from
the target attribute, that are preserved.

• The identity preservation rate as the average of the cosine similarities between ArcFace [110]
features of input and edited images.

All metrics are evaluated on 1, 000 images from FFHQ. The attribute and identity preservation
rates are reported against the target change for 10 values of α ∈ [1 · d, 2 · d] where d is chosen such
that the target change for a given α is comparable between the different methods.

For facial attributes editing, we consider common attributes (“Glasses”, “Gender”, “Smile”,
“Age”) and rarer ones chosen based on their representation and the performances of the image
classifiers (“Pale Skin”, “Bangs”, “Blond Hair”, “Wavy Hair”). Qualitative results in Fig. 15 (left)
exhibits some advantages of our method. Nose, lips and eyes shape are much better preserved for
“Gender” and “Age”. LT also produces “cartoonish” edits for these attributes while ours remain
naturalistic. LT ’Gender’ editing is also heavily entangled with ’Makeup’ while our approach adds
nearly none. These differences have been quantitatively estimated in terms of attribute and identity
preservation [111] but both methods are on-par. Our approach has occasionally slightly lower
attribute preservation and usually higher identity preservation, that is surprising since we do not
explicitly enforce this metric, contrary to LT. We also evaluate the ability of both methods to achieve
disentangled and identity preserving editing without any explicit constraint, with an advantage
for our approach. As shown in Fig. 15 (right), LT produces highly entangled edits (e.g. with the
attribute “Smile”) and alters the identity. Without enforcing it explicitly, the Wasserstein-based
approach already exhibits a good disentanglement ability and the identity is also well-preserved.

Regarding the task of digit number editing, we tested a change from n = 1, 2, 3 to n+1 = 2, 3, 4
in real images from MultiMNIST. Given a change rate of 100% according to a latent classifier, the
actual change rate measured by an image classifier is from 31% to 64% for LT while our approach
reaches a rate of 90% to 99%.
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Figure 15. (left) Qualitative results for facial attribute editing. We report the editing results for α = ±2. We
observe that our approach better preserves identity and some facial attributes (e.g expression, absence of makeup)
compared to LT. (right) Qualitative comparison between classifier-based edits (2nd col.) and our Wasserstein-based
edits w/o any constraint (3nd col.) and w/ disentanglement constraint (4th col.).

4.3.4 Relevant Resources and Publications

Relevant publications:

• P. Doubinsky, N. Audebert, M. Crucianu, and H. Le Borgne, “Wasserstein loss for semantic
editing in the latent space of GANs”, in International Conference on Content-Based Multimedia
Indexing, Orléans, France, Sep. 2023 [111].
Zenodo record: https://zenodo.org/record/8112753.

4.3.5 Relevance to AI4Media use cases and media industry applications

This work deals with the creation of visual content, which aims at being realistic although synthetic.
Specifically, we propose an alternative to the usual approaches used to control GANs that lead to
adversarial images, thus our work is likely to help in detecting these last. By exploring the inner
structure of the generative neural networks, and mapping these vectorial representation to concepts
that are understandable by human users it makes these models more explainable. Thus, considering
all these points, the work contributes to several use cases of AI4Media and the targeted industry
applications:

• UC1.c - Recognising fake AI-generated images and UB3.b deep fake checking

• UC3.c - AI-based data obfuscation (e.g., GAN face anonymisation, logo removal)

• UC6 - AI for human co-creation

4.4 Disentangling Neuron Representations with Concept Vectors

Contributing partners: HES-SO
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Figure 16. Step 1. A set of images that maximally activate a neuron in a model layer is taken. Step 2. The
Euclidean distance between images in activation space is used as the similarity space on which the clustering is
performed. This returns the appropriate number of clusters for a given distance threshold. Step 3. K-means
clustering computes the cluster membership. Step 4. From the images in each cluster, a concept vector is calculated,
which points toward the non-neuron aligned direction in activation space.

4.4.1 Approach

We propose a novel method to find and disentangle monosemantic directions starting from pol-
ysemantic neurons. Our method can search for concepts that are fine-grained according to the
user’s desired level of concept separation and shows that polysemantic neurons can be disentangled
into directions pointing to semantically unique concepts. Polysemanticity happens in neurons that
respond to several unrelated features, or concepts [112]–[114], and it is a phenomenon that makes
the interpretation of individual neurons challenging, since they cannot be mapped to semantically
unique features.

We consider a CNN predicting a classification output (p-dimensional output vector) from an
input image. We note that the method can be generalised to other models, but use a CNN for our
analysis. We assume the model was already trained, and that we have access to the intermediate
representations of an arbitrary layer inside the model. The first step of our method is to calculate
the embeddings at a given intermediate layer for the entire dataset. We then apply global average
pooling to aggregate the spatial information of the convolutional feature maps. For each neuron n,
we then apply the following steps iteratively:

• Take the activations {ϕl(xi)}Ni=1 where ϕl(xi) ∈ Rd and identify the top N activating images
with the highest activation values.

• Measuring the similarity of the pooled maxed activations at the intermediate layer l. We use
the Euclidean distance as a distance metric which has been shown by previous work to be
highly predictive of perceptual similarity [115].

• Apply agglomerative clustering to identify the optimal number of clusters to be found in the
pooled maxed activations.

• Perform k-means clustering on the same measurements of similarity and with the optimal
number of clusters idenified in the previous step as a hyperparameter.

• Exclude from the analysis non-significant clusters with less than 5 elements.
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Figure 17. UMAP of the maximally activating images kept after k-means clusters and outlier removal in latent
space: (left) separate clusters for polysemantic neuron 35 (right) a single cluster for monosemantic neuron 16.

4.4.2 Contribution

The contribution is a novel method that disentangles polysemanticity in Convolutional Neural
Networks into distinct concept vectors that point at semantically unique features.

4.4.3 Experiments

Inception V3 (IV3) [116] is used in the experiments since it is a de-facto standard convolutional neural
network. As this exploratory study only aims at a proof of concept, we focused on an undersampled
version of ImageNet, retaining 130 random images for each class. This kept computation accessible
to our infrastructure, feasible and light. Our results can easily be scaled to the entire dataset and
larger dataset sizes. Where not stated, we consider the concatenation layer Mixed 7b, a convolutional
layer with 2048 feature maps (d = 2048) near the end of the IV3 model. We pick this layer as we
expect it to encode complex concepts [112], [117]. A similar analysis can be done on other layers
and architectures. We took N = 100 top activating dataset examples and set the distance threshold
parameter dmax = 15. Neuron 35 is here used as an example of a polysemantic neuron that activates
highly for images of apples, sports, and also three images are dominated by a net-like pattern. Our
method identifies 3 clusters, of which the cluster containing the net-like images is removed as it
contains < 5 images. The embeddings of the remaining images plotted using UMAP [118] are
shown in Figure 17 (on the left). Neuron 16 is here presented as a counter-example of a neuron that
does not show polysemanticity at all. The neuron only activates for elliptical shapes as depicted in
Figure 17 (on the right). As expected, the same procedure applied to this neuron yields only one
cluster, yielding one monosemantic concept vector which has a much higher similarity than the
neuron direction to the original images. We note that we found that the majority of the neurons
we analysed in layer Mixed 7b were found to show some amount of polysemanticity. A possible
explanation for this is that the number of features may be very high for the considered later layer
in the model as it encodes complex concepts.
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Figure 18. Multi-task adversarial architecture

4.4.4 Relevant Resources and Publications

Relevant publications:

• L. O’Mahony, V. Andrearczyk, H. Müller, and M. Graziani, “Disentangling Neuron Represen-
tations with Concept Vectors”, In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition [119].
Zenodo record: https://zenodo.org/record/8146780.

Relevant software and/or external resources:

• The implementation of this work can be found in https://github.com/lomahony/sw-interpretability.

4.4.5 Relevance to AI4Media use cases and media industry applications

This work facilitates the explainability of image classifiers and will serve multiple crucial purposes
in various AI4Media applications. Importantly, it enhances fake image recognition in UC1. This
approach can discover and identify visual cues that the model has found useful to detect deep fakes,
improving our understanding of the method and generating supporting evidence for automated
deep fake recognition in the form of visual heatmaps and clustering.

Besides, it advances media collection reorganization and content moderation in UC7, since the
images are linked to visual cues that correspond to high level concepts.

4.5 Multitask-Adversarial Learning Architecture

Contributing partners: HES-SO

4.5.1 Approach

We propose a novel convolutional architecture that increases the transparency and control of the
learning process. The main technical innovation here is the combination of two successful techniques,
namely multi-task learning [120] and adversarial training [121], with the purpose of guiding model
training to focus on relevant features, called desired targets, and to discard undesired targets such
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as confounding factors. The joint optimization of main, auxiliary and adversarial task losses is also
a novel exploration that presents a main challenge when we combine losses that have different error
metrics such as mean squared error and cross entropy. We investigate the impact of a dynamic
task re-weighting technique based on the uncertainty estimation of each task during training [122],
which is designed on purpose to facilitate the joint optimization of classification and regression
objectives. From our analysis, it emerges that this uncertainty-based approach best handles the
convergence and stability of the joint optimization. Our results also show a significant increase in
the performance and generalization to unseen data.

The architecture is illustrated in Figure 18 and consists of two blocks. The first block is used to
extract features from the input images. A state-of-the-art CNN of arbitrary choice without the
decision layer is used as a feature encoder generating a set of feature maps. The feature maps are
passed through a Global Average Pooling (GAP) operation that is performed to spatially aggregate
the responses and connect them to a stack of dense layers. For this specific architecture, we use a
stack of three dense layers of 1024, 512, and 256 nodes respectively. The second block comprises
one branch per task, taking as input the output of the first block. The main task branch consists
of the prediction of the labels y and has as many dense nodes as there are of unique classes in y.
For binary classification tasks, e.g. discrimination of tumorous against non-tumorous inputs, the
main task branch has a single node with a sigmoid activation function. K branches are added to
model the extra targets. We refer to extra tasks for all the additional targets to the main task
whether desired or undesired. Auxiliary tasks refer to the modeling of the desired targets, while
adversarial tasks refer to that of undesired targets. The extra tasks are modeled by linear models
as in [123]. For continuous-valued targets, the extra branch consists of a single node with a linear
activation function. For categorical targets, the extra branch has multiple nodes followed by a
softmax activation function. A gradient reversal operation [121] is performed on the branches of
the undesired targets to discourage the learning of these features.

4.5.2 Contribution

Building on top of successfully existing techniques such as multi-task learning, domain adversarial
training and concept-based interpretability, we address the challenge of introducing guidance in the
training objectives of Convolutional Neural Networks.

4.5.3 Relevant Resources and Publications

Relevant publications:

• M. Graziani, S. Otalora, S. Marchand-Maillet, H. Muller, and V. Andrearczyk, “Learning
Interpretable Microscopic Features of Tumor by Multi-task Adversarial CNNs to Improve
Generalization”, arXiv preprint arXiv:2008.01478 [124].
Zenodo record: https://zenodo.org/record/8147031.

Relevant software and/or external resources:

• The implementation of this work can be found in https://github.com/maragraziani/

multitask_adversarial.

4.5.4 Relevance to AI4Media use cases and media industry applications

Guiding a model to learn specific concepts through multi-task learning and adversarial training is a
powerful strategy for bolstering the detection of deep fake images (UC1). In multi-task learning,
the model simultaneously trains on various related tasks, such as recognizing facial expressions or
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lip-syncing accuracy, which are crucial for authentic content. This approach equips the model with
a deeper understanding of these specific concepts, making it more adept at discerning anomalies in
deep fake creations. Additionally, adversarial training refines the model by pitting it against deep
fake generators, forcing it to identify and adapt to evolving deception techniques. Together, these
strategies enhance the model’s ability to identify subtle artifacts and inconsistencies, contributing
to more accurate and robust deep fake detection.

4.6 Explaining Autonomous Driving with Visual Attention and End-to-
End Trainable Region Proposals

Contributing partners: UNIFI

4.6.1 Approach

Although autonomous driving vehicles are starting to become a reality, their diffusion worldwide is
still slowed down by how such advancements are perceived by society. To ensure the pervasivity
of automotive in everyday life, it is fundamental that algorithms and learning models guiding
the decisions of autonomous vehicles are trustworthy, transparent and fully understandable. In
other words, it is of paramount importance that the technologies that the end user will rely on
must be explainable. Explainability in autonomous driving has been largely studied in recent
years, especially regarding machine learning and computer vision algorithms that make autonomous
navigation possible [125]–[127]. Explanations can be provided in different forms and styles, e.g.,
presenting factual, contrastive or counterfactual evidence to support cause effect relationships [128]
or showing the sensitivity of the decision with reference to parts of the input [125].

In this work, we present a study on how different types of visual attention can be exploited to
explain the decisions of a driving agent. We propose a conditional imitation learning approach
capable of learning driving policies from RGB frames, trained with an attention block that weighs
image regions based on their importance for the task. We design different region proposals, trained
end-to-end along with the driving agent. Our full architecture is shown in Figure19. A preliminary
version of this work was described in [127], introducing the first visual attention based driving
agent in the literature that learned to assign attention weights to a static grid of regions of interest
in the input image. This work differs substantially from [127] in several aspects: (i) we overcome
the limitation of having static proposals by developing different dynamic region proposal functions
based on either Region Proposal Networks (RPNs) [129] or Spatial Transformer Networks (STNs)
[130]; (ii) we provide a comparison with ex-post explainability methods, showing the importance of
explicitly modeling visual attention to obtain meaningful interpretations; (iii) we show that the
learned attention maps can be used to retrieve hard examples framing the problem as an anomaly
detection task.

4.6.2 Results

In Table 13 we show the results of the models varying the number of boxes for STN and RPN. In
both cases, when using approximately 100 proposals we obtain the best results.

We have trained two networks with the same architecture, the first fed with RGB frames and
the second with attention maps produced by our model. We generate attention maps using the
STN model, overlaying each generated box on a reference black image, weighing the RoI with the
corresponding attention value.
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Figure 19. A convolutional backbone generates a feature map. Then, a region proposal function extracts RoIs that
are pooled and weighed by an attention layer. Separate region proposal and attention modules are trained for each
high level command in order to focus on different regions and output the appropriate steering angle.

Training conditions New weather

STN RPN STN RPN

Num boxes 50 100 300 72 108 432 50 100 300 72 108 432

Straight 100 100 100 100 100 100 100 100 100 100 100 100

One turn 100 100 98 80 93 93 94 100 96 84 84 84

Navigation 88 95 91 66 84 84 88 94 86 70 82 72

Navigation dynamic 87 90 90 64 82 84 84 94 86 68 80 76

Table 13. Ablation study. We vary the number of proposals produced by STN and RPN. Both STN and RPN
perform better using a number of boxes around 100. In general, STN can obtain higher driving accuracy even with a
low number of proposals, compared to RPN.

To test the models we used a test set consisting of 600 episodes extracted from the CARLA
benchmark, 300 of which were successfully completed by the model. Failed episodes contain collisions
with pedestrians, cars, other objects and/or unusual maneuvers. Our assumption is that failed
episodes will contain out of the ordinary events, making the predicted attention anomalous. We thus
leverage the reconstruction error of the autoencoders to detect such anomalies. We treat this task as
a retrieval task, aiming at automatically identifying failed episodes. To evaluate the task, for each
episode we take the maximum reconstruction error and use it to generate precision recall curves, as
shown in Fig. 20. The model trained on attention maps reaches an AUC on the precision-recall
curve of 71.53, while the model trained on RGB only 50.06. Similarly, computing Average Precision,
we obtain 56.24 using attention maps and 37.97 with RGB frames. This experiment demonstrates
that modeling attention is also effective in retrieving challenging episodes, which can be used to
retrain the model and improve its performance.

4.6.3 Relevant Resources and Publications

Relevant publications:

• L. Cultrera, F. Becattini, L. Seidenari, P. Pala, A. Del Bimbo, “Explaining Autonomous
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Figure 20. Precision-Recall Curves for detecting failed episodes.

Driving with Visual Attention and End-to-End Trainable Region Proposals” [131].
Zenodo record: https://zenodo.org/record/8194594.

4.6.4 Relevance to AI4Media use cases and media industry applications

This method is applied to a self-driving scenario, for which explainability is paramount. In
applications like automated cinematography, we are interested in autonomous agents, which include
but are not limited to UAVs, that can plan and execute maneuvers independently. The approach
presented here can be employed to elucidate the rationale behind these decisions.

In general, while our proposed work primarily focuses on explaining the decisions made by
autonomous driving agents, the method can also be adapted to clarify the outcomes of regression
problems. In these problems, we assign a continuous score to indicate the likelihood of a particular
event occurring, e.g., image tampering. This adaptation is pertinent to UC1, where we aim to
explain the results of Deepfake detectors.

4.7 SMACE: Semi-Model-Agnostic Contextual Explainer

Contributing partners: 3IA-UCA

4.7.1 Overview

Interpretability is a pressing issue for decision systems. Many post hoc methods have been proposed
to explain the predictions of a single machine learning model. However, business processes and
decision systems are rarely centered around a unique model. These systems combine multiple
models that produce key predictions, and then apply decision rules to generate the final decision.
To explain such decisions, we propose the Semi-Model-Agnostic Contextual Explainer (SMACE), a
new interpretability method that combines a geometric approach for decision rules with existing
interpretability methods for machine learning models to generate an intuitive feature ranking
tailored to the end user. We show that established model-agnostic approaches produce poor results
on tabular data in this setting, in particular giving the same importance to several features, whereas
SMACE can rank them in a meaningful way.
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Figure 21. Structure of a composite decision system with D input features x1, . . . , xD, and N models m1, . . . ,mN .
A decision policy P ( i.e., a set of decision rules) is finally applied to produce an outcome O. Note that in general
both the models and the rules take a subset of input features as input, tough not necessarily the same.

4.7.2 Approach

4.7.2.1 Setting Let x ∈ RQ×D be the input data, where each row x(i) = (x1, ..., xD)⊤ ∈ RD is
an instance and D is the cardinality of the input features set F . Let the set M = {m1, ...,mN} be
the set of models. We will refer to their outputs m1(x), ...,mN (x) as the internal features, whose
values we also denote as y(1), ..., y(N) when there is no ambiguity. The union of input and internal
features is the set of D +N features to which the decision policy can be applied.

We define x̃ := (x1, ..., xD,m1(x), ...,mN (x))
⊤

as the completion of x with the outputs of the N

models. Likewise, we call ξ = (ξ1, ..., ξD)
⊤
the example to be explained and ξ̃ = (ξ1, ..., ξD,m1(ξ), ...,mN (ξ))

⊤

its completion. A decision rule R is formally defined by a set of conditions on the features in the
form x̃j ≥ τ , for some cutoff τ ∈ R. Figure 21 illustrates the structure of a generic composition of
models and decision policies.

4.7.2.2 Assumptions The definition of SMACE is based on three assumptions required to
frame the setting. Ideas for solving some of their limitations are discussed in the conclusion.

Assumption one: Decision rules only refer to numerical values.

This assumption allows us to take a simple geometric approach for the explainability of the
decision tree. Note that this does not imply any restriction on the input of the machine learning
models, that can still be categorical.

Assumption two: Each decision rule is related to a single feature, without taking into account
feature interactions.

For instance, this assumption excludes conditions like if x̃1 ≥ x̃2. Geometrically, this implies
decision trees with splits parallel to the axes, such as CART [132], C4.5 [133], and ID3 [134].

Assumption three: The machine learning models only use input features to make predictions.

We disregard the cases in which a machine learning model takes as input the output of other
machine learning models. We remark that this is a very reasonable assumption that covers most
real-world applications. Note that assumptions one and two refer to the decision rules, while
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Assumption three is the only referring to the machine learning models and does not concern their
nature.

4.7.2.3 Methodology For each example ξ whose decision we want to explain, we first perform
two parallel steps:

• Explain the results of the models: for each machine learning model m, we derive

the (normalized) contribution ϕ̂
(m)
j for each input feature j. By default, SMACE relies on

KernelSHAP to allocate these importance values;

• Explain the rule-based decision: measure the contribution rj of each feature (that is,
each input feature and each internal feature directly involved in the decision policy), through
Algorithm 2.

Then, to get the overall explanations (see Algorithm 1), we combine these partial explanations.
The total contribution of the input feature j ∈ F to the decision for a given instance is

ej = rj +
∑
m∈M

rmϕ̂
(m)
j .

That is, we weight the contribution of input features to each model with the contribution of that
model in the decision rule, and we add the direct contribution of feature j to the decision rule (if a
feature is not directly involved in a decision rule, its contribution is zero).

Finally, once the partial explanations have been obtained, we agglomerate them via the equation
above. We thus obtain a measure of the importance of features for a specific decision made by a
system combining rules and machine learning models. Our measure of importance highlights the
most critical features, those therefore most involved in the decision. In this way, a domain expert
can analyse a decision by focusing on these features to make her or his own qualitative assessment.

Algorithm 1 Overview of smace.

function smace explain(rule R (set of conditions), list of models M , example to explain
ξ ∈ RD)

ξ̃ ← ξ , ϕ← {0}N , r ← {0}D+N , e← {0}D
for m ∈M do

ϕ̂(m) ← explain model(ξ,m) ▷ explain the result of model m
ξ̃ ← (ξ1, . . . , ξD, . . . ,m(ξ))

end for
for j = 1, . . . , D +N do

rj ← rule contribution(R, j, ξ̃) ▷ explain the rule-based decision
end for
for j = 1, . . . , D do

ej ← rj +
∑
m∈M

rmϕ̂
(m)
j ▷ aggregate

end for
return e

end function

Intermediate toolset for robust, explainable, fair, and privacy-preserving AI 65 of 151



Algorithm 2 Computing rule contribution.

function rule contribution(rule R , variable j , example to explain ξ̃)
S ← R ▷ projection to the decision surface S generated by R

π
(S)
j (ξ̃)← argmin

z∈hj

∥∥∥ξ̃ − z∥∥∥
2

if ξ̃ satisfies condition on j then

rj ← 1−
∣∣∣ξ̃j − π(S)

j (ξ̃)
∣∣∣

else
rj ←

∣∣∣ξ̃j − π(S)
j (ξ̃)

∣∣∣− 1

end if
return rj

end function

4.7.3 Results

What makes interpretability even more challenging is the lack of adequate metrics to appropriately
assess the quality of explanations. In this section we compare the results obtained with SMACE
and those obtained by applying the default implementations of SHAP16 and LIME17 on the whole
decision system. We perform a sanity check on aggregate explanations on three different realistic
use cases.

We demonstrate here that SMACE retains an ability to identify the set of features contributing
negatively to a decision, regardless of individual attribution. If a feature contributes negatively, it
means it must be moved to meet its condition. Correctly identifying negative features is a desirable
property: to change the decision, each of them must be moved.

We consider 100 random instances which do not satisfy the rules (described in the supplementary),
from three different datasets, and we apply SMACE, SHAP, and LIME. For each method, we extract
the set of negative features. Note that to be sure that the rule will be satisfied, each negative feature
should be shifted to a specific value: none of the three methods is giving this information. We then
generate 1000 samples by shifting negative features with a local perturbation. The average decision
made on these perturbed samples is an indicator of the quality of the explanations provided by
each of the three methods.

Cancer treatment A machine learning model is trained to predict whether a breast cancer is
benign or malignant from information about its size and structure. An automated decision system
is then applied to decide on treatment: if the risk of the tumor being malignant is too high, it
proceeds in full reliance on the model. If, on the other hand, the probability is low, but the size and
composition of the tumor are suspicious, further investigation is carried out. The decision system
consists of 30 continuous input features and 1 internal feature (coming from the model). We use
the Breast Cancer Wisconsin Data Set.18

In this example, we want to explain why the treatment was not proposed, i.e., which input
features are negatively contributing to the decision. Given the large number of parameters to be
analyzed, it is useful to order them by importance, in order to speed up the investigation by giving
the right priorities. The graph at the top left of the Figure 22 shows the comparison. SMACE
curve is always above the others: it is better at detecting negative features.

Fraud Detection A financial authority must track mobile money transactions, promptly

16https://github.com/slundberg/shap
17https://github.com/marcotcr/lime
18https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data
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Figure 22. Comparison of SMACE, SHAP, and LIME on the ability to identify the set of features contributing
negatively to a decision, regardless of individual attribution. Correctly identifying negative features is a desirable
property: to change the decision, each of them must be moved. When the conditions are not met, the three methods
are used to extract the negative features, and we generate perturbed samples around the original values. We then
compare the average decision made on the samples.

halting anomalous transactions suspected of fraud. The authority uses a decision-making system to
approve or block transactions, according to a fraud score, computed through a machine learning
classifier, and the amount and balanced involved in the transaction. We use the Synthetic Financial
Datasets For Fraud Detection19 As before, we extract and perturb the negative features set for each
method.

The graph at the top right of Figure 22 shows that SMACE and SHAP are on par. In this
decision system, the conditions based on the input features matter significantly more than the one
on the model. SMACE and SHAP are able to extract the correct set of negative features. However,
we remark that SHAP is likely to assign them the same (negative) contribution: SMACE carries
more information.

Retention Offer Let us consider a mobile phone company which wants to predict if a customer
is going to leave for a competitor, and to decide if a retention offer should be made, while not
spending more on retention than the value of retaining the customer. The decision policy is based on
information about the customer and their subscription (input features), and two models (producing
internal features) predicting the churn risk (i.e., the likelihood that the customer will cancel

19https://www.kaggle.com/ealaxi/paysim1
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their subscription) and the lifetime value (i.e., the expected revenue generated by the customer if
retained). We use the IBM Telco Churn dataset.20

In this example, we want to explain why a retention offer was not made, in terms of the original
input features. In practice, the features that are contributing negatively should be moved to meet
the conditions. Note that this use case is characterized by the presence of many categorical input
features (see Assumption one): this is a stress test for SMACE. Figure 22 shows that SMACE is
comparable with the state of the art in extracting the right set of negative features: error bars
are overlapping. However, it is only a partial measure of quality, since the ranking of features is
ignored.

We compared the ability of SMACE, SHAP, and LIME to extract features that are negatively
contributing to a decision and should therefore be moved to change it. SMACE is best when applied
to the standard context: one or more models and several continuous features (Cancer Treatment).
SHAP tends to extract the same set of negative features as SMACE when the impact of models
is absent or insignificant (Fraud Detection). SMACE loses performance when many categorical
features are involved in the decision: however, the error bars of the three methods are overlapping
(Retention Offer).

Up to the best of our knowledge, it is the first method specifically designed for a decision-making
system composed of both machine learning models and decision rules. SMACE approaches the
problem with a projection-based solution to explain the rule-based decision and by aggregating it
with models explanations. We showed that model-agnostic approaches designed to explain machine
learning models are not well-suited for this problem, due to the complications coming with the
rules. In contrast, SMACE provides meaningful results by meeting our requirements, i.e., adapting
to the needs of the end user.

4.7.4 Relevant Resources and Publications

Relevant publications:

• Lopardo, G., Garreau, D., Precioso, F., and Ottosson, G. (2022, September). SMACE: A
New Method for the Interpretability of Composite Decision Systems. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases (pp. 325-339) [135].

Relevant software and/or external resources:

• The PyTorch implementation of our work “SMACE: Semi-Model-Agnostic Contextual Ex-
plainer” can be found in https://github.com/gianluigilopardo/smace.

4.7.5 Relevance to AI4Media use cases and media industry applications

Many of the AI services nowadays are based on complex compositions of several AI models: one
extracting information from the images in the document, one from the text content, one from the
structure of the document, etc. If I am a journalist using such AI service to classify content, retrieve
information, “I want to have human-understandable explanations for AI Services in my journalism
tool that fit my context (general journalists or at least AI business experts)”. This is what this work
will provide you with.

20https://github.com/IBMDataScience/DSX-DemoCenter/tree/master/DSX-Local-Telco-Churn-master
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4.8 A Sea of Words: An In-Depth Analysis of Anchors for Text Data

Contributing partners: 3IA-UCA

4.8.1 Overview

Anchors [136] is a post-hoc, rule-based interpretability method. For text data, it proposes to explain
a decision by highlighting a small set of words (an anchor) such that the model to explain has
similar outputs when they are present in a document. In this work, we present the first theoretical
analysis of Anchors, considering that the search for the best anchor is exhaustive. After formalizing
the algorithm for text classification, we present explicit results on different classes of models when
the vectorization step is TF-IDF, and words are replaced by a fixed out-of-dictionary token when
removed. Our inquiry covers models such as elementary if-then rules and linear classifiers. We then
leverage this analysis to gain insights on the behavior of Anchors for any differentiable classifiers.
For neural networks, we empirically show that the words corresponding to the highest partial
derivatives of the model with respect to the input, reweighted by the inverse document frequencies,
are selected by Anchors.

In this work, we present the first theoretical analysis of Anchors for text data, based on the
default implementation available on Github21. The main restrictions of our analysis are the
simplification of the combinatorial optimization procedure (therefore considering an exhaustive
version of Anchors), the use of an out of dictionary token when removing words, and the assumption
that a TF-IDF vectorization is used as a preprocessing step. Specifically,

• we dissect Anchors’ algorithm for text classification, showing that the sampling procedure
can be described simply as an i.i.d. Bernoulli’s removal of words not belonging to the anchor
(Proposition 1);

• we show that the exhaustive version is stable with respect to perturbation of the preci-
sion function, justifying our study of the exhaustive Anchors algorithm (Proposition 2 and
Proposition 3);

• if the classifier ignores some words, they will not appear in the anchor selected by the
exhaustive Anchors (Proposition 4);

• exhaustive Anchors for simple if-then rules provably outputs meaningful explanations, though
words can be ignored from the explanation if their multiplicity is too high (Proposition 5);

• exhaustive Anchors picks the words associated to the most positive coefficients reweighted by
the inverse document frequency for all linear classifiers (Proposition 6 and Proposition 7):

• we empirically show that exhaustive Anchors picks the words associated to the most positive
partial derivatives scaled by the inverse document frequency for neural networks.

All our theoretical claims are supported by mathematical proofs in the full paper of this work [137],
and numerical experiments whose code is available at https://github.com/gianluigilopardo/
anchors_text_theory. Unless otherwise specified, experiments use the official implementation of
Anchors with all default options.

4.8.2 Methodology

The operating procedure of Anchors for text data, as introduced by [136] is based on the key notions
of precision and coverage.

21https://github.com/marcotcr/anchor
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4.8.2.1 Precision and coverage The precision of an anchor A ∈ A is defined by [136] as
the probability for a local perturbation of ξ to be classified as 1. Since we assume f(ξ) = 1, the
precision can be written as

Prec(A) = EA [f(x) = 1] = PA (g(φ(x)) = 1) , (9)

where the expectation is taken with respect to x, a random perturbation of ξ still containing all
the words included in the anchor A. For the anchor containing all the words of ξ, the precision is
exactly 1, while smaller anchors have, in general, smaller precision.

Of course, large anchors with size comparable to b are not very interesting from the point of
view of interpretability (the text in Figure 23 would be completely highlighted). To quantify this
idea, one can use the notion of coverage, defined in our case as the proportion of documents in the
corpus (i.e, the dataset of documents on which the vectorizer is fitted) that contain the anchor. For
instance, the coverage of the anchor in Figure 23 is 0.12, meaning that 12% of the reviews contain
it. The notions of precision and coverage are paramount to the Anchors algorithm: in a nutshell,
Anchors will look for an anchor of maximal coverage with prescribed precision.

The selection on the

menu is great, and so

is the food! The

service is not bad,

prices are fine.

precision : 0.97
coverage : 0.12

Figure 23. Anchors explaining the positive prediction of a black-box model f on an example ξ from the Restaurant
review dataset. The anchor A = {great, not, bad, fine} (in blue), having length |A| = 4 is selected. Intuitively, these
four words together ensure a positive prediction by f with high probability (precision : 0.97), while being not too
uncommon (coverage : 0.12).

4.8.2.2 The algorithm In practice, the coverage can be costly to compute, and in many cases
a corpus is not available when the prediction is explained. Since anchors with smaller length tend
to have larger coverage, a natural solution, used in the default implementation, is to minimize the
length instead of maximizing the coverage, leading to:

Minimize
A∈A

|A| , such that Prec(A) ≥ 1− ϵ , (10)

where ϵ > 0 is a pre-determined tolerance threshold (set to 0.05 in practice). The lower ϵ is, the
harder it is to find an anchor satisfying Eq. (10).

Of course, the exact precision of a specific anchor A ∈ A is unknown, since we cannot compute
the expectation appearing in Eq. (9) in general. The strategy used by [136] is to approximate

Prec(A) by P̂recn(A), an empirical approximation. Let us note that the optimization problem in
Eq. (10) is generally intractable, whatever the selection function may be. The cardinality of A is
simply too large in all practical scenarios. As a consequence, the default implementation applies
the KL-LUCB [138] algorithm to identify a subset of rules with high precision: at the next step,
this subset is used as representative of all candidate anchors, finding an approximate solution to
Eq. (10). In our work, we do not consider this optimization procedure and consider below an
exhaustive version of Anchors.
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Figure 24. An illustration of Algorithm 3 with evaluation function p = Prec. Each blue dot is an anchor, with x
coordinate its length and y coordinate its value for p. Here, ϵ = 0.2 and the maximal length of an anchor is b = 10
(the length of ξ). In the end, the anchor A such that |A| = 3 and p(A) = 0.9 is selected (red circle).

4.8.2.3 Exhaustive p-Anchors In a nutshell, it is a formalized version of the original combi-
natorial optimization problem of Eq. (10) for any evaluation function p : A → R.

The optimization problem of Eq. (10) can be decomposed in two steps: first, all anchors in
A such that Prec(A) ≥ 1 − ϵ are selected. We call this first subset of anchors A1(ϵ). Note that
A1(ϵ) ̸= ∅ since the full anchor [b] has precision 1. Then, among these anchors, the ones with
minimal length are kept, giving raise to A2(ϵ). At this point, it is not clear from Eq. (10) which
anchors should be selected, and we settle for the ones with the highest precision. Equality cases
can happen at this step (for instance, there can be several anchors with precision 1): we call A3(ϵ)
the corresponding set of anchors. If A3(ϵ) is not reduced to a single element, we draw uniformly at
random the selected anchor.

Algorithm 3 An overview of exhaustive p-Anchors.

input set of candidate anchors A, selection function p : A → R, tolerance threshold ϵ
select Ap

1(ϵ) = {A ∈ A s.t. p(A) ≥ 1− ϵ}
select Ap

2(ϵ) = argmin
A′∈Ap

1(ϵ)

|A′|

select Ap
3(ϵ) = argmax

A′∈Ap
2(ϵ)

p(A′)

select Ap(ϵ) ∈ Ap
3(ϵ) uniformly at random

return Ap(ϵ)

Algorithm 3 formally describes this procedure for a generic evaluation function p : A → R,
which we illustrate in Figure 24. When using p, we write Ap

k(ϵ) the sets constructed and Ap(ϵ) the
selected anchor.

The goal here is to have a flexible framework: we can use Algorithm 3 with p = P̂recn or
p = Prec as a selection function, or any other function which is a good approximation of Prec. When
p = Prec, we call this version of the algorithm exhaustive Anchors, whereas when p = P̂recn we call
this version empirical Anchors. Empirical Anchors is very similar to Anchors; the main difference
is that the former is looking at all possible anchors, while the latter uses an efficient approximate
procedure, which we do not consider here. A second difference is that empirical Anchors selects
anchors with maximal precision in the third step. This is not necessarily the case with the default
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implementation, since an approximate procedure is used. We notice, nevertheless, that the chosen
anchors tend to have high precision, and the demonstration that empirical Anchors and the default
implementation give very similar output in practice can be found in our full article [137].

4.8.3 Results

This work presents the first theoretical analysis of Anchors. Specifically, we formalize the imple-
mentation for textual data, in particular giving insights on the sampling procedure. Our analysis
shows that Anchors provides meaningful results when applied to these models, which is supported
by experiments with the official implementation.

Finally, we exploit our theoretical claim about explainable classifiers to obtain empirical results
for neural networks, yielding a surprising result that links the classifier gradient to the importance
of words for a prediction. When having access to the model, this result can be used as a faster and
more efficient method of obtaining explanations.

This work uncovered some surprising results that emphasize the importance of theoretical
analysis in the development of explainability methods. We believe that the insights presented in this
work may be valuable for researchers and practitioners in natural language processing who seek to
correctly interpret Anchors’ explanations. Furthermore, the analysis framework we developed can
aid the explainability community in designing new methods based on sound theoretical foundations
and in scrutinizing existing ones.

The detailed results of this work can be found in the full version of the article [137].

4.8.4 Relevant Resources and Publications

Relevant publications:

• Lopardo, G., Garreau, D., and Precioso, F. (2022). A Sea of Words: An In-Depth Analysis of
Anchors for Text Data. AISTATS 2023, 26th International Conference on Artificial Intelligence
and Statistics 2023 [137].

Relevant software and/or external resources:

• The PyTorch implementation of our work “A Sea of Words: An In-Depth Analysis of Anchors
for Text Data” can be found in https://github.com/gianluigilopardo/anchors_text_

theory.

4.8.5 Relevance to AI4Media use cases and media industry applications

As a journalist, I use a lot textual documents and when I apply an AI service on these documents
to classify them, extract some specific information, or retrieve similar content, I would like to
understand on the basis of which textual content the AI service has taken its decision. This is the
role of this work, being able to highlight which part of the text and with which importance has led
to the decision of classification, retrieval, extraction.

4.9 Interpretable Neural-Symbolic Concept Reasoning

Contributing partners: 3IA-UCA
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Figure 25. (left) Deep Concept Reasoner (DCR) generates fuzzy logic rules using neural models on concept
embeddings. Then DCR executes the rule using the concept truth degrees to evaluate the rule symbolically. (right)
Schema of DCR modules: first neural models ϕ and ψ generate the rule, and then the rule is executed symbolically.

4.9.1 Overview

Deep learning methods are highly accurate, yet their opaque decision process prevents them from
earning full human trust. Concept-based models aim to address this issue by learning tasks based
on a set of human-understandable concepts. However, state-of-the-art concept-based models rely
on high-dimensional concept embedding representations which lack a clear semantic meaning, thus
questioning the interpretability of their decision process.

To overcome this limitation, we propose the Deep Concept Reasoner (DCR), the first interpretable
concept-based model that builds upon concept embeddings. In DCR, neural networks do not make
task predictions directly, but they build syntactic rule structures using concept embeddings. DCR
then executes these rules on meaningful concept truth degrees to provide a final interpretable and
semantically-consistent prediction in a differentiable manner. Our experiments show that DCR:
(i) improves up to +25% w.r.t. state-of-the-art interpretable concept-based models on challenging
benchmarks (ii) discovers meaningful logic rules matching known ground truths even in the absence
of concept supervision during training, and (iii), facilitates the generation of counterfactual examples
providing the learnt rules as guidance.

4.9.2 Methodology

Let us describe the “Deep Concept Reasoner” (DCR, Figure 25), the first interpretable concept-based
model based on concept embeddings.

Similarly to existing models based on concept embeddings, DCR exploits high-dimensional
representations of the concepts. However, in DCR, such representations are only used to compute a
logic rule. The final prediction is then obtained by evaluating such rules on the concepts’ truth
values and not on their embeddings, thus maintaining clear semantics and providing a totally
interpretable decision.

Being differentiable, DCR is trainable as an independent module on concept databases, but it
can also be trained end-to-end with differentiable concept encoders.

In our work, we describe the different steps of applying our Deep Concept Reasoner: (1) the
syntax of the rules we aim to learn, (2) how to (neurally) generate and execute learnt rules to
predict task labels, (3) how DCR learns simple rules in specific t-norm semantics, and (4) how we
can generate global and counterfactual explanations with DCR.

The main advantage of DCR w.r.t. existing interpretable and black-box methods arises when
dealing with challenging tasks where both interpretability and accuracy should be maximized. For
simpler tasks, existing interpretable methods, such logistic regression, could be enough. On the other
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side, when interpretability is not a hard user requirement, then a simple black-box model would be
easier to set up (e.g., it does not require concept labels or concept encoders). However, in all cases
where interpretability plays a crucial role for the end user and existing interpretable models fail,
then DCR could be preferable. Finally, compared to existing neural-symbolic approaches, DCR has
an edge in all settings where the rules are unknown, while other methods (like DeepProbLog [139])
might be more stable when the full set of rules is known in advance. For other limitations/drawbacks,
please see our reply to common questions.

One of the main limitations of DCR is that its global behavior may not be directly interpretable,
which means that global rules may not perfectly align with the exact reasoning of the model. This
could be an issue in cases where a user requires a precise understanding of the global model behavior.
Also, the complexity of DCR rules may increase significantly when the difference between two tasks
can only be determined by using a very high number of concepts. However, in most real-world
cases, and in current benchmark datasets for concept-based models, this issue rarely arises. Finally,
DCR requires concept embeddings as inputs, which assumes the existence of concept-based datasets
or high-quality concept-discovery methods.

This work presents the Deep Concept Reasoner (DCR), the new state-of-the-art of interpretable
concept-based models. To achieve this, DCR builds for each sample a weighted logic rule combining
neural and symbolic algorithms on concept embeddings in a unified end-to-end differentiable system.
In our experiments, we compare DCR with state-of-the-art interpretable concept-based models
and black-box models using datasets spanning three of the most common data types used in deep
learning: tabular, image, and graph data. Our experiments show that Deep Concept Reasoners: (i)
attain better task accuracy w.r.t. state-of-the-art interpretable concept-based models, (ii) discover
meaningful logic rules, and (iii) facilitate the generation of counterfactual examples.

While the global behaviour of the model is still not directly interpretable, our results show how
aggregating Boolean DCR rules provides an approximation for the global behaviour of the model
which matches known ground truth relationships. As a result, our experiments indicate that DCR
represents a significant advance over the current state-of-the-art of interpretable concept-based
models, and thus makes progress on a key research topic within the field of explainability.

4.9.3 Results

We have conducted an analysis for the following research questions:

• Generalization — How does DCR generalize on unseen samples compared to interpretable
and neural-symbolic models? How does DCR generalize when concepts are unsupervised?

• Interpretability — Can DCR discover meaningful rules? Can DCR re-discover ground-
truth rules? How stable are DCR rules under small perturbations of the input compared
to interpretable models and local post-hoc explainers? How long does it take to extract a
counterfactual explanation from DCR compared to a non-interpretable model?

The full results can be found in our full paper [140]. To sum up, we have shown that:

• DCR outperforms interpretable models (Figure 26)

• DCR matches the accuracy of neural-symbolic systems trained using human rules (Table 14)

• DCR discovers semantically meaningful logic rules (Table 15)

• DCR rules are stable under small perturbations (Figure 27)

• DCR explains prediction mistakes
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Figure 26. Mean ROC AUC for task predictions for all baselines across all tasks (the higher the better). DCR often
outperforms interpretable concept-based models. CE stands for concept embeddings, while CT for concept truth
degrees. Models trained on concept embeddings are not interpretable as concept embeddings lack a clear semantic for
individual embedding dimensions.

• DCR enables discovering counterfactual examples (Figure 28)
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4.9.4 Relevant Resources and Publications

Relevant publications:

• Barbiero, P., Ciravegna, G., Giannini, F., Espinosa Zarlenga, M., Magister, L.C., Tonda, A.,
Lio, P., Precioso, F., Jamnik, M., and Marra, G.. (2023). Interpretable Neural-Symbolic
Concept Reasoning. In Proceedings of the 40th International Conference on Machine Learning,
202:1801-1825 [140].

Relevant software and/or external resources:
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Table 14. Task accuracy on the MNIST-addition dataset. The neural-symbolic baselines use the knowledge of the
symbolic task to distantly supervise the image recognition task. DCR achieves similar performances even though it
learns the rules from scratch.

Model Accuracy (%)

With ground truth rules

DeepProbLog 97.2± 0.5

DeepStochLog 97.9± 0.1

Embed2Sym 97.7± 0.1

LTN 98.0± 0.1

Without ground truth rules

DCR(ours) 97.4± 0.2

Table 15. Error rate of Booleanised DCR rules w.r.t. ground truth rules. Error rate represents how often the label
predicted by a Booleanised rule differs from the fuzzy rule generated by our model. The error rate is reported with
the mean and standard error of the mean.

Ground-truth Rule Predicted Rule Error (%)

XOR

y0 ← ¬c0 ∧ ¬c1 y0 ← ¬c0 ∧ ¬c1 0.00± 0.00

y0 ← c0 ∧ c1 y0 ← c0 ∧ c1 0.00± 0.00

y1 ← ¬c0 ∧ c1 y1 ← ¬c0 ∧ c1 0.02± 0.02

y1 ← c0 ∧ ¬c1 y1 ← c0 ∧ ¬c1 0.01± 0.01

Trigonometry

y0 ← ¬c0 ∧ ¬c1 ∧ ¬c2 y0 ← ¬c0 ∧ ¬c1 ∧ ¬c2 0.00± 0.00

y1 ← c0 ∧ c1 ∧ c2 y1 ← c0 ∧ c1 ∧ c2 0.00± 0.00

MNIST-Addition

y18 ← c′9 ∧ c′′9 y18 ← c′9 ∧ c′′9 0.00± 0.00

y17 ← c′9 ∧ c′′8 y17 ← c′9 ∧ c′′8 0.00± 0.00

y17 ← c′8 ∧ c′′9 y17 ← c′8 ∧ c′′9 0.00± 0.00

• The PyTorch implementation of our work “Interpretable Neural-Symbolic Concept Reasoning”
can be found in https://github.com/pietrobarbiero/pytorch_explain.

4.9.5 Relevance to AI4Media use cases and media industry applications

In most of multimedia databases, the content is multimodal and comes with Metadata. This
metadata can be exploited to build an extra knowldge on the content, for instance the location, the
date, the author of a picture, sometimes even a description of the content of that picture. This is
also true of course for audio and video files. As a journalist, if I want to classify my multimedia
content database, or retrieve specific documents in this database, I would like to exploit this extra
knowledge. This is exactly what this work is going to be able to provide: a hybrid system taking a
decision based jointly on the raw multimedia content and on the associated knowledge.
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4.10 Concept Embedding Models: Beyond the Accuracy-Explainability
Trade-Off

Contributing partners: 3IA-UCA

4.10.1 Overview

Deploying AI-powered systems requires trustworthy models supporting effective human interactions,
going beyond raw prediction accuracy. Concept bottleneck models promote trustworthiness by
conditioning classification tasks on an intermediate level of human-like concepts. This enables
human interventions which can correct mispredicted concepts to improve the model’s performance.
However, existing concept bottleneck models are unable to find optimal compromises between
high task accuracy, robust concept-based explanations, and effective interventions on concepts—
particularly in real-world conditions where complete and accurate concept supervisions are scarce.
To address this, we propose Concept Embedding Models, a novel family of concept bottleneck
models which goes beyond the current accuracy-vs-interpretability trade-off by learning interpretable
high-dimensional concept representations. Our experiments demonstrate that Concept Embedding
Models (1) attain better or competitive task accuracy w.r.t. standard neural models without
concepts, (2) provide concept representations capturing meaningful semantics including and beyond
their ground truth labels, (3) support test-time concept interventions whose effect in test accuracy
surpasses that in standard concept bottleneck models, and (4) scale to real-world conditions where
complete concept supervisions are scarce.

4.10.2 Methodology

In real-world settings, where complete concept annotations are costly and rare, vanilla CBMs
may need to compromise their task performance in order to preserve their interpretability [141].
While Hybrid CBMs are able to overcome this issue by adding extra capacity in their bottlenecks,
this comes at the cost of their interpretability and their responsiveness to concept interventions,
thus undermining user trust [142]. To overcome these pitfalls, we propose Concept Embedding
Models (CEMs), a concept-based architecture which represents each concept as a supervised vector.
Intuitively, using high-dimensional embeddings to represent each concept allows for extra supervised
learning capacity, as opposed to Hybrid models where the information flowing through their
unsupervised bottleneck activations is concept-agnostic. In the following section, we introduce our
architecture and describe how it learns a mixture of two semantic embeddings for each concept
(Figure 29). We then discuss how interventions are performed in CEMs and introduce RandInt, a
train-time regularisation mechanism that incentivises our model to positively react to interventions
at test-time.

4.10.2.1 Architecture For each concept, CEM learns a mixture of two embeddings with explicit
semantics representing the concept’s activity. Such design allows our model to construct evidence
both in favour of and against a concept being active, and supports simple concept interventions as
one can switch between the two embedding states at intervention time.

We represent concept ci with two embeddings ĉ+i , ĉ
−
i ∈ Rm, each with a specific semantics:

ĉ+i represents its active state (concept is true) while ĉ−i represents its inactive state (concept is
false). To this aim, a DNN ψ(x) learns a latent representation h ∈ Rnhidden which is the input
to CEM’s embedding generators. CEM then feeds h into two concept-specific fully connected
layers, which learn two concept embeddings in Rm, namely ĉ+i = ϕ+i (h) = a(W+

i h + b+
i ) and
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Figure 29. Concept Embedding Model: from an intermediate latent code h, we learn two embeddings per concept,
one for when it is active (i.e., ĉ+i ), and another when it is inactive (i.e., ĉ−i ). Each concept embedding (shown in
this example as a vector with m = 2 activations) is then aligned to its corresponding ground truth concept through
the scoring function s(·), which learns to assign activation probabilities p̂i for each concept. These probabilities are
used to output an embedding for each concept via a weighted mixture of each concept’s positive and negative
embedding.

ĉ−i = ϕ−i (h) = a(W−
i h + b−

i ).
22 Notice that while more complicated models can be used to

parameterise our concept embedding generators ϕ+i (h) and ϕ
−
i (h), we opted for a simple one-layer

neural network to constrain parameter growth in models with large bottlenecks. Our architecture
encourages embeddings ĉ+i and ĉ−i to be aligned with ground-truth concept ci via a learnable and
differentiable scoring function s : R2m → [0, 1], trained to predict the probability p̂i ≜ s([ĉ+i , ĉ

−
i ]

T ) =
σ(Ws[ĉ

+
i , ĉ

−
i ]

T + bs) of concept ci being active from the embeddings’ joint space. For the sake of
parameter efficiency, parameters Ws and bs are shared across all concepts. Once both semantic
embeddings are computed, we construct the final concept embedding ĉi for ci as a weighted mixture
of ĉ+i and ĉ−i :

ĉi ≜ (p̂iĉ
+
i + (1− p̂i)ĉ−i )

Intuitively, this serves a two-fold purpose: (i) it forces the model to depend only on ĉ+i when the
i-th concept is active, that is, ci = 1 (and only on ĉ−i when inactive), leading to two different
semantically meaningful latent spaces, and (ii) it enables a clear intervention strategy where one
switches the embedding states when correcting a mispredicted concept, as discussed below. Finally,
all k mixed concept embeddings are concatenated, resulting in a bottleneck g(x) = ĉ with k ·m units
(see end of Figure 29). This is passed to the label predictor f to obtain a downstream task label. In
practice, following [141], we use an interpretable label predictor f parameterised by a simple linear
layer, though more complex functions could be explored too. Notice that as in vanilla CBMs, CEM
provides a concept-based explanation for the output of f through its concept probability vector
p̂(x) ≜ [p̂1, · · · , p̂k], indicating the predicted concept activity. This architecture can be trained in
an end-to-end fashion by jointly minimising via stochastic gradient descent a weighted sum of the
cross entropy loss on both task prediction and concept predictions:

L ≜ E(x,y,c)

[
Ltask

(
y, f(g(x))

)
+ αLCrossEntr

(
c, p̂(x)

)]
(11)

where hyperparameter α ∈ R+ controls the relative importance of concept and task accuracy.

22In practice, we use a leaky-ReLU for the activation a(·).
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4.10.2.2 Intervening with Concept Embeddings As in vanilla CBMs, CEMs support
test-time concept interventions. To intervene on concept ci, one can update ĉi by swapping the
output concept embedding for the one semantically aligned with the concept ground truth label.
For instance, if for some sample x and concept ci a CEM predicted p̂i = 0.1 while a human expert
knows that concept ci is active (ci = 1), they can perform the intervention p̂i := 1. This operation
updates CEM’s bottleneck by setting ĉi to ĉ+i rather than (0.1ĉ+i + 0.9ĉ−i ). Such an update allows
the downstream label predictor to act on information related to the corrected concept. In addition,
we introduce RandInt, a regularisation strategy exposing CEMs to concept interventions during
training to improve the effectiveness of such actions at test-time. RandInt randomly performs
independent concept interventions during training with probability pint (i.e., p̂i is set to p̂i := ci for
concept ci with probability pint). In other words, for all concepts ci, during training we compute
embedding ĉi as:

ĉi =

{
(ciĉ

+
i + (1− ci)ĉ−i ) withprobabilitypint

(p̂iĉ
+
i + (1− p̂i)ĉ−i ) withprobability(1− pint)

while at test-time we always use the predicted probabilities for performing the mixing. During
backpropagation, this strategy forces feedback from the downstream task to update only the correct
concept embedding (e.g., ĉ+i if ci = 1) while feedback from concept predictions updates both ĉ+i
and ĉ−i . Under this view, RandInt can be thought of as learning an average over an exponentially
large family of CEM models (similarly to dropout [143]) where some of the concept representations
are trained using only feedback from their concept label while others receive training feedback from
both their concept and task labels.

4.10.3 Results
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Figure 30. Accuracy-vs-interpretability trade-off in terms of task accuracy and concept alignment score for
different concept bottleneck models. In CelebA, our most constrained task, we show the top-1 accuracy for
consistency with other datasets.
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(CEM)
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Concept Inactive

Figure 31. Qualitative results for our CEM with t-SNE visualisations of “has white wings” concept embedding learnt
in CUB with sample points coloured red if the concept is active in that sample
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(Hybrid)

Concept Active

Concept Inactive

Figure 32. Qualitative results for hybrid with t-SNE visualisations of “has white wings” concept embedding learnt in
CUB with sample points coloured red if the concept is active in that sample
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Figure 33. top-5 test neighbours of CEM’s embedding for the concept “has white wings” across 5 random test
samples.
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Figure 34. Mutual Information (MI) of concept representations (Ĉ) w.r.t. input distribution (X) and ground truth
labels (Y ) during training. The size of the points is proportional to the training epoch.

• CEM improves generalisation accuracy (y-axis of Figure 30)

• CEM overcomes the information bottleneck (Figure 34)

• CEM learns more interpretable concept representations (x-axis of Figure 30)

• CEM captures meaningful concept semantics (Figure 31, Figure 32, and Figure 33)

• CEM supports effective concept interventions and is more robust to incorrect interventions
(Figure 35)

Our experiments provide significant evidence in favour of CEM’s accuracy/interpretability and,
consequently, in favour of its real-world deployment. In particular, CEMs offer: (i) state-of-the-art
task accuracy, (ii) interpretable concept representations aligned with human ground truths, (iii)
effective interventions on learnt concepts, and (iv) robustness to incorrect concept interventions.
While in practice CBMs require carefully selected concept annotations during training, which can
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Figure 35. Effects of performing positive random concept interventions (left and center left) and incorrect random
interventions (center right and right) for different models in CUB and CelebA. As in [141], when intervening in
CUB we jointly set groups of mutually exclusive concepts.

be as expensive as task labels to obtain, our results suggest that CEM is more efficient in concept-
incomplete settings, requiring less concept annotations and being more applicable to real-world tasks.
While there is room for improvement in both concept alignment and task accuracy in challenging
benchmarks such as CUB or CelebA, as well as in resource utilisation during inference/training,
our results indicate that CEM advances the state-of-the-art for the accuracy-vs-interpretability
trade-off, making progress on a crucial concern in explainable AI.

4.10.4 Relevant Resources and Publications

Relevant publications:

• Espinosa Zarlenga, M., Barbiero, P., Ciravegna, G., Marra, G., Giannini, F., Diligenti, M.,
Shams, Z., Precioso, F., Melacci, S., Weller, A., Lio, P., and Jamnik, M.. (2022). Concept
Embedding Models:
Beyond the Accuracy-Explainability Trade-Off. In Advances in Neural Information Processing
Systems (NeurIPS), vol.35. [140].

Relevant software and/or external resources:

• The PyTorch implementation of our work “Concept Embedding Models:
Beyond the Accuracy-Explainability Trade-Off” can be found in https://github.com/

mateoespinosa/cem.

4.10.5 Relevance to AI4Media use cases and media industry applications

In most of multimedia databases, the content is multimodal (visual, text, audio, video). If this
content is associated with a description, the concepts present in the mutlimedia content may be
described. As a journalist, if I want to classify my multimedia content database, or retrieve specific
documents in this database, I would like to condition the content classified or retrieved based on the
concepts I expect to find in it or the concepts I do not want to find in it. This is exactly what this
work is going to be able to provide: a hybrid system taking a decision based on the raw multimedia
content but conditioning its importance by concepts that should be present or not in the expected
results.

4.11 First Nice Workshop on Interpretability (NWI)

Contributing partners: 3IA-UCA
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4.11.1 Summary

The 1st Nice Workshop on Interpretability (NWI)23 took place on November 17-18, 2022. It was
organized by Damien Garreau and Frédéric Precioso, with the help of their PhD student Gianluigi
Lopardo, and brought together around 50 researchers from all across Europe. They discussed the
many facets of machine learning models’ interpretability. Lasting two days, the workshop was
structured around 6 long talks and 11 short talks. Perhaps the main scientific takeaway is the
diversity of approaches and the lack of consensus on what a good explanation should be, which led
to stimulating discussion. This workshop was also a unique occasion for many researchers affiliated
with AI4Media to meet: apart from Damien Garreau and Frédéric Precioso as organizers, Mara
Graziani, Gianluigi Lopardo, Vasileios Mezaris, and Gabriele Ciravegna gave a talk. While the main
event took place in the Université Côte d’Azur, some speakers and participants attended remotely
to the afternoon sessions. NWI received the financial support of LJAD (the maths department of
UCA) and AI4Media.

Photographs from the workshop are shown in Figure 36.

4.11.2 List of invited talks

Abstracts for all talks can be found in Appendix A.2.

• Jenny Benois-Pineau (Université de Bordeaux): FEM and MLFEM post-hoc explainers
for CNNs and their evaluation with reference-based and no-reference quality metrics

• Joao Marques-Silva (IRIT CNRS ANITI): Logic-Based Explainability in Machine
Learning

• Vasileios Mezaris (ITI - CERTH): Explaining the decisions of image/video classifiers

• Martin Pawelcyk (University of Tübingen): On the Trade-Off between Actionable
Explanations and the Right to be Forgotten

• Tristan Gomez (LS2N): Metrics for saliency maps faithfulness evaluation: an application
to embryo stage identification

• Sebastian Bordt (University of Tübingen): From Shapley Values to Generalized Additive
Models and back

• Hugo Sénétaire (DTU): Casting explainability as statistical inference

• Gianluigi Lopardo (3IA-UCA): A Sea of Words: An In-Depth Analysis of Anchors for
Text Data

• Gabriele Ciravegna (3IA-UCA): Entropy-Based Logic Explanations of Neural Networks

• Jean-Michel Loubes (Université Toulouse Paul Sabatier): Explainability of a Model
under stress

• Yann Chevaleyre (Paris Dauphine): Learning interpretable scoring rules

• Alexandre Benoit (Université Savoie Mont Blanc): Explainable AI for Earth Observa-
tion

23The website of the event can be found at https://sites.google.com/view/nwi2022/home?authuser=0
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Figure 36. Pictures from NWI: (left) captivated audience; (middle:) discussions during the coffee break; (right:)
The speakers and the organization team at the restaurant.

• Salim Amoukou (Université Paris Saclay): Consistent Sufficient Explanations and
Minimal Local Rules for explaining regression and classification models

• Giorgio Visani (University of Bologna): Inspecting Stability and Reliability of Explana-
tions

• Hidde Fokkema (Korteweg-de Vries Institute): Attribution-based Explanations that
Provide Recourse Cannot be Robust

• Mara Graziani (IBM Research): Reliable AI in healthcare: from model validation to
hypothesis generation

• Pietro Barbiero (Cambridge University): Concept Embedding Models: Beyond the
Accuracy-Explainability Trade-Off
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5 Privacy-Enhancing AI (Task 4.4)

Data is the new oil. Never before, so much personal data has been collected and evaluated. Never
before, so many technologies have been available to analyze the data and combine this into new
insights.

All these advances in Artificial Intelligence (AI) have the important downside that breaching
individuals’ privacy at scale is also as easy as never before. The European legislation reacted
with the General Data Protection Regulation (GDPR) regulating what is allowed and what is
not. However, this suggests a trade off between AI performance and privacy. But instead of
drawing things black and white, making data privacy a natural enemy of progress, it is important
to take a look at technologies that allow the processing of personal data without sacrificing sensitive
information held by individuals and organizations. More often than not, cleverly anonymised data
is enough.

Within this task (T4.4) we create tools that help protecting private data, while making data
analysis required by the AI4Media use cases possible. Our contributions during this reporting period
include work on (i) unlearning in the federated learning setting, a new field of work (Section 5.1),
(ii) continuing work on diffprivlib, a general-purpose library for differential privacy computations in
Python (Section 5.2), (iii) a utility-preserving de-identification approach for data publication using
relation extraction filtering (Section 5.3), (iv) a tool for combining differential privacy, homomorphic
encryption and multiparty computation for secure federated learning (Section 5.4), (v) a graph
neural network with differentially private learning guarantees (Section 5.5), and (vi) the use of a
reversible transformation to create adversarial examples for training (Section 5.6).

5.1 Federated Unlearning: How to Efficiently Erase a Client in FL?

Contributing partners: IBM

5.1.1 Overview

Recent privacy legislation [144] provide data owners the ability to revoke consent and the right
to be forgotten. In the ML context, this requires that the data and any influence of the data
on the ML model is removed. This process is also known as machine unlearning. This research
focuses on machine unlearning in the context of Federated Learning (FL). We consider the case
where a client wants to opt out of federation after the federated learning process, and as a result,
wants to remove their contribution from the global model. Existing machine unlearning [145]–[148]
approaches can not be directly applied in a federated learning setting due to the differences in the
inherent characteristics of ML and FL. The most naive way of implementing federated unlearning
is to retrain the model from scratch after removing from the corresponding client(s) the data
sample(s) that are requested to be deleted. However, this approach is computationally expensive.
Recently, some approximate unlearning approaches for the FL setting have been proposed aiming
to speed up this process, but they are either not practical to be used in real-life [149] or require the
server to store the history of the parameter updates [150]. Therefore, we introduce a new federated
unlearning approach that relies on the client that wants to opt out of federation.

5.1.2 Methodology

After FL training is performed with N clients for the specified T rounds (Figure 37(a)), a client
i ∈ [N ] requests to opt out of federation and wants to remove their contribution from the FL model.
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We refer to this client as the target client. We propose to perform federated unlearning in two
phases: (i) local unlearning (Figure 37(b)) and (ii) FL post-training (Figure 37(c)).

Figure 37. Phases of Federated Unlearning: (a) First, clients and the server participate in a federated learning
process to train a global model. (b) One of the clients wants to opt out of federation and wants to unlearn their data.
The target client i locally runs Projected Gradient Descent to obtain model wu

i . (c) The server and the remaining
clients perform a few steps of federated learning with wu

i as the initial point to obtain the final ‘unlearned’ model.

Local Unlearning: To motivate our unlearning method, let us consider what happens during a
federated training round. In each round, the goal of a client is to learn a local model that minimizes
the (local) empirical risk, i.e., to solve the following optimization problem:

(Train) min
w∈Rd

Fi(w) :=
1

ni

∑
j∈Di

L(w; (xj , yj)), (12)

where L(w; (xj , yj)) is the loss of the prediction on example (xj , yj) made with model parameters
w. Each client locally makes several passes of (mini-batch stochastic) gradient descent to find a
model that has low empirical loss.

We argue that a natural idea for unlearning is to reverse this learning process. That is, during
unlearning, instead of learning model parameters that minimize the empirical loss, the client strives
to learn the model parameters to maximize the loss. To find a model with large empirical loss, the
client can simply make several local passes of (mini-batch stochastic) gradient ascent. However,
simply maximizing the loss with gradient ascent can be problematic, since the loss function can
be unbounded. For an unbounded loss, each gradient ascent step moves towards a model that
increases the loss, and after several steps, it is likely to produce an arbitrary model similar to a
random model.

To tackle this issue, we ensure that the unlearned model is sufficiently close to a reference model
that has effectively learned the other clients’ data distributions. In particular, we propose to use
the average of the other clients’ models as a reference model, i.e., wref =

1
N−1

∑
j ̸=i w

T−1
j . Note

that the target client i can compute this reference model locally as wref =
1

N−1

(
NwT −wT−1

i

)
,

where wT is the global FL model after T rounds and wT−1
i is the i-th client’s local model update

in round T − 1. The client i then optimizes over the model parameters that lie in the ℓ2-norm
ball of radius δ around wref. A natural choice for solving this optimization problem is to use
projected gradient descent. More specifically, let us denote the ℓ2-norm ball of radius δ around wref

as Ω = {v ∈ Rd : ∥v−wref∥2 ≤ δ}. Let P : Rd → Rd denote the projection operator onto Ω. Then,
for a given step-size ηu, client i uses PGD to iterate the update:

w← P (w + ηu∇Fi(w; b)) , (13)

where ∇Fi(w;b) is the gradient of Fi with respect to w computed on a batch b. To avoid learning
an arbitrary model, we perform early stopping if the ℓ2-distance of the target client wT−1

i to the
unlearned model wu

i is smaller than a predetermined threshold τ .
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FL post-training. To improve the performance of the locally unlearned model on the data of the
retained clients, the server and the retained clients perform a few rounds of FL training starting
with the unlearned model wu

i .

5.1.3 Results

We evaluate the performance of the proposed method on three datasets: MNIST [151], EMNIST
(balanced version) [152], and CIFAR-10 [50]. An effective federated unlearning method must remove
the contribution of the target client’s data, maintain good performance, and be more efficient than
retraining from scratch. To reflect these properties in our evaluation, we use three performance
measures: efficacy, fidelity, and efficiency (similar to Warnecke et al. [153]). We use the backdoor
triggers [154] as an effective way to evaluate the performance of unlearning methods. We consider
two cases: (i) N = 5 clients with the target client having 66% of their images backdoored, and (ii)
N = 10 clients with the target client having 80% of their images backdoored. We compare our
proposed unlearning method to retraining from scratch (referred as the baseline approach).

Figure 38 shows the accuracy on a hold-out test set of backdoored images (backdoor accuracy)
of each model for each dataset. The high value of backdoor accuracy for the FedAvg model indicates
that the FL model has learned the target client’s data consisting of backdoor triggers. We observe
that the proposed PGD-based unlearning method substantially reduces the backdoor accuracy,
and in fact, achieves similar backdoor accuracy to the baseline approach, demonstrating the high
efficacy of our method.
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Figure 38. Backdoor accuracy (efficacy) of the fully retrained and the PGD-based unlearned model in each dataset,
and their comparison with the FedAvg model before unlearning.

In Figure 39, we show the accuracy on a hold-out test set that consists of clean images (clean
accuracy) of the unlearned models obtained by our method and retraining. We observe that our
PGD-based unlearning method achieves similar clean accuracy to retraining.
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Figure 39. Clean accuracy (fidelity) of the fully retrained and the PGD-based unlearned model in each dataset.
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Figure 40 shows the communication cost for various clean accuracy (fidelity) values for N =
5 clients. We observe that the proposed unlearning method is more efficient in terms of the
communication cost on the retained clients than the baseline of retraining while achieving comparable
fidelity and efficacy. We believe that lowering the communication burden on retained clients is
appealing in practice since these clients are not incentivized to help the target client in unlearning.
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Figure 40. Communication costs (efficiency) of the proposed unlearning method and the baseline approach with
respect to the clean accuracy (fidelity) in each dataset for N = 5.

5.1.4 Relevant Resources and Publications

Relevant publications:

• A. Halimi, S. Kadhe, A. Rawat, and N. Baracaldo. “Federated Unlearning: How to Efficiently
Erase a Client in FL?” International Workshop on Updatable Machine Learning in conjunction
with ICML (UpML), 2022 [155].
Zenodo record: https://zenodo.org/record/8154387.

Relevant resources:

• The implementation of this work can be found in https://github.com/IBM/federated-unlearning.

5.1.5 Relevance to AI4Media use cases and media industry applications

Our approach, with its focus on being compliant with GDPR, is relevant to various media industry
use cases. Unlearning empowers users by providing them the ability to request the removal of their
data. In content moderation, unlearning data from a federated learning model can be used to
improve the moderation models when irrelevant, harmful, or toxic information is found. Unlearning
plays an essential role for journalists and researchers by ensuring that the media content is of high
quality. Media companies can also use unlearning to reduce bias in recommendation models by
removing the impact of biased data points from the model.

5.2 Diffprivlib – A General-Purpose Differential Privacy Library

Contributing partners: IBM

5.2.1 Overview

Owing to its robust mathematical guarantees, generalised applicability and rich body of literature,
Differential Privacy (DP) has emerged as the defacto standard in data privacy since its inception in
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2006. Diffprivlib [156] was created as a central repository of differential privacy mechanisms, readily
available to apply and combine in various application use cases, in conjunction with state of the art
standard machine learning practices and tools. The aim is to enable users to (i) experiment with
differential privacy, (ii) explore the impact such techniques can have on machine learning accuracy
and (iii) build commercial grade applications with differential privacy mechanisms integrated from
their inception onwards.

Since D4.1, a number of important additions have been made to diffprivlib to enhance its
functionality, safeguard its privacy guarantees and maintain compatibility with dependencies.
Highlights of updates include the following:

1. Seeding: The ability to seed the Random Number Generator (RNG) for DP noise generation.

2. Random Forest: The addition of a differentially-private random forest classifier (including
one significant refactoring of the code to enhance performance).

3. Secure Sampling: The implementation of secure noise sampling to enhance privacy in floating-
point calculations.

5.2.2 Methodology

We outline the methodologies associated with the main additions listed in the previous section.

5.2.2.1 Seeding The ability to seed the random number generator used for generating the noise
required to implement DP is important for the reproducibility of results, bug-fixing and testing,
and was an important addition to Diffprivlib between D4.1 and the present deliverable [157]. This
was achieved by following the pre-existing standards from Numpy and Scikit-Learn, both already
heavily integrated with Diffprivlib.

Users can now pass a random_state parameter directly to each Diffprivlib function, which can
be (i) None, (ii) an integer, or (iii) an existing RandomState instance (from the Numpy package).
This random state is then passed along and used for all sources of randomness with the Diffprivlib
function, and any internal subcalls. This allows for scientists to reproduce published results
(whenever the seed is provided, as is best practice), and also eases the burden of bug fixing and
testing, where the randomness of DP can cause problems.

5.2.2.2 Random Forest The addition of a RandomForestClassifier algorithm to Diffprivlib
has added another important feather to its cap. The implemented random forest follows state-of-
the-art literature in the area, which cleverly apportions the privacy budget ϵ across each tree in the
forest [158].

In summary, the DP version of RandomForestClassifier produces a forest of completely
random trees without first looking at the data. By “training” the trees by only referencing the
metadata (i.e., the range/domain of the data) no privacy budget is expended. Then, the entire
dataset is partitioned across each of the trees, and DP counts are taken at each leaf node. Because
of the partitioning of the dataset and the nature of binary trees (where each datapoint contributes
to precisely one leaf node), the sensitivity of the algorithm can be tightly controlled, thereby adding
minimal noise.

5.2.2.3 Secure Sampling One final important addition to Diffprivlib in the reporting period
was the addition of secure sampling of noise. It is well known that the sampling of random numbers
can present privacy vulnerabilities when looking at the least significant bits of the generated noise.
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Existing techniques to overcome these failings were arduous to implement, typically slower than
naive sampling, and difficult to generalise to arbitrary distributions [159], [160].

As part of work in this area, we constructed a new technique taking advantage of the (infinite)
divisibility of the probability distributions of interest to DP implementations, by generating a single
sample from the desired distribution as a sum of variates from its divisors. By way of example,
to generate a single sample from the Gaussian (normal) distribution, we propose using a sum of
multiple Gaussian variates, thereby preventing the attack presented in [159]. This technique is fast,
easy to implement and simple to understand.

The outcome of this research was published at the ESORICS conference in late 2021 [161]. This
solution is also used for secure noise generation in the third party Opacus software.24

5.2.3 Results

5.2.3.1 Seeding All Diffprivlib functions can now be seeded to produce repeatable “random”
outputs. This is available for all mechanisms, tools and models, and will be especially useful for
scientists and engineers looking for reproducible outputs, or for bug fixing and consistent testing of
code.

Figure 41 gives an example of the difference of seeding a Diffprivlib function with an integer
and a RandomState instance.

Figure 41. Example code showing the difference of seeding a Diffprivlib function with an integer, and seeding with a
RandomState instance. In the former, repeated execution returns the same “random” value. In the latter, different
values are returned, but repeated execution of the same script will give the same overall output. Typically, the
second behaviour is what is desired.

5.2.3.2 Random Forest The new implementation of the RandomForestClassifier has added
further classification functionality to diffprivlib. Random forests are a commonly-used tool in
machine learning and data analysis, and are especially useful in the DP context for their ability to
generalise easily to highly dimensional problems.

In the example given in Figure 42, the random forest classifier is trained on a dataset with
ten features, but non-private accuracy is nonetheless achieved at ϵ = 0.02, which is good by DP
standards.

The refactored code introduced in Diffprivlib v0.6 gave substantial improvements in many
areas. The code now follows similar parametrisation requirements to other Diffprivlib models (i.e.,
necessitating a bounds parameter to specify the range of the dataset), and is also much faster by
utilising existing functionality within Scikit-Learn (including parallel processing).

24https://github.com/pytorch/opacus/blob/v1.4.0/opacus/optimizers/optimizer.py#L119-L134
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Figure 42. Example performance of the Random Forest classifier with differential privacy across various epsilon
(privacy loss) values. The simulations were completed using Scikit-Learn’s make_blobs data generator, with 10,000
samples generated over 3 centres, with a 80/20 train/test split. As can be seen from the plot, maximum
performance is achieved approximately when ϵ = 0.02.

5.2.3.3 Secure Sampling The implementation of secure sampling has been integrated within
Diffprivlib. Although there is a performance penalty with making these changes (as outlined in
Figure 43), this comes with the advantage of significant security improvements for outputs. The
work also gives scientists and engineers the option of increasing the security of the noise generation
even further, by using even more uniform variates in the generation of individual samples. For the
purposes of DP however, using 4 uniform variates to generate a single sample is sufficient.

In Figure 43, we demonstrate the performance comparisons across a number of techniques: (i) the
naive (insecure) sampling approach (using equation (2) in [161]), (ii) the secure procedure presented
in Theorem 1 of [161], (iii) sampling normal Gaussians directly from Python’s random module (and
summing/scaling accordingly to produce a Laplace sample), and (iv) sampling Gaussians using
Numpy. The code for these experiments can be found in Appendix B of [161].

5.2.4 Relevant Resources and Publications

Relevant publications:

• N. Holohan and S. Braghin. “Secure Random Sampling in Differential Privacy”. In Computer
Security–ESORICS 2021: 26th European Symposium on Research in Computer Security,
Darmstadt, Germany, October 4–8, 2021, Proceedings, Part II 26 (pp. 523-542). Springer
International Publishing [161].
Zenodo record: https://zenodo.org/record/8211750.

• N. Holohan. “Random Number Generators and Seeding for Differential Privacy”. ArXiv
e-prints 2307.03543 [cs.CR] [157].
Zenodo record: https://zenodo.org/record/8211753.

Relevant resources:
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Figure 43. Computation time for secure sampling versus naive (insecure) sampling in blue. The increased sampling
time for using more uniform variates is offset by the (exponentially) increased security and attack resistance.

• Diffprivlib Github repository:
https://github.com/IBM/differential-privacy-library.

5.2.5 Relevance to AI4Media use cases and media industry applications

Differential privacy has a multitude of potential use cases in the media industry, wherever sensitive
data is being collected, stored or ingested, and offers a great opportunity for media companies to
meet their data protection obligations while maintaining the usability and functionality of that
data. This is particularly important for those in the news industry dealing with sensitive and
confidential information, e.g., provided by whistleblowers, where the data itself cannot be released
for fear of identifying the whistleblower, or revealing sensitive information about individuals.25

In this example, differential privacy can be used to publish dataset-specific information without
compromising the privacy of the individuals involved.

Another relevant application in the media industry is privacy-preserving surveying, where
differential privacy principles can also be leveraged through randomised response. In cases where
surveys are sought on very sensitive subjects, randomisation can be used to protect participants’
privacy while still collecting accurate statistics [162], [163].

5.3 A Utility-Preserving De-Identification Approach with Relation Ex-
traction Filtering

Contributing partners: IBM

According to a recent report26, about 80% of all data produced will be unstructured by 2025
and much of this ever-increasing amount of data is in the form of free text. Examples of these are
reports, contracts, and medical notes, which contain an overwhelming amount of information yet to

25Cf. a recent data breach at the Police Service of Northern Ireland: https://www.irishtimes.com/crime-law/
2023/08/11/psni-data-leak-qa-reputational-and-financial-damage-trail-security-worries/

26https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.

pdf

Intermediate toolset for robust, explainable, fair, and privacy-preserving AI 92 of 151

https://github.com/IBM/differential-privacy-library
https://www.irishtimes.com/crime-law/2023/08/11/psni-data-leak-qa-reputational-and-financial-damage-trail-security-worries/
https://www.irishtimes.com/crime-law/2023/08/11/psni-data-leak-qa-reputational-and-financial-damage-trail-security-worries/
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf


be properly leveraged. One of the reasons for this resides in the fact that the de-identification of
unstructured documents is a non-trivial task. Existing solutions [164]–[166] attempt to solve the
ambiguity issue of free text analysis by leveraging the context, but do not preserve the utility of
the de-identified text.

Modern Natural Language Processing (NLP) methods have reached a fundamentally new level
27. One of the areas of NLP which is highly useful in the case of de-identification of personal
information is Named Entity Recognition (NER). NER methods are able to analyze text and
detect a predefined set of concepts (person names, dates, addresses, or more specific ones, like
drug names). A detailed explanation of the recent de-identification approaches can be found in
the following research works [167]–[170]. The main drawback of these approaches is that they can
mark non-sensitive entities as Personal Identifiable Information (PII) producing high false positives.
This research introduces a novel framework for the detection of sensitive entities based on Relation
Extraction (RE) filtering.

5.3.1 Method

Figure 44 shows the main steps of the proposed method. The pipeline of the framework is organized
as follows. We first split the input text into sentences and then pass the obtained sentences through
a set of predefined entity detectors, which results in a list of detected entities. These entities are
marked as “potentially sensitive” and transferred to the relation extraction module. To detect the
entities, we adopt a set of rule-based methods proposed in [170] and expand it with state-of-the-art
neural-based methods [171]–[173] to improve the detection accuracy.

Text

User

Sentence Tokenizer Entity Detection

De-Identification Utility/Risk
Assessment

Neural model-based
entities

Rule-based entities

Relation Extraction

Sensitive relations

Sensitive entity
types

Relation Filtering

Figure 44. Proposed method diagram.

Via the relation extraction module, we filter the list of previously detected entities and maintain
only the sensitive ones. We apply Document-level Relation Extraction with Evidence-guided
Attention Mechanism (DREEAM), a RE model proposed in [174], to the list of detected entities to
determine the relations between them. The user can provide a list with sensitive relations as input
to the relation filtering module. As the output of DREEAM, we obtain a graph-like structure with
all the relations between the detected entities. Entities that are connected by a sensitive relation
are marked as “sensitive” and transferred to the de-identification stage. The remaining entities are
marked as “non-sensitive” and filtered out.

De-identification is usually performed by redacting sensitive values. However, in order to maintain
the utility of the document, more advanced mechanisms can be utilized: tagging (“John” becomes
“NAME-1”), masking (“John” becomes “Mark”), generalization (“Paris” becomes “France”), or
noise addition (for example, using differential privacy methods), and more. Depending on the
requested utility level, the user can parameterize the system with the desired approach.

27https://openai.com/blog/chatgpt/
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Jacqueline Bouvier Kennedy Onassis was born on July 28, 1929, in Southampton, New York. Her father, John Bouvier, was a wealthy New York
stockbroker of French Catholic descent, and her mother, Janet, was an accomplished equestrienne of Irish Catholic heritage.

Upon returning from Paris, Onassis transferred to George Washington University in Washington, D.C., and graduated with a B.A. in French literature
in 1951. After graduating from college in 1951, Onassis landed a job as the "Inquiring Camera Girl" for the Washington Times-Herald newspaper. Her
job was to photograph and interview various Washington residents, and then weave their pictures and responses together in her column. Among her
most notable stories were an interview with Richard Nixon, coverage of President Dwight D. Eisenhower's inauguration and a report on the
coronation of Queen Elizabeth II. 

Jacqueline Kennedy Onassis married John F. Kennedy in 1953. When she became first lady in 1961, she worked to restore the White House to its
original elegance and to protect its holdings. After JFK's assassination in 1963, she moved to New York City and married Aristotle Onassis in 1968.
She died of cancer in 1994.
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Figure 45. Example of entities and relationships

5.3.2 Experimental Evaluation

To evaluate the performance of the proposed framework, we use the Text Anonymization Benchmark
(TAB) dataset [175]. The TAB dataset consists of court case records labelled by experts for the
purpose of text anonymization. For evaluation, we select 282 documents that satisfy the DREEAM
input length requirements (1024 tokens).
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We compute the percentage of true positives and the number of false positives (TP% and FP,
respectively) as well as the utility of the de-identified text in two scenarios: (i) with the RE-based
filtering and (ii) without the RE-based filtering. We also compute the informational content, which
is defined as the negative logarithm of the probability of predicting the masked entity from the
text, as proposed in [175]. Thus, the higher the probability, the lower the informational content.
The informational content represents the weight of inferring the masked entity. We use this value
to compute the weighted precision, which we refer to as utility.

Table 16 demonstrates the performance of the proposed method on the TAB dataset. We

Framework TP% FP Utility Increment

Proposed 79% 4,792 +560% (0.28)

Proposed w/o RE 99.7% 42,046 baseline (0.05)

Table 16. Performance measured on the TAB dataset.

observe that the proposed method without relation extraction detects 99.7% of the tokens, but at
the same time, it suffers from a high number of false positives (over 40,000), which significantly
decreases the utility of the approach (0.05). Via the RE-based filtering, the proposed method
decreases the number of FPs by up to 9 times, resulting in a significant utility increase (from 0.05
to 0.28) while having a slight drop in the number of true positives. Thus, the proposed method
significantly improves the utility of the de-identified documents.

5.3.3 Relevant Resources and Publications

Relevant publications:

• L. Nedoshivina, A. Halimi, J. Bettencourt-Silva, and S. Braghin. “A Utility-Preserving
De-Identification Approach with Relation Extraction Filtering”, The 23rd Privacy Enhancing
Technologies (PETS) Poster, 2023.
Zenodo record: https://zenodo.org/record/8279802.

5.3.4 Relevance to AI4Media use cases and media industry applications

Document de-identification is highly relevant in the media sector. It protects individuals’ privacy
rights by identifying and removing sensitive information such as names, addresses, or contact details
from documents. At the same time, it helps media organizations comply with the data protection
laws. De-identifying documents allow researchers to share datasets or reports without compromising
individuals’ privacy. It also promotes responsible and ethical reporting by removing the sensitive
information of the individuals involved in news stories, legal cases, or investigations.

5.4 Secure Federated Learning

Contributing partners: FhG-IDMT

Note: T4.4 will be extended to the end of the project (M48) to continue the work described in
this section.

Usually, a machine learning model is trained at a central server, with all training data being
aggregated from participants / clients prior to the training process. From the perspective of
model performance, this approach is probably ideal, but depending on the application, it can come
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with serious drawbacks: Providing all training data to a central entity may come with significant
cost (think of big media archives and large amounts of data, or small sensor devices with little
bandwidth). More importantly, participants may not want to share their data with a central entity
at all, due to privacy and confidentiality considerations.

The idea of federated learning is that the training data stays with the participants / clients,
and only the model weights are shared: Every client performs a local training, resulting in a local
model update. Then, all models are sent to the central server, and the aggregate model is sent back
to the clients. While this approach is likely to come with a decrease in performance, ideally, it still
performs well, and all clients benefit from each other without having the need to transmit their
training data to other actors.

While Federated learning is very helpful when it comes to reduce the amount of shared data, it
is however not guaranteed that it avoids privacy and confidentiality concerns, because the trained
models can still reveal a lot of information about the clients and their training data. The original
federated learning paper mentions this in a footnote [176, p. 2]: “For example, if the update is the
total gradient of the loss on all of the local data, and the features are a sparse bag-of-words, then
the non-zero gradients reveal exactly which words the user has entered on the device. In contrast,
the sum of many gradients for a dense model such as a cnn offers a harder target for attackers
seeking information about individual training instances (though attacks are still possible).” Not
surprisingly, reconstruction attacks on CNNs turned out to be feasible and effective.

Hence, it is clear that there is a need for securing federated learning, and depending on the
given use case and attacker model, there are several candidates technologies regarding privacy
enhancement technologies for federated learning:

• Differential Privacy

• Fully Homomorphic Encryption (FHE)

• Secure Multiparty Computation (SMPC)

The secure federated learning tool will consist of a set of modules that allows incorporating
selected Privacy Enhancement Technologies (PET) in federated learning frameworks. For AI4Media
we decided to select DP and FHE.

5.4.1 Methodology

Depending on the use case, it is important to specify attacker models and define the level of trust
put into other participants, and select appropriate security measures based on that. For instance,
there might be scenarios where only the (cloud) server is untrusted, while other scenarios will also
require protecting against other clients. A basic FHE scheme where all clients share the same key
can prevent the server to learn anything on the model data, thereby addressing the former type of
scenario, but it will not prevent a malicious client to spy on others, which is necessary for the latter
scenario.

In the domain of federated learning, the notion of an honest, but curious attacker is common,
emphasizing the privacy aspect. Participants in the federated learning systems are suspected to get
as much out of the data as they can (or lose them after being hacked), but to do so passively. In
contrast to an active attacker, the aggregator can run model inversion attacks on the individual
model updates it receives, but it will not send faulty data to individual clients, which could
compromise the overall system performance.

From all possible participant / attack mitigation combinations, we will start with differential and
FHE for Federated Averaging: Differential Privacy (DP) can be applied to the training data directly
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but DP can also be applied to the resulting model weights of the local training before sending
it to the aggregator, which is specially useful within the AI4Media context, and will therefore
be supported by the tool. This will include investigation of the trade-off between performance
degradation and resilience regarding model inversion attacks.

The benefits of FHE come with significant cost in terms of computing time and memory
requirements (by orders of magnitudes). This makes direct neural network computations, e.g.,
encrypted inference, infeasible for many problems relevant for AI4Media. However, a central part
of Federated Learning is the computation of the aggregated model, which can be as simple as
calculating an average. These operations are a good fit for FHE, and support will be provided by
the tool for popular FL frameworks like flower28. Practical security issues like key exchange and
modifications to the Federated Averaging will be investigated as well.

5.4.2 Results and Updates

We continued working of the integration of FHE into flower, selecting CKKS as the default
encryption scheme. The initial proof of concept worked well on MNIST classification problems. We
are now developing a second version, updated for recent versions of flower, that is able to provide
more than just encrypted Federated Averaging.

The integration is as transparent as possible, by just adding a few annotations inside the “vanilla”
flower code, all the messages will be encrypted using CKKS and aggregated in the encrypted domain
by the server.

Benchmarks and documentation will be published in the upcoming deliverable D4.7.

5.4.3 Relevance to AI4Media use cases and media industry applications

While privacy is a feature of AI applications that only a few use cases will go without, the proposed
approach deals with privacy within Federated Learning systems. Regarding AI4Media, there is no
Use Case directly dealing with Federated Learning, yet. Regarding the broader media industry, the
outlook of not having to share private data (being it usage, user or content data), and therefore
avoiding all the practical hassles of data exchange (usage rights, data exchange contracts, data
privacy laws, . . .) is so promising, that there will be real industry applications for Federated Learning.
On that premise, applications that improve the privacy (for robustness and fairness, see Section 3.2)
of Federated Learning are worth researching and will be relevant in the future as they are already
in non-media domains such as medicine or industrial applications.

5.5 Differentially Private Graph Learning

Contributing partners: IDIAP

5.5.1 Overview

Graph Neural Networks (GNNs) have shown superior performance in solving the problems formulated
as a machine learning task over graphs, such as node classification, link prediction, and graph
classification, in various disciplines from social network analysis and recommendation services
to drug discovery and medical diagnosis. However, the graphs used to train such models could
be sensitive and contain personal information, and this information can be leaked through the
model’s output, when the GNN is released publicly, or when it is offered as a service [177]–[179].

28https://flower.dev
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For example, a GNN trained over a social network for friendship recommendation may reveal the
graph’s linkage information through its predictions. As another example, a GNN trained over the
social graph of COVID-19 patients to predict the spread of the disease could be used as a service
by government authorities, but an adversary might be able to recover the private graph used for
training.

This research aims to prevent the information leakage of the underlying graph in GNNs using
DP, which is a widely accepted mathematical framework for measuring the privacy guarantees of
algorithms that operate on sensitive data. First, we propose a novel differentially private GNN
based on Aggregation Perturbation (GAP), which adds stochastic noise to the GNN’s aggregation
function to statistically obfuscate the presence of a single edge (edge-level privacy) or a single
node and all its adjacent edges (node-level privacy). To reduce the excessive privacy costs of the
aggregation perturbation technique, GAP decouples the neighborhood aggregation steps from the
learnable parameters of the model, enabling the aggregations to be pre-computed and perturbed
only once, leading to reduced privacy costs.

Next, we investigate the application of progressive learning to privacy-enhancing GNNs, and we
show that it can be used to substantially improve the accuracy-privacy trade-off of differentially
private GNN models that utilize the aggregation perturbation technique without sacrificing privacy.
Our proposed progressive method trains the GNN in a series of steps, with each step building
upon the private node embeddings learned by the previous ones. This approach maintains the
representational power of GNNs while limiting the incurred privacy costs.

5.5.2 GAP: Differentially Private GNNs with Aggregation Perturbation

We briefly explain GAP, our differentially private GNN model satisfying edge-level privacy, which
is also extensible to node-level privacy if combined with standard private learning algorithms such
as DP-SGD [180]. As perturbing an edge in the input graph can practically be viewed as changing
a sample in a node’s neighborhood aggregation set, GAP enhances edge privacy via aggregation
perturbation: we add calibrated Gaussian noise to the output of the aggregation function, which
can effectively hide the presence of a single edge (edge-level privacy) or a group of edges (node-level
privacy). To avoid accumulating privacy costs at every model update, we propose a custom GNN
architecture (Figure 46) comprising three individual components: (i) the encoder module, where
we pre-train an encoder to extract lower-dimensional node features without relying on the graph
structure; (ii) the aggregation module, where we use aggregation perturbation to privately compute
multi-hop aggregated node embeddings using the graph edges and the encoded features; and (iii) the
classification module, where we train a neural network on the aggregated data for node classification
without further querying the graph edges.

Aggregation perturbation allows us to benefit from higher-order, multi-hop aggregations by
composing individual noisy aggregations, yet the proposed architecture significantly reduces the
privacy costs as the perturbed aggregations are computed once on lower-dimensional embeddings,
and reused during training and inference. GAP also provides inference privacy, as the inference of
any node relies on the perturbed aggregations, which hide information about neighboring nodes.
Due to reusing cached aggregations, the inference step does not incur additional privacy costs
beyond that of training.

5.5.2.1 Experimental Results We analyze GAP’s formal privacy guarantees using Rényi
Differential Privacy [181], and empirically evaluate its accuracy-privacy performance on three
medium to large-scale graph datasets, namely Facebook [182], Reddit [183], and Amazon [184]. The
Facebook dataset comprises anonymized Facebook interaction data among UIUC students from
September 2005, where users are represented by nodes and friendships by edges. It includes user
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Figure 46. Overview of GAP’s architecture: (1) The encoder is trained using only node features (X) and labels (Y).
(2) The encoded features are given to the aggregation module to compute private K-hop aggregations (here, K = 2)
using the graph’s adjacency matrix (A). (3) The classification module is trained over the private aggregations for
label prediction.

attributes like student/faculty status, gender, major, minor, and housing status, and the objective
is to predict users’ class year. The Reddit dataset includes Reddit posts, where each node signifies a
post and an edge signifies the same user commenting on both posts. Node features are derived from
post content embeddings, and the goal is to predict the subreddit (community) to which a post
belongs. Finally, the Amazon dataset represents the product co-purchasing network on Amazon,
where nodes are products and edges denote products purchased together. The nodes’ features are
based on bag-of-words vectors of product descriptions processed by PCA, with the aim of predicting
product categories.

We compare GAP with a simple MLP baseline, which does not use graph edges, and also with
GraphSAGE, which is a popular GNN architecture. We vary the privacy cost parameter ϵ from
0.1 to 8 for edge-level private methods and from 1 to 16 for node-level private algorithms and
report the accuracy of the methods under each privacy budget. The result for both edge-level and
node-level privacy settings is depicted in Figure 47. It is evident that GAP’s accuracy surpasses
the competing baselines’ at (very) low privacy budgets under both edge-level DP (e.g., ϵ ≥ 0.1 on
Reddit) and node-level DP (e.g., ϵ ≥ 1 on Reddit), and we observe that it always performs on par
or better than a naive MLP model which does not utilize the graph’s structural information.

While GAP can work in either edge-level or node-level privacy settings, it must be emphasized
that the former setting is suitable only for the use cases where the node-level information (e.g,
features or labels) is not sensitive or is publicly available (e.g., the vertically partitioned graph
setting described in [185]). Whenever node-level information is private as well (e.g., user profiles in
a social network), however, edge-level privacy fails to provide appropriate privacy protection, and
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Figure 47. Accuracy vs. privacy cost (ϵ) of edge-level private algorithms (top) and node-level private methods
(bottom). -∞, -EDP, and -NDP suffixes correspond to non-private, edge-level and node-level DP, respectively.

thus node-level privacy setting has to be enforced.

5.5.3 ProGAP: Progressive GNNs with Aggregation Perturbation

As discussed in the previous section, GAP recursively aggregates node features first, and then
trains a classifier over the resulting perturbed aggregations, enabling DP to be maintained without
incurring excessive privacy costs. However, despite outperforming relevant baselines, this decoupling
approach reduces the representational power of the GNN due to having non-trainable aggregations,
leading to suboptimal accuracy-privacy trade-offs.

To address this challenge, we present a novel differentially private GNN, called “Progressive
GNN with Aggregation Perturbation” (ProGAP), which is depicted in Figure 48. Our new method
uses the same AP technique as in GAP to ensure DP. However, instead of decoupling the aggregation
steps from the learnable modules, ProGAP adopts a multi-stage, progressive training paradigm to
surmount the formidable privacy costs associated with AP. Specifically, ProGAP converts a K-layer
GNN model into a sequence of overlapping submodels, where the i-th submodel comprises the first
i layers of the model, followed by a lightweight supervision head layer with softmax activation
that utilizes node labels to guide the submodel’s training. Starting with the shallowest submodel,
ProGAP then proceeds progressively to train deeper submodels, each of which is referred to
as a training stage. At every stage, the learned node embeddings from the preceding stage are
aggregated, perturbed, and then cached to save privacy budget, allowing ProGAP to learn a new
set of private node embeddings. Ultimately, the last stage’s embeddings are used to generate final
node-wise predictions.

The proposed progressive training approach overcomes the high privacy costs of AP by allowing
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Figure 48. An example ProGAP architecture with three stages. MLP and JK represent multi-layer perceptron and
Jumping Knowledge [186] modules, respectively. NAP denotes the normalize-aggregate-perturb module used to
ensure the privacy of the adjacency matrix, with its output cached immediately after computation to save privacy
budget. Training is done progressively, starting with the first stage and then expanding to the second and third
stages, each using its own head MLP. The final prediction is obtained by the head MLP of the last stage.

the perturbations to be applied only once per stage rather than at every training iteration. ProGAP
also maintains a higher level of expressive power compared to GAP, as the aggregation steps now
operate on the learned embeddings from the preceding stages, which are more expressive than the
raw node features. Moreover, we prove that ProGAP retains all the benefits of GAP, such as edge-
and node-level privacy guarantees and zero-cost privacy at inference time.

5.5.3.1 Experimental Results We test our proposed method on node-wise classification tasks
and evaluate its effectiveness in terms of classification accuracy and privacy guarantees on four
datasets: Reddit and Amazon, which were also used to evaluate GAP, and also Facebook-100 [182]
and WeNet [187], [188].

We varied the privacy parameter ϵ between 0.25 to 4 for edge-level privacy and 2 to 32 for
node-level private algorithms. We then recorded the accuracy of each method for each privacy
budget. The outcome for both edge-level and node-level privacy settings is depicted in Figure 49.
Notably, we observe that ProGAP achieves higher accuracies than GAP across all ϵ values tested
and approaches the non-private accuracy more quickly under both privacy settings. This is because
in ProGAP each aggregation step is computed on the node embeddings learned in the previous
stage, providing greater expressive power than GAP, which recursively computes the aggregations
on the initial node representations.

It is worth noting that the performance discrepancy between ProGAP and GAP is not consistent
across all datasets. For instance, this gap in accuracy is less pronounced with the Reddit dataset
compared to FB-100. This is due to the specific characteristics and the learning task of each dataset,
which require different levels of graph representational power. In Reddit, where the goal is to predict
the community of nodes (representing Reddit posts), most of the pertinent information needed is
already present in the node features, making the relationships between the posts less crucial for
this prediction task. In contrast, the learning task of the FB-100 dataset (predicting students’ class
year) relies more heavily on the graph structure, necessitating more powerful graph representations.
Therefore, the performance difference between ProGAP and GAP is more noticeable in this
dataset.
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Figure 49. Accuracy-privacy trade-off of edge-level (top) and node-level (bottom) private methods. The dotted line
represents the accuracy of the non-private ProGAP.

5.5.4 Relevant Resources and Publications

Relevant publications:

• S. Sajadmanesh, A. Shahin Shamsabadi, A. Bellet, and D. Gatica-Perez. “GAP: Differentially
Private Graph Neural Networks with Aggregation Perturbation”. The 32nd USENIX Security
Symposium (USENIX Security), Anaheim, CA, USA.
Zenodo record: https://zenodo.org/record/7554788.

• S. Sajadmanesh and D. Gatica-Perez. “ProGAP: Progressive Graph Neural Networks with
Differential Privacy Guarantees”. ArXiv preprint arXiv:2304.08928. https://arxiv.org/
abs/2304.08928

Relevant resources:

• GAP official implementation: https://github.com/sisaman/GAP.

• The official implementation of ProGAP will be released publically after the publication of the
paper.

5.5.5 Relevance to AI4Media use cases and media industry applications

The GAP model, with its focus on differential privacy in Graph Neural Networks, offers a trans-
formative approach to various media industry use-cases. In content personalization, GAP can
help media platforms deliver tailored content that respects user privacy, thereby enhancing user
engagement and trust. For journalists and researchers, GAP’s capabilities in social media analytics
can provide valuable insights into trends and public opinion while adhering to ethical privacy
norms. Lastly, in customer segmentation, media companies can use GAP to better understand
their audience and deliver targeted services, all while maintaining strict data privacy standards.
Overall, GAP presents a scenario that balances the need for advanced analytics with the imperative
of user privacy in the media industry.
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5.6 Reversible adversarial attacks for privacy protection

Contributing partners: AUTH

5.6.1 Overview

Traditional research on image privacy protection often assumes human adversaries. In other words,
privacy risks are usually quantified by how effectively the information contained in images can
be picked up by human eyes and brains. As a result, “blurring”, “pixelation”, and “mosaic” are
still the most widely used techniques to protect privacy in images, even while their effectiveness
against automatic analysis tools is limited [189], [190]. On the other hand, de-identification
methods based on universal adversarial attacks [191], almost guarantee that the image data are
misclassified by automated analysis systems, while introducing the minimal possible perturbation,
maintaining data utility for humans. This is why adversarial attacks are gaining increasing value
in privacy protection applications, e.g., they have been employed to disable known automatic
face detection/recognition algorithms applied on visual data uploaded by social media users [192],
without severely compromising image quality [193], while at the same time, not hiding the person
identities to human viewers.

Nevertheless, an important privacy protection aspect is to not only maintain the utility of the
de-identified data but to be able to completely restore the original data, upon request. To this end,
the most straightforward approach is to maintain a local copy of the original data. An example for
this case could be a news video depicting a suspect who is taken into custody. The news company
needs to maintain a local copy of the original video, that could be requested by some authority (e.g.,
the police), while at the same time, create another version of the video that is used for publishing
to the general public. When such video duplicates need to be produced for so many cases, this can
dramatically increase the storage overhead. Therefore, it would be a lot more useful if the company
could just use a single function for calculating the privacy protection transformation, thus only
needing a single version of the video file.

Universal adversarial perturbations could be used to this end [194], [195], however, the actual
transformation to the images is merely an additive noise, and most importantly, it is the same for
any given input image. Thus, the perturbation is easily attainable by a third party with access
to a single original and perturbed image pair. Therefore, in privacy protection applications, it is
essential that this transformation is also unique for a given input image.

To this end, we propose the Transformation-based Universal Adversarial attacks, where the
adversarial perturbation can be obtained by a single transformation function. Using this framework,
the adversarial perturbation is unique for any given input, therefore, it is not easily attainable
for third parties. To increase its applicability to privacy protection scenarios against automatic
classification systems, we formulate two variants where the transformation function is invertible,
therefore, we can obtain the original image from its adversarial counterpart. In the first variant,
this transformation function is linear, while the second, the tranformation function is a reversible
GAN. The methodology is detailed in the Subsections below.

5.6.2 Transformation based adversarial attacks

Let x ∈ RD be a vectorized image sample of dimensions D (D is equal to the image’s height ×
width) having a true label index y from a set Y = {y| y ∈ N, 1 ≤ y ≤ C}. A deep neural network
classifier f(x;θ), where θ are the model trainable parameters, has learned to classify images by
training the operation X 7→ Y in the representative dataset S = {X ,Y}, |S|= N , X = {x|x ∈ RD}.
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The universal adversarial perturbation (UAP) [194] is an adversarial attack that generalizes to
almost all data samples x ∈ X . The optimization problem can be formulated as follows:

min:
|n|

f(x+ n;θ) ̸= y, ∀x ∈ X , (14)

s. t. : ∥n∥p< ϵ, p ∈ [1,∞),

where ϵ a parameter for controlling the magnitude of the perturbation. In practice, the perturbation
is calculated by accumulating the outputs of DeepFool for all samples x ∈ X . As a stopping
condition, the function P (f(x+ n;θ) ̸= f(x;θ)) ≤ 1− δ is introduced, where P (·) is a probability
function and 0 < δ < 1 is a parameter that denotes the target fooling rate to be achieved (δ = 0
denotes a fooling rate of 100%).

The adversarial attack optimization problem can also be viewed as a transformation estimation
one, that is expressed as follows:

min:
|ϕ|

f (g(x;ϕ);θ) ̸= y, (15)

s. t. : ∥x− g(x;ϕ)∥p< ϵ, p ∈ [1,∞)

where g(·) : RD 7→ RD is an iterative transformation that maps the data samples of the clean
domain X to an adversarial domain X̃ , while ϕ are the parameters of the transformation. Here,
it should be noted that any type of function can be employed in order to solve the proposed
optimization problem, i.e., g(·) could be represent any linear/non-linear transformation, or even
a whole neural network. This formulation allows more flexibility in the definition of additional
optimization constraints. For instance, the constraint of reversibility, which is very useful in privacy
protection settings, could be expressed as an additional optimization constraint, i.e., g−1(x̃) = x.

5.6.3 The linear case

The simplest possible case is that g(·) denotes a linear transformation that perturbs clean samples
from their domain to an adversarial one, such that they are misclassified by the model f . This
definition makes more sense in the universal adversarial attack optimization problem. The transfor-
mation parameters in this case include a matrix T ∈ RD×D and a bias term b ∈ RD. Therefore,
adversarial samples can be represented as follows:

x̃ = Tx+ b. (16)

Within the scope of AI4Media project, we examined the special case where b = 0, where 0 is a
vector of zeros. We developed the Multiplicative Universal Adversarial Transformation (MUAT)
method, which is a multiplicative noise generator formulated as follows:

min:
∥T∥

f (Tx;θ) ̸= y, (17)

s. t. : ∥x−Tx∥p< ϵ, p ∈ [1,∞),

x = T−1x̃,

where an additional constraint requiring that the matrix T is invertible is also imposed. In the
standard additive noise-based universal adversarial attacks, the perturbation is attainable by a
single adversarial-clean image pair, by a simple subtraction. However, in the multiplicative noise
case, the analogous is to reverse engineer the matrix T from the data, which cannot be obtained,
using just a pair of clean-adversarial samples, since the rank of T is supposed to be larger than 1.
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The limitations of the linear case are the following. The transformation matrix is calculated
at the input space of the image, therefore, such formulation only allows application is images of
specific resolution. When high resolution images are used, this matrix becomes analogously very
big, thus it could be very difficult to be optimized and stored. In addition, given a sufficiently large
number of images, the transformation matrix can be estimated by a third party.

5.6.4 The non-linear case

In the non-linear case, we examine the case where g(·) represents a whole neural network, and more
specifically a Generator. Inspired by Image-to-image translation (I2I), our work considers a clean
image domain X and an adversarial image domain Y . The adversarial image domain can be obtained
implicitly, by training a generator to produce adversarial examples, or explicitly, by using any
adversarial attack. Then, our goal is to create an image-to-adversarial image translation model which
is approximately invertible by design. The image-to-image translation aims at transferring images
from a source to a target domain while retaining content representations [196] [197]. According
to [198], the goal is to find the appropriate mapping between two given domains X and Y, while
minimizing the corresponding loss functions for unpaired training data. To this end, two mappings
F : X → Y and F−1 : Y → X are learned, following the cycle-consistency.

In a similar fashion, we create a generator F : X → Y such that F (xi) = yadv
i in order to

generate adversarial examples such that f(yadv
i ) ̸= f(xi) (untargeted attack). Also, we design

an “inverse” generator, F−1 : Y → X . Then, F−1 is another architecture that produces xrec
i as

approximations of xi. Figure 50 depicts the architecture of our model.

Figure 50. Architecture of the proposed AdvRevGAN model.

The forward mapping of generator F and the backward one of F−1 are broken down into three
components. X is the original image domain, Yadvreal

is the original adversarial image domain while
Yadv is the domain of adversarial generated images that are produced by F . We associate a feature
space X̃ and Ỹ in higher dimensions for each domain respectively. Mappings between original and
adversarial image space are individual and non-invertible. More specifically, for real image space X,
we use an encoder EncX : X → X̃ that extracts the image features of X, lifting the image into
a higher dimensionality feature space and a decoder DecXrec : X̃ → Xrec that switch the image
back to a lower image space in same dimensions as the initial. We follow the same procedure for
generated adversarial image domain Yadv using Enc

Y adv
: Yadv → Ỹ and DecY adv : Ỹ → Yadv .
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Between feature spaces, we have an invertible core such that C : X̃ → Ỹ and C−1 : Ỹ → X̃. As
a result, we demonstrate the full mappings that are:

(18)F (X) = DecY adv ◦ C ◦ EncX(X)

(19)F−1(Y adv) = DecXrec ◦ C−1 ◦ Enc
Y adv

(Y adv),

where ◦ denotes the composition of EncX , C, DecY adv for function F and Enc
Y adv

, C−1,DecXrec

for function F−1. Also for each image space, X and Yadv we use domain-specific discriminators
DX and DY adv for training with the adversarial loss.

The main advantage of the non-linear case is that this formulation can be potentially used for
images of various resolutions, while it remains easy to implement and store. However, the main
disadvantage is that the reconstructed image is not exactly equal to the original image, but only an
estimated version of it.

5.6.5 Experiments

In order to evaluate the methods, we have conducted experiments in image classification settings.
We refer the readers to the relevant publications for more details. In our fist set of experiments, we
have evaluated the proposed methods on their ability to ensure privacy protection against neural
network classifiers, on MNIST dataset. Since both methods are in essence Universal Adversarial
attacks, we evaluate them as such. That is, the linear and non-linear transformation methods are
evaluated in terms of how much noise they add to the original images in order to achieve a universal
adversarial attack constraint, i.e., the mean square error (MSE) between the original images and
the adversarial images produced. In addition, the methods are also evaluated in terms of visual
similarity between adversarial images the original ones, according to the Structural Similarity (i.e.,
SSIM [199] metric). For comparison reasons, the methods are evaluated against the SGD-UAP
[200], which is the state-of-the-art universal adversarial attack method. As can be observed in Table
17, the proposed methods are able to generate adversarial attacks with less noise when compared
to the SGD-UAP.

Table 17. Comparison results on MNIST dataset

Accuracy

(initial dataset )

Accuracy

(attacked dataset)
MSE(x, yadv) SSIM(x, yadv)

AdvRevGAN 98.4% 0.09% 0.017 0.908

MUAT 98.4% 0.01% 0.056 0.384

SGD-UAP 98.4% 0.07% 0.106 0.300

Example figures of the proposed method can for MNIST dataset be seen in Figure 51. As can
be observed, both MUAT and AdvRevGAN can generate adversarial images containing less noise
than their legacy Universal Adversarial Perturbation methods. In addition, MUAT is able to fully
reconstruct the original image, while AdvRevGan can recontruct the original image, with a minor
noise margin. Here, it should be noted that both methods achieve the reconstruction without
requiring access to the original image. Therefore, based on our results and while the research moves
towards our path, we could advise the media end-users to only store the de-identified version of the
image, as the original image can be (almost) reconstructed upon request.

5.6.6 Conclusion

Two reversible adversarial attack methods have been described, that produce a reversible mapping
function that uniquely maps given input images into an adversarial domain, where its inverse
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Figure 51. Adversarial examples and reconstructed images on MNIST Dataset. The first column depicts original
images xi, the next three columns are the corresponding adversarial examples yi

adv generated by the proposed
method, MUAT and UAP respectively while above them demonstrated the wrong class that predicted by the model.
In the last two columns are demonstrated the reconstructed images xi

rec derived by MUAT and our proposed
method respectively.

can either fully (linear case) or almost (non-linear case) reconstruct the original input. The
developed methods allow the generation of untargeted adversarial examples that are also reversible
for different dataset complexities using generative adversarial networks (GANs). The developed
methods generate adversarial attacks with less noise when compared to their legacy counterparts.
Last but not least, the transformation cannot be obtained by third parties, since it is unique for a
given input, and requires access to the transformation matrix or the neural network architecture
and parameters.

According to recent research, diffusion models are suggested as a promising alternative to GANs
for generating diverse and realistic samples as they use a diffusion process to iteratively transform
a noise vector into a sample that matches the data distribution, and they have shown to be more
stable and easier to train than GANs. Their ability to capture complex multi-modal distributions
makes them a viable alternative for generating synthetic data in scenarios where labeled data is
limited or costly to obtain. Future work could include extending the proposed architecture to also
accommodate differential privacy constraints in the adversarial attack optimization problem using
more complex datasets.

5.6.7 Relevant Resources and Publications

Publications:

• A. Zamichos, V. Mygdalis, and I. Pitas, “Properties of learning Multiplicative Universal
Adversarial Perturbations in image data”, In IEEE International Conference on Machine
Learning for Signal Processing (MLSP), 2022.
Zenodo record: https://zenodo.org/record/8276422.

• S. Altini, V. Mygdalis, and I. Pitas, “AdvRevGan: On Reversible Universal Adversarial
Attacks for privacy protection applications”, In IEEE International Conference on Machine
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Learning for Signal Processing (MLSP), 2023.
Zenodo record: https://zenodo.org/record/8276432.

5.6.8 Relevance to AI4Media use cases and media industry applications

The relevant privacy protection tools can be used in AI4Media UC3: “AI in Vision - High Quality
Video Production & Content Automation”, in the following manner. We assume a scenario during
news broadcasting, where human faces must be de-identified prior to broadcasting. The media
producer may opt to use the proposed technology (accompanied with a face/human detector) in
order to select the area where the privacy transformation will be applied. Without this technology,
the producer must store two versions of the video, i.e., the broadcasted one, where the privacy
transformation has been applied, and the “clean” one, for archiving purposes. Using the proposed
technology, the producer may only store a single video file, where he/she can restore the privacy
protected broacasted version and the original “clean” video version at will.
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6 Fair AI (Task 4.5)

As machine learning models are fast becoming critical components of every decision making process
essential for our society (mortgage lending, prison sentencing etc), it becomes crucial to guarantee
that these models do not privilege specific groups or individuals at the disadvantage of others.
These models are constructed upon the statistical analysis and properties of training data, which
may contain biases due to existing prejudice and/or inaccurate sampling. Hence, if left unchecked
unwanted biases can emerge from these models with significant societal consequences.

AI Fairness is typically evaluated either on a group or individual level. When addressing group
fairness, a population is divided into groups based on a set of protected attributes (gender, ethnicity,
etc.). A fair ML model within this context is a model which seeks some statistical measure to be
equal across such groups. On the other hand, when addressing individual fairness, ML models seek
to treat individuals similarly regardless of their protected attributes.

Algorithms and metrics designed to address biases in ML models can operate on the training
data itself as well as on the trained model. Moreover, they can also occur at various points in
the machine learning lifecycle whether at a pre-processing, in-processing, or post-processing phase.
T4.5 seeks to apply AI fairness algorithms and metrics at group and individual levels and at various
points in the AI lifecycle.

Contributions towards this task include work on (i) datasheets that can be passed along with
data and machine learning models to highlight potential risks and recommend appropriate uses
(Section 6.1), (ii) fairness of deepfake detection systems (Section 6.2), and (iii) debiasing neural
networks using explainable AI (Section 6.3).

6.1 Datasheet for the Dataset on European Press Coverage of Covid-19
Vaccination News

Contributing partners: IDIAP

6.1.1 Goals

The ubiquity of extensive data collection and its use for machine learning (ML) creates a strong
demand for fairness, accountability, transparency, and ethics. While fast-paced developments in
AI are delivering innovations, the risk of their use is highly dependent on the underlying data
they have been trained with [201]. Many examples show that societal biases in the data can be
reproduced or amplified by ML models [201], [202]. Therefore, it is crucial that researchers and
practitioners are aware of the biases and imbalances in the data they use to train models. A growing
body of research, notably initiated by the work by Gebru et al. [201] is investigating the use of
context documents that can be passed along with data and ML models to highlight potential risks
and recommend appropriate uses. Such documentation methods can increase transparency and
accountability within the ML community, mitigate unwanted societal biases in models, facilitate
greater reproducibility of results, and help researchers and practitioners to select more appropriate
datasets for their chosen tasks [201]. Through the work of an AI4Media Junior Fellow hosted at
Idiap, we contributed to these developments by creating a datasheet for a dataset built to investigate
the news coverage of Covid-19 vaccinations by European, high-quality press [203]. The datasheet is
provided in Appendix A.1.
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6.1.2 Method

Datasheets for datasets, first proposed by Gebru et al. [201], are intended to be useful for dataset
creators and consumers to encourage ethical reflection about data collection and usage. However,
datasheets are also aimed to be valuable to policy makers, journalists, individuals whose data
is included in datasets, and people who may be impacted by models trained or evaluated using
datasets [201]. Additionally, datasheets facilitate reproducibility by providing researchers and
practitioners with detailed useful information. Keeping these goals in mind, the datasheet proposed
by [201] contains over 50 questions about the motivation, composition, collection, pre-processing,
uses, distribution, and maintenance of a dataset in order to provide the right information to the
above-mentioned stakeholders. As discussed by Gebru et al. these questions include [201]:

• Motivation: Articulate the reason for the dataset creation and promote transparency about
funding interests.

• Composition: Provide detailed information to dataset consumers so they can make an informed
decision whether to use the data.

• Collection: Provide information to help researchers and practitioners to recreate datasets
with similar characteristics.

• Pre-processing: Inform dataset consumers about any pre-processing done that might not fit
their goals and tasks.

• Uses: Reflect on the tasks that the dataset might or might not be used for.

• Distribution and Maintenance: Provide dataset consumers with infrastructure information
and points of contact

It is important to note that a datasheet is a document that evolves over time, as new knowledge
regarding the dataset becomes available.

6.1.3 Discussion

Creating a Datasheet for Datasets undoubtedly offers valuable insights into the nature of the
underlying data, enabling researchers and practitioners to comprehend the essential aspects of the
data they intend to use. However, it is not a task without its own complexities, especially when the
datasheet involves information from sensitive or unconventional areas such as news articles serving
as social data. In the current context, these complexities are threefold.

Firstly, a datasheet requires a thoughtful consideration of news articles as a form of social data.
These articles not only encompass critical insights about the global events or phenomena they
represent (like the Covid-19 vaccination debate) but also include intricate details about individuals
and entities involved. The process of translating these articles into a structured data form that
preserves relevant social nuances is a challenging task. There are multiple dimensions to consider.
These range from discerning the role of prominent figures, understanding public sentiment, and
interpreting the framing of news stories. Developing a systematic methodology to convert this
multi-dimensional data into structured, understandable inputs for a datasheet can be a challenge
that future research must address.

Secondly, the creation of a datasheet is compounded by the scarcity of public examples,
specifically those related to news data. This presents the challenge of creating an effective datasheet
from a relatively limited pool of examples and best practices. While there is existing literature that
details the effectiveness of datasheets [204], or domain-specific adaptations of datasheets [205]–[208],
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it may not necessarily provide a comprehensive framework for news data. Future work should thus
consider developing a comprehensive template or framework for news data, drawing from a broad
range of examples and including input from experts in both the data science and journalism fields.

Lastly, there are limitations in the Datasheet for Dataset approach that must be addressed.
The datasheet is undeniably a critical starting point for researchers looking to understand their
data better and leverage it effectively. It is also a fundamental tool in the journey toward creating
trustworthy AI. However, its use should not be limited to a one-time assessment. Instead, it should
be continuously updated and maintained to reflect the dynamic nature of data and its underlying
context. Furthermore, there is a need to promote its use as a standard practice among researchers
and ML practitioners. This can be achieved through training, awareness campaigns, and integrating
it as a core part of the data science and ML curriculum.

Overall, while the creation of a Datasheet for Datasets brings numerous benefits, it presents
several challenges that future research must strive to address. By deepening the understanding
of news articles as social data, developing standardized datasheet frameworks for specific data
domains, and promoting the datasheet approach as a common practice, we can move towards more
reliable and ethically sound data use in machine learning and AI.

6.1.4 Relevance to AI4Media use cases and media industry applications

Datasheet creation is relevant to all AI4Media use cases, as well as to media industry applications.
The work summarized here represents a concrete example of how to do it.

6.2 Exploring Fairness of an AI-based Deepfake Detection Service

Contributing partners: IBM & CERTH

6.2.1 Introduction

This work was completed as part of a virtual Junior Fellow Exchange between IBM and CERTH
and is the second of two evaluations of a Deepfake Detection Service created by CERTH - a first
evaluation on robustness is detailed in Section 3.1 The MeVer DeepFake Detection (DFD) service
[7] was developed by CERTH-ITI for aiding in the detection of manipulated images and videos.
The system is comprised of a pre-processing pipeline and model ensemble scheme which is used to
obtain a probability score for input images/videos indicating a likelihood of manipulation. The
DFD service was initially evaluated using three standard deepfake datasets: FaceForensics++;
CelebDF-V2; and WildDeepFake, and was shown to perform competitively with state-of-the-art
alternatives.

Section 3.1 details an evaluation of the DFD service with respect to robustness. Whilst this
contributes toward one facet of Trustworthy AI29, a comprehensive evaluation of the service, other
facets must be considered, such as fairness. A limitation of the assessment of the DFD service thus
far, which is addressed in this research, is the lack of evaluation with respect to fairness in the
output predictions. Bias is an unfortunate and common feature of many machine learning models
and presents an ongoing challenge for the developers of AI-services. Bias is a prejudice in favor
or against a person, group, or thing that is considered to be unfair. In this context, if a deepfake
detector is found to unfairly favour a group and assign (or not assign!) deepfake labels accordingly,
certain groups may find their content on social media sites frequently flagged and taken down. The
images/videos of these groups may also then rarely appear in publications as journalists using

29https://research.ibm.com/topics/trustworthy-ai
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biased deepfake detectors for verification purposes might be misled, and so certain groups could be
under-represented in media to a greater degree.

In addition, whilst many studies exist in literature evaluating AI models with respect to fairness
[209], there is a gap understanding how bias identified in such models changes when subjected
to adversarial attacks and when combined with adversarial defences or bias mitigation strategies.
Therefore, the focus of this work was to:

• Apply AI Fairness 360 (AIF360) fairness metrics [210] to the DFD service.

• Integrate an AIF360 bias mitigation algorithm with the DFD service to improve fairness.

• Combined use of IBM’s Adversarial Robustness Toolbox (ART) [9] and AIF360 to evaluate
the fairness of the DFD service under adversarial conditions to ascertain if groups are equally
vulnerable to attack.

and subsequently measure:

• any bias present in the DFD service.

• the fairness performance of the DFD service with a bias mitigation algorithm applied.

• the fairness of the DFD service under different adversarial conditions.

6.2.2 Identifying Bias in the DeepFake Detection Service

The driving motivation of this work was to determine if the DFD service showed bias toward a
subset of protected groups when scoring images/videos as deepfakes and, if so, attempt to apply a
mitigation strategy to improve the fairness of the DFD service.

Xu et al. [211] recently published a comprehensive analysis on the biases prevalent in the most
common video data sets used to train state-of-the-art deepfake detection models and conducted an
evaluation regarding how such models were subsequently influenced. In their work, five datasets were
annotated with 47 additional attributes relating to demographic and non-demographic characteristics
of the subjects depicted in real and deepfake videos. The datasets selected for annotation were
Celeb-DF, DeepFakeDetection, FaceForensics++, DeeperForensics and the DeepFake Detection
Challenge Dataset.

In the context of fairness, some of the attributes annotated can be classified as sensitive or
protected characteristics, such as: gender, ethnicity and age. Other annotated attributes are not
protected but describe features of the individuals within the videos which are closely associated with
protected features, such as: skin, hair, face geometry and accessories (e.g., makeup, eyeglasses).

Xu et al. evaluated three deepfake detection backbone models: Xception, EfficientNet and
Capsule-Forensics-v2. In contrast, the MeVer DFD service is an ensemble model which leverages
EfficientNet-B4, EfficientNet-V2-m (as opposed to solely EfficientNet-B0 evaluated by Xu et al.)
and the Detection Transformer (DETR). Therefore, a fairness evaluation of MeVer’s DFD service,
discussed in the following sections, provides new insight over how such an ensemble model for
deepfake detection compares with the state-of-the-art. Amongst the conclusions drawn by Xu et
al. were that many attributes, both demographic and non-demographic, strongly influenced the
predictions of the deepfake detectors. The authors did not explore mitigation techniques, a gap
which this work addresses.

IBM’s AI Fairness 360 (AIF360) toolkit [210] is an open-source library which implements
state-of-the-art techniques for detecting and mitigating bias in AI models. The toolkit supports
detection and mitigation at multiple points in a machine learning pipeline – pre-processing, training,
post-processing - and provides a simple interface for integrating fairness checks and strategies for
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reducing the influence of bias in AI models. In this work, the AIF360 toolkit was used to evaluate
potential bias inherent in the DFD service and take steps toward evaluating mitigation strategies
which could be implemented.

The following four popular fairness metrics were used to assess the predictions made by MeVer’s
DFD service on the FF++ and Celeb-DF datasets using the AIF360 toolkit:

• Disparate Impact (DI): the ratio of the rate of favourable outcomes for the unprivileged
group to the privileged group. A value of 1 indicates the deepfake detector is fair, values
contrary to this indicate the deepfake detector is biased.

• Statistical Parity Difference (SPD): the difference in the rate of favourable outcomes
received between unprivileged and privileged groups. A value of 0 indicates the deepfake
detector is fair. Values below 0 indicate bias toward the privileged group. Values greater than
0 indicate bias toward the unprivileged group.

• Equal Opportunity Difference (EOD): the difference of the True Positive Rate (TPR)
between the unprivileged group and the privileged group. A value of 0 indicates the deepfake
detector is fair, whilst other values indicate bias.

• Average Odds Difference (AOD): the average difference of False Positive Rate and True
Positive Rate between unprivileged and privileged groups. A value of 0 indicates the deepfake
detector is fair, whilst other values indicate bias.

Table 18. Fairness assessment of DFD service. Values of 0 (for Statistical Parity difference, Average Odds
difference and Equal Opportunity difference) and 1 (for Disparate Impact) indicate a fair deepfake detector.

Statistical Parity Disparate Impact Average Odds Equal Opportunity

FF++ Celeb-DF FF++ Celeb-DF FF++ Celeb-DF FF++ Celeb-DF

feature

race 0.07 - 1.13 - 0.05 - 0.10 -

gender -0.12 -0.19 0.80 0.77 -0.15 0.01 -0.08 -0.03

age 0.15 - 1.33 - 0.33 - 0.03 -

attractive 0.29 0.19 1.72 1.28 0.28 0.12 0.29 0.11

shiny skin 0.55 - 2.82 - 0.55 - 0.51 -

beard 0.28 -0.23 1.56 0.68 0.37 -0.22 0.26 -0.1

face -0.20 - 0.67 - -0.20 - -0.22 -

accessory 0.15 0.2 1.35 1.42 0.11 0.09 0.15 0.12

Table 18 illustrates the results for each fairness metric for 8 attributes of interest, including
3 protected attributes (gender, race, age). The Celeb-DF dataset, as stated by Xu et al., does
not contain the same number of annotated attributes found in FF++, hence not all rows could
be completed for this dataset. The results indicate that several attributes prevalent in videos of
both datasets are influencing the DFD service predictions for deepfake detection. For instance,
the SPD for gender is negative indicating that the DFD service is biased toward the privileged
group, which in this case is male. This can be interpreted as the DFD service not making positive
(deepfake) predictions for videos featuring men and women at an equal rate. This is echoed in
the DI result as values are below the ideal value of 1, and the AOD result for gender indicates a
difference in deepfake prediction error rate between male and female videos (albeit more so for
the FF++ videos). Similarly, the EOD of -0.08 indicates that both genders do not have equal
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opportunity for positive deepfake predictions, which also indicates bias is present. In addition to
gender, bias was also detected in the remaining two protected features, age and race, as well as
non-protected features such as attractiveness and skin.

In their analysis of bias, Xu et al. assessed their deepfake detection models using Relative
Performance (RP) - comparing performance of the model when attributes were present versus when
they were not. RP values of 0 indicate an attribute does not affect performance of the model when
predicting deepfakes – positive values indicate a lower error rate when the attribute is present
and negative values indicate lower error rate when the attribute is not present. To address data
imbalance of attributes in the test sets, which could cause results to be misconstrued, the authors
also opted to analyse the Corrected Relative Performance (CRP), which includes the RP of control
groups to correct for the impact of data imbalance.

The RP and CRP were calculated for attributes using the MeVer DFD service predictions with
the FF++ and Celeb-DF datasets. Figure 52 illustrates the RP-vs-CRP plots. Attributes closer to
the top of the plot (green area) are associated with higher deepfake detection performance, whilst
those lower (red area) are associated with higher errors. Points closer to the bisectrix line are less
impacted by imbalances within the test data. For example, heavy makeup has a RP value of ≈80%
to -100% (white stars in plots of Figure 52), which suggests that wearing heavy makeup results in
twice as many deepfake detection errors compared to not wearing heavy makeup. Following the
analysis of the protected attribute, gender, using the AIF360 toolkit which highlighted bias toward
the male class (i.e. that videos with a male subject received a higher proportion of positive deepfake
predictions), the blue points in Figure 52 illustrate that when the video had a male subject, the
DFD service correctly predicted a deepfake ≈20% more often than if the video did not contain a
male subject (i.e. contained a female subject).

Figure 52. Relative Performance vs Corrected Relative Performance plots for predictions of the DFD service on
videos of Celeb-DF (left) and FF++ (right) illustrating bias toward (green) and against (red) attributes.

Following a similar approach, Xu et al also proposed evaluating RP on pristine (real) and
fake data alone to further understand the influence of attributes on deepfake detectors for both
partitions. Figure 53 illustrates the Pristine Data Relative Performance (PDRP) and the Deepfake
Data Relative Performance (DDRP) for attributes and deepfake predictions of the MeVer DFD

Intermediate toolset for robust, explainable, fair, and privacy-preserving AI 114 of 151



service. A negative PDRP for an attribute a, indicates real videos with a are more likely falsely
predicted as deepfakes than videos without a. Negative DDRP values indicate that deepfake videos
with a are less likely to be predicted as deepfakes. Positive PDRP values indicate real videos with a
are more likely to be correctly predicted whilst positive DDRP values indicate fake videos with a are
less likely to be predicted as real. For example, the attribute big lips (yellow points in Figure 53),
has a positive PDRP (≈50%) and negative DDRP (≈ -30 to -200%), which subsequently indicates
that in an authentic video, if the subject has big lips, the DFD service makes correct deepfake
predictions 50% more often than if big lips were not present. In addition, if a subject in a deepfake
video has big lips, the DFD service makes ≈30%+ more errors than in videos without the attribute.
Following the previous analysis for the protected attribute gender, the male attribute has a positive
DDRP in both Celeb-DF and FF++ plots. This indicates that when deepfakes with male subjects
are generated and passed to the DFD service, correct predictions occur ≈25% more often than if
the subject was female. The PDRP for the male attribute is shown to differ between the Celeb-DF
and FF++ datasets, which could indicate representations of gender in the pristine (real) videos of
both datasets differ and the variation was subsequently learned by the DFD service.

Figure 53. Deepfake Data Relative Performance vs Pristine Data Relative Performance for predictions of the DFD
service on videos from Celeb-DF (left) and FF++ (right).

6.2.3 Toward Fair Deepfake Detection

The analysis thus far has sought to evaluate the fairness of deepfake predictions made by the MeVer
DFD service across a variety of demographic and non-demographic characteristics present in real
and deepfake videos using established metrics from the AIF360 toolkit and those proposed in recent
literature. From this analysis it has been shown that both protected and non-protected attributes do
hold influence over the DFD service and that predictions are not always fair for subjects with certain
characteristics – this is consistent with recent studies on fairness in deepfake detection models. To
attempt to address this shortcoming, this section details the integration of mitigation strategies
with the DFD service and analyses the subsequent results. Three post-processing algorithms were
selected from the AIF360 toolkit for analysis:

• Reject Option Classification (ROC): this algorithm assigns favourable outcomes to
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unprivileged groups and unfavourable outcomes to privileged groups for samples which are
uncertain and within a reject-option band (defined by a margin parameter θ) to identify an
optimal classification threshold that optimizes a fairness metric, such as Disparate Impact
(ROC-DI), Statistical Parity Difference (ROC-SP) or Equal Opportunity Difference (ROC-
EOD).

• Calibrated Equality of Odds (CEO): this algorithm optimizes calibrated classifier score
outputs to find probabilities with which to change output labels with an equalized odds
objective – that is to say, unprivileged groups are assigned new predictions, which aim to
minimize disparities in error rates between the privileged and unprivileged groups. This
algorithm attempts to minimize one of the following cost-constraints: False Negative Rate
(CEO-FNR), False Positive Rate (CEO-FPR) or a weighted combination (CEO-weighted).

• Equality of Odds (EOO): this algorithm attempts to identify probabilities with which to
change output labels such that the model performs equally well for different groups and thus
reducing quality-of-service harms.

Table 19. Results for fairness metrics using predictions from DFD service and post-processed using Reject-Option
Classification, optimized for Statistical Parity Difference.

Statistical Parity Disparate Impact Average Odds Equal Opportunity

FF++ Celeb-DF FF++ Celeb-DF FF++ Celeb-DF FF++ Celeb-DF

feature

race 0.03 - 1.03 - 0.01 - 0.04 -

gender 0.02 -0.09 1.02 0.82 -0.04 0.07 0.08 0.07

age -0.03 - 0.96 - -0.05 - -0.02 -

attractive 0.02 0.13 1.02 1.23 -0.06 0.03 0.07 -0.01

shiny skin 0.25 - 18.85 - 0.14 - 0.29 -

beard 0.10 -0.28 1.13 0.52 0.13 -0.24 0.16 -0.27

face 0.19 - 1.34 - 0.17 - 0.18 -

accessories 0.08 0.18 2.00 1.51 0.05 0.07 0.09 0.14

Table 19 depicts the results for four fairness metrics (previously discussed) calculated with
predictions made by the MeVer DFD service which were post-processed using the ROC-SP algorithm.
Comparing results with Table 18, it is clear the mitigation algorithm is effective at improving
the fairness of the DFD service predictions. The protected attributes of race, gender and age are
closer to the ideal values of 0 for SPD, AOD and EOD and 1 for DI. Non-protected attributes,
such as attractiveness and facial features also show improved fairness. Naturally however, the
post-processing of prediction scores also impacts the quality of predictions which are made by the
DFD service. Table 20 illustrates the Balanced Accuracy (BA) scores before and after ROC-SP is
applied to DFD service predictions and the new associated classification threshold necessary to
achieve fair output labels for each attribute. In the case of the FF++ dataset, the new thresholds
vary widely across attributes and reduce the BA scores of the detector, albeit none below 50%
(random guess). In the case of Celeb-DF, there is some agreement in the selection of threshold
values across attributes and whilst BA is reduced, it is not as significant as FF++. A point of
contention may be the selection of a classification threshold which maximizes fairness for certain
attributes at the expense of accuracy and lower fairness scores for other attributes.
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Table 20. Balanced accuracy scores for post-processed (fair) predictions of the DFD service and the associated
adjustments made to the classification threshold for each atribute to achieve fairness.

FF++ Celeb-DF

BA before New threshold BA after BA before New threshold BA after

feature

race 0.695 0.109 0.547 - - -

gender 0.695 0.347 0.648 0.833 0.743 0.766

age 0.695 0.079 0.548 - - -

attractive 0.695 0.059 0.525 0.833 0.653 0.814

shiny skin 0.695 0.950 0.564 - - -

beard 0.695 0.158 0.617 0.833 0.653 0.811

face 0.695 0.376 0.693 - - -

accessories 0.695 0.931 0.592 0.833 0.653 0.814

Figure 54 illustrates RP-vs-CRP plots for predictions from the DFD service post-processed
using ROC-SP. In the case of the FF++ dataset, the male attribute has an RP value of ≈5% (down
from ≈20% in Figure 1), which indicates the DFD service now correctly predicts a deepfake just
≈5% more often when a male subject is present vs a female subject, which is subsequently fairer.
Interestingly, in the case of the Celeb-DF dataset, whilst the new RP value for the male attribute
is closer to 0 when mitigation is applied (≈+40% to ≈-30%), it is also now negative, indicating the
new classification threshold causes the DFD to have ≈30% more deepfake detection errors when
given videos of male subjects rather than female subjects.

Figure 54. RP-vs-CRP plots for predictions made by the DFD service and post-processed using ROC-SP on videos
from Celeb-DF (left) and FF++ (right).
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6.2.4 Relevance to AI4Media use cases and media industry applications

The fairness evaluation of the MeVer Deepfake Detection Service is relevant to UC1 as it tackles
disinformation detection and, specifically in this evaluation, the performance of deepfake detection
across different groups. The results of such evaluations which study how such a deepfake detector
can be advantageous or disadvantageous to certain groups of people over others also makes this
work relevant to UC4 “AI for Social Sciences and Humanities” as the impact of deploying such an
AI system ”in-the-wild” without concern for fair treatment of subjects, may introduce biases and
scenarios in which certain people are treated unfairly or are discriminated against. As a result, this
work is also relevant to UC2 “AI for News”, as a tool which can help journalists discern authentic
content from deepfakes, must also ideally be fair and unbiased, which this work strives to achieve.

6.3 Debiasing Neural Models Using Explainable Artificial Intelligence

Contributing partners: 3IA-UCA

6.3.1 Introduction

In recent months, our research has focused on exploring methods to debias existing neural models.
The presence of biases in machine learning models poses significant challenges, particularly in
sensitive contexts. Our objective was to develop an approach capable to debias an existing model
by means of Explainable Artificial Intelligence (XAI) techniques identifying biases within trained
models, a subsequent modification of the training samples to reduce the amount of bias in the
training set, and a model retraining.

Biases in neural networks can manifest themselves in various ways, leading to unfair and
discriminatory outcomes. As shown in [212], a model may learn associations that correlate
attractiveness solely with certain characteristics, such as being white or non-chubby. Another bias
emerged in the same work, could involve the assumption that old age is negatively correlated with
attractiveness. Identifying and rectifying these biases is crucial for ensuring fair and unbiased
decision-making.

Standard neural networks lack transparency, making it challenging to comprehend and address
biases effectively. It is often unclear which aspects of the training process contribute to the emergence
of biases. Consequently, rectifying biases in a trained model becomes an intricate task, hindering
often the possibility of making targeted countermeasures.

6.3.2 Debiasing Neural Models Using XAI

To detect biases in the neural models, we employed an eXplainable Artificial Intelligence (XAI)
algorithm providing logical explanations of a black-box model behavior. XAI provides interpretabil-
ity, allowing us to understand how the model reaches its decisions and identify potential biases. By
utilizing XAI methods, we aimed to empower users to detect biases in the model’s explanations
and facilitate bias mitigation without discarding the entire model.

Indeed, one of the primary causes of biased models is the use of biased training sets. Therefore,
our research primarily focuses on addressing biases arising from the training data. The intuition is
that if we are capable of keep training our model on a de-biased dataset or eventually retrain it
from scratch, we can fundamentally reduce the amount of bias in the model. We devised a method
to quantify the satisfaction of bias within the training set and remove data associated with higher
biases. This process became feasible with the utilization of XAI algorithms that provide logical
explanations of the model’s behavior.
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To quantify the satisfaction of the bias (provided by the XAI algorithm by means of a logic rule),
we employe the Triangular Norm (T-Norm) operator. By converting the logic rule defining the bias
into a numerical constraint, we can compute how much the bias is satisfied (and therefore enforced)
by each sample in the training set. This idea follows what has been proposed in [213] within an
active learning strategy. It works, however, in the opposite direction: indeed, while [213] was
proposing to add all the samples violating a given ground-truth knowledge, in this work we propose
to delete all the samples associated to the satisfaction of a found bias. This computation considers
both interpretable input features, output predictions of the network, and associated training labels.

Based on the computed satisfaction values, we can identify the samples in the training set
associated with the highest levels of bias satisfaction. These highly biased samples are then removed
from the training set, and the model is finetuned using the modified dataset. This approach allows
us to progressively reduce the bias within the model. In case the finetuning process is not sufficient,
the user can decide to retrain the model from scratch to further reduce the bias in the model. In
case the removal process would entail many samples, however, the overall performance of the model
could be impacted.

In scenarios where new data can be added to the training set, we also define a method to filter
and select the most impactful samples for reducing previously identified biases. By incorporating
data associated with the highest violations of previously detected biases, we can further refine the
training set. A model trained on this latter dataset should not only have lower bias levels, but it
should also have comparable (if not higher) predictive performance at inference time.

It may also happen that more than one bias is identified by the user in the provided model
explanation. In this case, the debiasing process can be applied to reduce all the detected biases at
the same time. To do so, we simply need to consider all the found biases (and the corresponding
bias rules), while computing the bias satisfaction level of the training samples.

Our research aims to address the challenging issue of biases in neural models by leveraging the
power of XAI e T-Norm operators. By quantifying bias satisfaction using the T-Norm operator,
we are able to identify and remove highly biased samples from the training set. Furthermore,
our approach accommodates the addition of new data by selecting samples that contribute most
significantly to mitigating biases. The proposed methodology offers a promising avenue for debiasing
neural models and promoting fairness in their applications.

6.3.3 Relevant Resources and Publications

Relevant publications:

• Ciravegna G., Precioso F., Betti A., Kevin M. and Gori M. “Knowledge-driven Active
Learning”. Proceeding of the ECML-PKDD 2023: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases [213].

• Ciravegna G., Giannini F., Gori M., Maggini M. and Melacci S., “Human-Driven FOL
Explanations of Deep Learning”. Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence (IJCAI-20) [212].

Relevant software and/or external resources:

• The PyTorch implementation of our work “Knowledge-driven Active Learning” can be found
in https://github.com/gabrieleciravegna/Knowledge-driven-Active-Learning.
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6.3.4 Relevance to AI4Media use cases and media industry applications

In most of multimedia databases, the content is multimodal (visual, text, audio, video). If this
content is associated with a description, the concepts present in the mutlimedia content may
be described. As a journalist, I can check that an AI service to classify my multimedia content
database, or retrieve specific documents in this database, is fair or not. For instance, in the CelebA
database, I am going to train a system to classify celeb women faces into attractive vs not-attractive
(only asking the system to provide such classification should be questioned, but if we accept this
experiment). Then when I check the results on the basis of the knowledge provided for each sample
of this dataset, if the class “Attractive” is equivalent to “pale skin” & “not chubby”, I could want
to unlearn this class-features relations but just by interacting with the features of the samples. I
am then going to ask the system to learn that “Attractive” can be “not pale skin” or “chubby” and
let the model retrained. This is what our work intend to do.
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7 Contributions to the AI4Media WP8 Use Cases and Media
Industry Applications

Work Package 4 holds a unique position in the hierarchy of other technical work packages and
their integration with Use Cases (UCs). The tools and components being developed as part of
this work package are intended to be used as a trustworthy enhancement to the techniques and
modules developed by other technical work packages. These technical work packages comprise WP3
(New Learning Paradigms & Distributed AI), WP5 (Content-centered AI) and WP6 (Human- and
Society-centred AI). The technical WP hierarchy is outlined in Figure 55 below, showing how WP4
components feed into all other technical WPs, which then feed into WP8 for deployment in Use
Cases.

Figure 55. Hierarchy of technical Work Packages, showing the flow of work from top to bottom. WP4 is highlighted
in green.

In order to allow for the easy application of WP4 components upon solutions from other
technical work packages, a number of concrete steps have been taken. Firstly, all WP4 partners
have given an outline of the applicability to AI4Media Use Cases of their work, and/or other
potential use cases within the media industry, under the “Relevance to AI4Media use cases and
media industry applications” subsection in each section above. These sections were written in
non-technical language to allow for their consumption and understanding by professionals in the
media industry and other members of the AI4Media consortium for future use of the solutions.

A number of examples were given for the use of AI4Media work by journalists and news
organisations, including privacy-preserving surveying of sensitive topics (Section5.2), and the de-
identification of confidential/sensitive documents for publication (Section 5.3). Other strands of
the wider media industry are also considered, including the archiving and indexing of image and
video material (Section 3.3), the delivery of ads on media platforms that preserve user privacy
(Section 5.5), and datasheets to ensure the faithful use and presentation of AI models in published
work (Section 6.1). More details can be found in the relevant subsection accompanying each piece
of work.

Secondly, WP4 partners compiled a list of all components developed as part of the work package,
designed as a first point-of-reference for partners from the other technical WPs looking to improve
the trustworthiness of their algorithms. The list, shown in Figure 56, contains a short description of
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all components, as well as links to public code repositories. This will be followed up by a catalogue
of code available to AI4Media partners for the final phase of the project.

Lastly, the forthcoming plenary meeting of the AI4Media consortium will feature a Speculative
Design Workshop to “produce illustrative scenarios that showcase the potential application and
added value of AI4Media technologies that may not all be integrated into the seven use cases.”
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Partner Name Description GitHub repo link
Technology stack (i.e.

Language  & ML framework) Relevant publication(s)

IBM Differential Privacy
Library

Library augmenting
Scikitlearn ML models with

Differentially Private
capabilties

Python, scikitlearn

Holohan, Naoise, Stefano Braghin, Pól Mac
Aonghusa, and Killian Levacher. "Diffprivlib:
the IBM differential privacy library." arXiv
preprint arXiv:1907.02444 (2019).

IBM Adversarial
Robustness Toolbox

Library providing attacks and
defences for deep learning

and scikitlearn models

Python, pytorch, tensorflow or
scikitlearn

Nicolae, Maria-Irina, Mathieu Sinn, Minh
Ngoc Tran, Beat Buesser, Ambrish Rawat,
Martin Wistuba, Valentina Zantedeschi et al.
"Adversarial Robustness Toolbox v1. 0.0."
arXiv preprint arXiv:1807.01069 (2018).

IDIAP
Locally Private
Graph Neural

Networks

Tool for federated training of
Graph Neural Networks

(GNNs) with Local Differential
Privacy

Python, PyTorch

Sina Sajadmanesh and Daniel Gatica-Perez,
"Locally Private Graph Neural Networks", in

Proceedings of ACM Conference on
Computer and Communication Security

(CCS), 2021

IDIAP
Differentially Private

Graph Neural
Networks

Tool for training of and
releasing Graph Neural

Network models with edge-
and node-level differential

privacy guarantees

Python, PyTorch

Sajadmanesh, Sina, Shahin Shamsabadi,
Ali, Bellet, Aurélien, & Gatica-Perez, Daniel.
(2023, August 9). GAP: Differentially Private

Graph Neural Networks with Aggregation
Perturbation. The 32nd USENIX Security
Symposium (USENIX Security), Anaheim,

CA, USA.

UNITN Self-Residual-Calibr
ation Regularization

Tool to address the robust
overfitting problem in
adversarial training by

designing a
novel regularization scheme

Python, PyTorch

H. Liu, Z. Zhong, N. Sebe, and S. Satoh,
Mitigating Robust Overfitting via

Self-Residual-Calibration Regularization,
Artificial Intelligence, vol. 137, Article

103877, April 2023.

UNITN

Learning to Attack
Real-World Models
via Virtual-Guided

Meta-Learning

Novel universal attack
algorithm (MetaAttack) for

person re-ID that can mislead
re-ID models on unseen
domains by a universal
adversarial perturbation

Python, PyTorch

F. Yang, Z. Zhong, H. Liu, Z. Wang, Z. Luo,
S. Li, N. Sebe, and S. Satoh, Learning to

Attack Real-World Models for Person
Re-identi

cation via Virtual-Guided Meta-Learning.
AAAI 2021

FhG-IDMT FLCrypt

A library to transaprently add
Fully Homomorphic

Encryption to a Federated
Learning System

private repositrory Python, Pytorch, Tensorflow TBD

AUTH

Adversarial
Robustness by

exploiting geometric
contraints

Algorithms for training neural
networks that increases their

robustness to adversarial
attacks

private repository Python, Pytorch

V. Mygdalis and I. Pitas, "Hyperspherical
class prototypes for adversarial robustness",

Elsevier Pattern Recognition, vol 125, pp
108527, 2022.

V. Mygdalis and I. Pitas, “Exploiting
One-Class Classification optimization
objectives for increasing Adversarial

Robustness”, IEEE International Conference
on Acoustics, Speech and Signal Processing

(ICASSP), 2023

AUTH Adversarial privacy
protection algorithms

Algorithms for privacy
protection, based on

adversarial attacks, against
pre-trained NN classsifiers

private repository Python, Pytorch

V. Mygdalis, A. Tefas and I. Pitas,
"Introducing K-Anonymity Principles to

Adversarial Attacks for Privacy Protection in
Image Classification Problems", in IEEE

International Workshop on Machine Learning
for Signal Processing (MLSP), 2021

A. Zamichos, V. Mygdalis and I. Pitas,
“Properties of learning Multiplicative

Universal Adversarial Perturbations in image
data”, in IEEE International Workshop on
Machine Learning for Signal Processing

(MLSP), 2022

HES-SO RCVtool Concept-based interpretability
from user queries Python, Tensorflow, scikit-image

HES-SO cdisco Concept discovery in latent
spaces Python, Pytorch, scikit-image

CEA
Unbiaised Control to
Generate Synthetic

Images

Generative approach to
generate synthetic faces, with

a mehod that decrease the
biases of the controled

attributes

Python, Pytorch

P. Doubinsky , N.Audebert , M. Crucianu, H.
Le Borgne, ”Multi-attribute balanced

sampling for disentangled GAN controls”,
(2022) Pattern Recognition Letters

CERTH

Explainability
algorithms for

synthetic speech
detection models

Algorithms for feature
importance and explainability
of synthetic speech detection

models, trained on
spectrograms

private repository python, pytorch, tensorflow, scikit

https://github.com/IBM/diff
erential-privacy-library

https://github.com/Trusted
-AI/adversarial-robustness

-toolbox

https://github.com/sisama
n/LPGNN

https://github.com/sisama
n/GAP

https://github.com/LynnHo
ngLiu/AIJ2023-SRC

https://github.com/FlyingR
oastDuck/MetaAttack_AA

AI21

https://github.com/maragr
aziani/rcvtool

https://github.com/maragr
aziani/cdisco

https://github.com/perlado
ubinsky/balanced_samplin

g_gan_controls

Figure 56. Full listing of WP4 components, compiled by WP4 partners.
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8 Ongoing Work and Conclusions

8.1 Ongoing Work

8.1.1 AI Robustness (Task 4.2)

Task 4.2 is due to conclude at the end of the AI4Media project in August 2024 (M48). AUTH has
concluded its work on this task with the present deliverable.

IBM will continue work on AI Robustness, focusing specifically on evaluating the security and
robustness of AI and ML models. As the models and modelling pipelines become more complex,
not only in size but also in terms of their use across different domains and applications, new attack
vectors emerge. These new threat models require the development of new mitigation approaches.
IBM will continue this journey of advancing the threat analysis of emerging AI models and develop
tools and techniques to help with their multi-faceted risk analysis.

UNITN will work on improving the robustness to targeted adversarial attacks. Previous
works have extensively studied the transferability of adversarial samples in untargeted black-box
scenarios. However, it still remains challenging to craft targeted adversarial examples with higher
transferability than non-targeted ones. Recent studies reveal that the traditional Cross-Entropy
(CE) loss function is insufficient to learn transferable targeted adversarial examples due to the issue
of vanishing gradient. In our work, we will address this problem by analysing the logit margin
between the targeted and untargeted classes and provide a solution that increases the transferability
of adversarial examples.

8.1.2 Explainable AI (Task 4.3)

Task 4.3 is due to conclude at the end of the AI4Media project in August 2024 (M48).
CERTH will continue to refine the existing methodology with an emphasis on enhancing

its transparency. This will involve the testing of additional explainable AI techniques aimed at
improving the clarity of the synthetic audio detection process. Concurrently, attention will be
devoted to enhancing result interpretability by evaluating various metrics. Insights will be provided
in textual format to elucidate the methodology’s operation and to indicate conditions under which
the model’s decision-making may be less robust. As advancements in synthetic audio detection
models are anticipated from Work Package 6 (WP6), plans are in place to adapt the methodology
to these forthcoming models. This adaptation aims to maintain the methodology’s applicability
and efficacy in the evolving landscape of synthetic audio detection.

Concerning visual analysis, based on our work in WP5 on video summarization, future work
will focus on explaining the output of video summarization networks as any gained improvements
in this direction would allow a level of understanding about their functionality, increase the users’
trust to them, and facilitate the curation of automatically-produced video summaries. Building on
our knowledge about the use of attention mechanisms for video summarization, our future work will
involve experimentation with: i) various attention-based video summarization architectures and
explanation signals (such as the ones using in the NLP domain), and ii) different model-agnostic
(e.g. perturbation-based) approaches for spotting the parts of the video that influenced the most the
estimates of a video summarization network about the importance of video frames and fragments.

CEA will continue to work on text-to-image (T2I) diffusion models and explore the use of
“controled” synthetic data to enrich the training datasets. Most of works relating to explainable
and interpretable AI focus on the statistical models and propose various approaches to provide a
useful feedback on their results to the human users. This has also been the case with previous CEA
contributions to T4.3 that have been reported in D4.1 and the current report. Our future work for
this task for the final year of the project (M37-48) will rather focus on the training data used to
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learn the AI models. We expect to allow a human user to augment these datasets with synthetic
images that are semantically controlled, such that she has a better understanding of the underlying
process. Generating images with T2I images is quite easy nowadays, but a challenge remains in
being able to generate actually useful data to improve such models on some specific tasks.

In this vein the CEA will also investigate the quality of the synthetic images generated by T2I
diffusion models. It exists some metrics to assess their quality and fidelity [214], [215], to determine
whether the generated images contain the specified objects or adhere to certain criteria [216], [217],
to evaluate their visual reasoning skills [218] or to delve into the gender depiction disparities
enabling the study of potential stereotypes [219]. However, there is still a need to be able to estimate
to which extent the generated image content is aligned with the prompt used as input of the T2I
model. Studying such an alignment with regard to various possible prompts may provide insights
to better explain the behavior of these T2I models.

HES-SO will continue to work on automating the discovery of concepts in imaging models. By
focusing on unsupervised approaches that do not require the user input about concepts, or high
level features, that are expected to be potentially relevant for the model, we can isolate only the
concepts that actually are learned to solve the task. This reduces the risk of user’s induced biases
in the interpretability analysis. Particularly in the case of deep fake detection, the model may focus
on completely unexpected features to identify fake models, and this would foster the development
of more robust detection methods. In particular, we plan on focusing on isolating directions in the
latent space of a layer (of an imaging model) that point to semantically unique concepts.

3IA-UCA will work on extending SMACE, making it usable in a wider range of applications.
A particularly interesting approach to include categorical features in the rules is implemented in
CatBoost [220], a gradient boosting toolkit. The idea is to group categories by target statistics,
which can replace them. SMACE could also be generalized to more complex model configurations,
where some models take as input the output of other models.

On the work about Anchor approach, we plan to extend our analysis to other classes of models,
such as CART trees, and to more advanced text vectorizers. We also plan to study Anchors’
behavior on images and tabular data.

On our works on Concept Embedding Models (CEM), there is room for improvement in both
concept alignment and task accuracy in challenging benchmarks such as CUB or CelebA, as well as
in resource utilisation during inference/training. Our future effort on this topic will focus on these
questions.

UNIFI will continue to work on explainable architectures, extending the work presented in
Section 4.6 to transformer based architectures. Our work will be mostly directed towards training
agents that work under regimen in which the i.i.d. assumption is violated, such as online driving in
which the output of the model influences future inputs. In particular, we will work on approaches
able to provide visual explanation of autonomous agent failures, exploiting visual attention.

Moreover, we will work on understanding the reliability of classification results on transformer
based architectures addressing uncertainty estimation and out-of-distribution detection. We will
study how, visual attention maps obtained from visual transformers can be exploited to train
models such as auto-encoders, in order to perform out-of-distribution detection.

8.1.3 Privacy-Enhancing AI (Task 4.4)

T4.4 was due to be completed with the submission of this deliverable (D4.5) in August 2023
(M36). However, it has since been extended to the end of the project (August 2024, M48) to allow
FhG-IDMT continue working on the task and deliver more research and results in D4.7. The
present deliverable marks the conclusion of this task for the other partners, IBM, AUTH, and
IDIAP.
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FhG-IDMT will focus on the combination of Federated Learning, Differential Privacy and
Fully Homomorphic Encryption, for problems with actual relevance in the media sector (e.g., audio
classification). The goal is to build a demonstrator that showcases the technologies and the inherent
privacy security tradeoff as well as enumerate (attacker) scenarios, where such a combination of
privacy enhancing technologies is useful and worth the additional effort.

8.1.4 AI Fairness (Task 4.5)

Like T4.4 above, T4.5 was due to come to a conclusion with the submission of this deliverable (D4.5).
However, it too has now been extended until the end of the project (M48) with the agreement of
all partners to facilitate more work on the task from FhG-IDMT and 3IA-UCA to be delivered
in D4.7. The present deliverable (D4.5) marks the conclusion of work on this task from the other
partners, IBM, UCA, and IDIAP.

FhG-IDMT will continue to work on a demonstrator for the detection on mitigation of bias in
recommender systems, based on the outcomes of T6.3 (Hybrid, privacy-enhanced recommendation).

3IA-UCA will continue working on debiasing deep networks using XAI rules. Indeed, while
our research provides a valuable step forward in debiasing neural models, there are several areas
that warrant further investigation. Future studies can explore the combination of multiple XAI
algorithms for enhanced bias detection and mitigation. Additionally, evaluating the generalization
of debiasing techniques across different datasets and domains will be crucial. It is also important
to consider the ethical implications and potential unintended consequences of debiasing methods.
Robust frameworks for evaluating the effectiveness and fairness of debiased models should be
developed. Furthermore, ongoing research should focus on developing techniques that enable
continuous monitoring and mitigation of biases as models evolve over time.

8.2 Conclusions

This deliverable details the considerable volume of work that relevant partners have been conducting
in the context of WP4 from M13 to M36. The work has covered all dimensions of trusted AI, covering
robustness, explainability, privacy and fairness in AI. The work is backed up by a comprehensive
library of scientific publications and open source code. Novel methods have been conceived, authored
and delivered, and the existing state-of-the-art has been improved upon across a range of topics.
This deliverable represents a valuable checkpoint in the lifetime of the AI4Media project, showcasing
the diligent work that has been completed.

The updated version of D4.5 will be provided in M48 (D4.7 – Final toolset in robust, explainable,
fair, and privacy-preserving AI ) and will include the final outcomes of the ongoing work as well as
additional investigations regarding the tasks covered in this deliverable.
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A Appendix

A.1 Datasheet for the dataset on European press coverage of Covid-19
vaccination news

Main contributor: M. Guido (AI4Media Junior Fellow hosted at IDIAP.) Additional contributions
and updates by D. Gatica-Perez and D. Alonso del Barrio. Version: July 2023.

In the datasheet, the questions are reproduced verbatim from the original datasheet framework
proposed by Gebru et al. [201], in order to maximize compliance with the framework.

A.1.0.1 Motivation

For what purpose was the dataset created? Was there a specific task in mind? Was there a
specific gap that needed to be filled? Please provide a description.
There is a body of research studying the spread of (dis)information about Covid-19. In this regard,
many researchers pointed out the need of understanding the full information ecosystem. This
holistic understanding needs to include the examination of existing high-quality media outlets,
which played a key role during the pandemic period. The understanding of how European media
organizations covered aspects of the pandemic, such as Covid-19 vaccination, has emerged as a
research gap so far. This dataset represents a step towards filling this research gap by including over
50,000 articles on Covid-19 vaccination from 19 newspapers, 5 European countries and 4 languages
over a period of 22 months. This represents a unique resource to study the media coverage on
Covid-19 vaccinations. The dataset also includes a translated version with all the content in English
to facilitate comparisons across countries. The dataset was presented and used in [203], and
developed as part of the work in WP6, task T6.5 of AI4Media (Perception of Hyper-Local News).

Who created this dataset (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)?
The dataset was created by the Social Computing group of the Idiap Research Institute.

Who funded the creation of the dataset? If there is an associated grant, please provide the
name of the grantor and the grant name and number.
The dataset was designed, obtained, and curated in the context of the AI4Media project (European
Commission Grant 951911, under the H2020 Programme).

Any other comments? No.

A.1.0.2 Composition

What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries)? Are there multiple types of instances (e.g., movies, users, and ratings;
people and interactions between them; nodes and edges)? Please provide a description.
Each instance represents a newspaper article. All instances are of the same type.

How many instances are there in total (of each type, if appropriate)?
There are 51,320 instances.

Intermediate toolset for robust, explainable, fair, and privacy-preserving AI 141 of 151



Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set? If the dataset is a sample, then what is the larger set? Is
the sample representative of the larger set (e.g., geographic coverage)? If so, please describe how
this representativeness was validated/verified. If it is not representative of the larger set, please
describe why not (e.g., to cover a more diverse range of instances, because instances were withheld
or unavailable).
The dataset contains a sample of newspaper articles about Covid-19 vaccination over a period of 22
months. The sample is considered to be representative of the press coverage in Europe covering six
newspapers from France; two from Italy; six from Spain; three from Switzerland; and two from the
United Kingdom. The sample shows an imbalanced number of newspapers per country, the details
can be found in Table 1 of [203].

What data does each instance consist of? “Raw” data (e.g., unprocessed text or
images) or features? In either case, please provide a description.
The data can be considered raw data and consists of the title, subheadline as well as text in a
newspaper article in original language and translated to English. Additionally, an instance contains
the authors, date, a corresponding link, and the newspaper’s name and country. The only feature
that was added to the dataset is the number of words in the original article as well as the translated
version.

Is there a label or target associated with each instance? If so, please provide a description.
Currently, there is no label or target associated with the instances.

Is any information missing from individual instances? If so, please provide a description,
explaining why this information is missing (e.g., because it was unavailable). This does not include
intentionally removed information, but might include, e.g., redacted text.
In the subheadline and author columns, some instances do not have any values. For such cases, the
word ’error’ was set to signal the missing value.

Are relationships between individual instances made explicit (e.g., users’ movie ratings,
social network links)? If so, please describe how these relationships are made explicit.
There are no known relations between the instances. However, some of the instances share the
same publisher or author. Whenever an article is from the same newspaper or author, it can be
made apparent through the corresponding column.

Are there recommended data splits (e.g., training, development/validation, testing)?
If so, please provide a description of these splits, explaining the rationale behind them.
There are no recommended data splits for the dataset.

Are there any errors, sources of noise, or redundancies in the dataset? If so, please
provide a description.
All articles were translated from their original language to English using the DeepL software. It
cannot be ruled out that along the translations some minor errors might have occurred. The
possible translation errors are unknown.

Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? If it links to or relies on external resources, a) are
there guarantees that they will exist, and remain constant, over time; b) are there official archival
versions of the complete dataset (i.e., including the external resources as they existed at the time
the dataset was created); c) are there any restrictions (e.g., licenses, fees) associated with any of
the external resources that might apply to a future user? Please provide descriptions of all external
resources and any restrictions associated with them, as well as links or other access points, as
appropriate.
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The dataset is self-contained in the sense that all articles in the dataset are included. For
completeness purposes, the dataset also contains the links to the websites they were retrieved from.
There is no guarantee that these will exist and remain constant over time. The instances themselves
provide the information about the content of these links at the time the dataset was created.

Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor-patient confidentiality, data that includes the
content of individuals non-public communications)? If so, please provide a description.
The dataset contains no confidential data as all data stems from public communication of newspapers.

Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? If so, please describe why.
The dataset contains data about the news coverage of Covid 19 vaccination. This topic can generally
be considered as controversial and polarizing, even though newspapers mainly strive for objectivity
in this debate. Furthermore, the Covid-19 pandemic and vaccinations might be topics that might
be upsetting or sensitive to some readers.

Any other comments? No.

A.1.0.3 Collection Process

How was the data associated with each instance acquired? Was the data directly observ-
able (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly
inferred/derived from other data (e.g., part-of-speech tags, model-based guesses for age or lan-
guage)? If data was reported by subjects or indirectly inferred/derived from other data, was the
data validated/verified? If so, please describe how.
The data was directly observable. The only exception is the number of words that was inferred
from the text column and the English translation of the articles by the software DeepL.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatus
or sensor, manual human curation, software program, software API)? How were these
mechanisms or procedures validated?
As a first step, over 30 European newspapers spanning five countries were contacted, requesting
authorization to extract and analyze online articles discussing issues related to Covid-19 vaccination.
The authorization of 19 of them was obtained. This includes six newspapers from France; two from
Italy; six from Spain; three from Switzerland; and two from the United Kingdom. After receiving
written email authorization from each newspaper, the articles were extracted using Selenium and
BeautifulSoap, which are scraping techniques that allow to extract the text of the articles. For each
article the headline, subheadline (if available), main text, authors, date of publication, and link
were extracted.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)?
The dataset is a sample of newspaper articles in the European press about Covid-19 vaccination.
While the intention of the dataset was to map the European press coverage by a representative
sample of geographic areas, the dataset only consists of five countries and 19 newspapers. As stated
earlier, a large number of newspapers was originally contacted (based on their reputation), and only
a fraction of them responded positively; thus the sampling is a form of convenience sample at the
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newspaper level. In other words, only a few European countries are covered, only a few newspapers
per country, and some countries have fewer instances than others.

Who was involved in the data collection process (e.g., students, crowdworkers, con-
tractors) and how were they compensated (e.g., how much were crowdworkers paid)?
A researcher from the Social Computing group at Idiap collected and curated the data.

Over what timeframe was the data collected? Does this timeframe match the creation
timeframe of the data associated with the instances (e.g., recent crawl of old news
articles)? If not, please describe the timeframe in which the data associated with the instances
was created.
The data was collected for a 22 month period from 01.01.2020 to 31.10.2021. The creation timeframe
of the news articles matches the timeframe of the data collection.

Were any ethical review processes conducted (e.g., by an institutional review board)?
If so, please provide a description of these review processes, including the outcomes, as well as a
link or other access point to any supporting documentation.
The PI at IDIAP made an initial submission to the institute’s internal Data and Research Ethics
Committee (DREC), for the different IDIAP research activities in the AI4Media project. An update
to this submission was then submitted to describe the news dataset collection process in detail.

Any other comments?
No.

A.1.0.4 Preprocessing/cleaning/labeling

Was any preprocessing/cleaning or labeling of the data done (e.g., discretization or
bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of
instances, processing of missing values)? If so, please provide a description. If not, you may
skip the remainder of the questions in this section.
As part of preprocessing, expressions that usually appear when web scraping such as \xa0, \xad,
\u200b, and any line breaks (\n) were removed from the articles.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g.,
to support unanticipated future uses)? If so, please provide a link or other access point to the
“raw” data.
The raw data is stored, but in the context of the intended uses of the dataset, it does not add value.

Is the software used to preprocess/clean or label the instances available? If so, please
provide a link or other access point.
While a script running a sequence of commands is not available, all software used to process the
data is open source and has been specified above.

Any other comments?
No.
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A.1.0.5 Uses

Has the dataset been used for any tasks already? If so, please provide a description.
A first analysis was conducted on how the European press treated Covid-19 vaccination-related
issues. Experiments with NLP tools such as named entity recognition, topic modeling, and sentiment
analysis were performed on the translated dataset. This is reported in [203]. A second analysis
involved a subset of the original dataset, involving 1786 headlines of No-Vax movement press articles,
to understand how the European press treated the No-Vax movement. This is reported in [221].
Finally, a third analysis involved the same 1786 headline subset, for human and machine labeling of
journalistic frames. This is reported in [222].

Is there a repository that links to any or all papers or systems that use the dataset? If
so, please provide a link or other access point.
The papers that used the dataset can be found at Idiap publication website: https://publications.
idiap.ch/index.php

What (other) tasks could the dataset be used for?
The dataset offers the foundation for research on the media coverage of the Covid-19 vaccinations
in European newspapers. While the associated papers investigated the application of natural
language processing tools to examine how the European press treated the Covid-19 vaccination
issue, a mapping into the context of other aspects and public discussions of the pandemic remains
interesting to address. For example, one could study how the debate of Covid-19 vaccinations
in media coverage occurred in parallel with international, national, or regional regulations and
recommendations. Additionally, social media data could offer a different perspective of opinions
on the topic, provide an interesting contrast to professional media coverage, and give insights into
the evolution of public agenda and opinions alongside the media agenda. Furthermore, the dataset
offers a foundation to expand the above mentioned investigations to more geographical areas (e.g.,
multiple continents).

Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned or labeled that might impact future uses? For example, is there
anything that a future user might need to know to avoid uses that could result in unfair treatment
of individuals or groups (e.g., stereotyping, quality of service issues) or other undesirable harms
(e.g., financial harms, legal risks) If so, please provide a description. Is there anything a future user
could do to mitigate these undesirable harms?
Overall, there is little risk for harm: the data was public by construction and was published by
professional newspapers following their own editorial guidelines and safeguards.

Are there tasks for which the dataset should not be used? If so, please provide a description.
The dataset covers a specific geographical area. Practitioners are not advised to use the dataset to
draw conclusions for countries or geographic areas other than Europe.

Any other comments? No.

A.1.0.6 Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? If so, please provide
a description.
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The dataset cannot be distributed to third parties. Newspapers were contacted to request the
permission to distribute the data, but such authorization was not obtained for the full dataset.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub) Does
the dataset have a digital object identifier (DOI)?
See previous point.

When will the dataset be distributed?
See first point in this section.

Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? If so, please describe this license
and/or ToU, and provide a link or other access point to, or otherwise reproduce, any relevant
licensing terms or ToU, as well as any fees associated with these restrictions.
See first point in this section.

Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? If so, please describe these restrictions, and provide a link or other access
point to, or otherwise reproduce, any relevant licensing terms, as well as any fees associated with
these restrictions.
See first point in this section.

Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? If so, please describe these restrictions, and provide a link or other access
point to, or otherwise reproduce, any supporting documentation.
See first point in this section.

Any other comments?
No.

A.1.0.7 Maintenance

Who will be supporting/hosting and maintaining the dataset?
David Alonso del Barrio: ddbarrio@idiap.ch

How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
Daniel Gatica-Perez: gatica@idiap.ch

Is there an erratum? If so, please provide a link or other access point.
There is no erratum.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)? If so, please describe how often, by whom, and how updates will be communicated to
users (e.g., mailing list, GitHub)?
The dataset covers the period from January 2020 to October 2021. There are no plans to update
the dataset.

Will older versions of the dataset continue to be supported/hosted/maintained? If so,
please describe how. If not, please describe how its obsolescence will be communicated to users.
As the dataset is a snapshot of a fixed period of time and will not be updated, the creators of the
dataset do not expect obsolescence of the dataset for the few next years.
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If others want to extend/augment or build on and contribute to the dataset, is
there a mechanism for them to do so? If so, please provide a description. Will these
contributions be validated/verified? If so, please describe how. If not, why not? Is there a
process for communicating/distributing these contributions to other users? If so, please provide a
description.
There is no mechanism for others to contribute to the dataset.

Any other comments?
No.

A.2 Abstracts from the invited talks at the First Nice Workshop on
Interpretability (NWI)

The following are the abstracts for the invited talks from the First Nice Workshop on Interpretability
(NWI) outlined in Section 4.11.

Jenny Benois-Pineau (Université de Bordeaux): FEM and MLFEM post-hoc explainers for
CNNs and their evaluation with reference-based and no-reference quality metrics

In this talk we will present two method for explanation of trained CNN models we recently
developed: FEM and MLFEM. These methods are based on the evaluation of the strength of
features in the deepest convolution layer (FEM) or several convolutional layers of a CNN performing
image classification task. Without losing generality, the methods can be applied on any data which
are being classified with a CNN. Furthermore, we propose evaluation methods for the quality
of obtained explanation maps. We consider two general approaches for quality metrics design :
reference-based and no-reference. In the case of image classification, as a reference we consider
Gaze Fixation Density maps built upon gaze fixations of observers which have participated in
psycho-visual experiment with the goal of the recognition of a visual scene. As quality metrics
, are used those proposed in vision research for comparison of saliency maps. The no-reference
method, by D. Alvarez Melis and T. Jakkola is based on the Lipschitz constant computation. We
study the behavior of this metric as a function of strength of degradations induced on regional
images. Furthermore, we explore the correlation of reference-based and no-reference metric. Our
experimental studies show that FEM and MLFEM methods are outperform reference explainers,
such as GradCam in the sense of both reference-based and no-reference metrics.

Joao Marques-Silva (IRIT CNRS ANITI): Logic-Based Explainability in Machine Learning
The forecast applications of machine learning (ML) in high-risk and safety-critical applications

hinge on systems that are deemed robust in their operation, and that can be understood about
their decisions, and so trusted. Most ML models are neither robust nor understandable. This talk
gives a broad overview of ongoing efforts in applying logic-enabled automated reasoning tools for
explaining black-box ML models. The talk details the computation of rigorous explanations for
the predictions made by black-box models, and illustrates how these serve to assess the quality
of widely used heuristic explanation approaches. Finally, the talk briefly overviews a number of
emerging topics of research in logic-enabled explainability.

Vasileios Mezaris (ITI - CERTH): Explaining the decisions of image/video classifiers
We will start by discussing the main classes of explainability approaches for image and video

classifiers. Then, we will focus on two distinct problems: learning how to derive explanations for the
decisions of a legacy (trained) image classifier, and designing a classifier for video event recognition
that can also deliver explanations for its decisions. Technical details of our proposed solutions to
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these two problems will be presented. Besides quantitative results concerning the goodness of the
derived explanations, qualitative examples will also be discussed in order to provide insight on the
reasons behind classification errors, including possible dataset biases affecting the trained classifiers.

Martin Pawelcyk (University of Tübingen): On the Trade-Off between Actionable Explanations
and the Right to be Forgotten

As machine learning (ML) models are increasingly being deployed in high-stakes applications,
policymakers have suggested tighter data protection regulations (e.g., GDPR, CCPA). One key
principle is the “right to be forgotten” which gives users the right to have their data deleted.
Another key principle is the right to an actionable explanation, also known as algorithmic recourse,
allowing users to reverse unfavorable decisions. To date, it is unknown whether these two principles
can be operationalized simultaneously. Therefore, we introduce and study the problem of recourse
invalidation in the context of data deletion requests. More specifically, we theoretically and
empirically analyze the behavior of popular state-of-the-art algorithms and demonstrate that the
recourses generated by these algorithms are likely to be invalidated if a small number of data
deletion requests (e.g., 1 or 2) warrant updates of the predictive model. For the setting of linear
models and overparameterized neural networks – studied through the lens of neural tangent kernels
(NTKs) – we suggest a framework to identify a minimal subset of critical training points which,
when removed, maximize the fraction of invalidated recourses. Using our framework, we empirically
show that the removal of as little as 2 data instances from the training set can invalidate up to
95 percent of all recourses output by popular state-of-the-art algorithms. Thus, our work raises
fundamental questions about the compatibility of ”the right to an actionable explanation” in the
context of the ”right to be forgotten” while also providing constructive insights on the determining
factors of recourse robustness.

Tristan Gomez (LS2N): Metrics for saliency maps faithfulness evaluation: an application to
embryo stage identification

Due to the black-box nature of deep learning models, there is a recent development of solutions
for visual explanations of CNNs. To evaluate the faithfulness of the explanations, various metrics
were introduced. First, we critically analyze the Deletion Area Under Curve (DAUC) and Insertion
Area Under Curve (IAUC) metrics proposed by Petsiuk et al. (2018). These metrics were designed
to evaluate the faithfulness of saliency maps generated by generic methods such as Grad-CAM or
RISE. We show that DAUC and IAUC suffer from two issues: (1) they generate out-of-distribution
samples and (2) they ignore the saliency scores. To complement DAUC/IAUC, we propose new
metrics that quantify the sparsity and the calibration of explanation methods, two previously
unstudied properties. Next, we study the behavior of faithfulness metrics applied to the problem of
embryo stage identification. We benchmark attention models and post-hoc methods and further
show empirically that (1) the metrics produce low overall agreement on the model ranking and
(2) depending on the metric approach, either post-hoc methods or attention models are favored.
We conclude with general remarks about the difficulty of defining faithfulness and the necessity of
understanding its relationship with the type of approach that is favored.

Sebastian Bordt (University of Tübingen): From Shapley Values to Generalized Additive
Models and back

In explainable machine learning, local post-hoc explanation algorithms and inherently inter-
pretable models are often seen as competing approaches. In this work, offer a novel perspective on
Shapley Values, a prominent post-hoc explanation technique, and show that it is strongly connected
with Glassbox-GAMs, a popular class of interpretable models. We introduce -Shapley Values, a
natural extension of Shapley Values that explain individual predictions with interaction terms up to
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order . As increases, the -Shapley Values converge towards the Shapley-GAM, a uniquely determined
decomposition of the original function. From the Shapley-GAM, we can compute Shapley Values of
arbitrary order, which gives precise insights into the limitations of these explanations. We then
show that Shapley Values recover generalized additive models of order , assuming that we allow for
interaction terms up to order in the explanations. This implies that the original Shapley Values
recover Glassbox-GAMs. At the technical end, we show that there is a one-to-one correspondence
between different ways to choose the value function and different functional decompositions of
the original function. This provides a novel perspective on the question of how to choose the
value function. We also present an empirical analysis of the degree of variable interaction that is
present in various standard classifiers, and discuss the implications of our results for algorithmic
explanations. A python package to compute -Shapley Values and replicate the results in this paper
is available here.

Hugo Sénétaire (DTU): Casting explainability as statistical inference
A wide variety of model explanation approaches have been proposed recently, all guided

by very different rationales and heuristics. We take a new route and cast interpretability as a
statistical inference problem. A general deep probabilistic model is designed to produce interpretable
predictions. The model’s parameters can be learned via maximum likelihood, and the method can
be adapted to any predictor network architecture and any type of prediction problem. Our method
is a case of amortized interpretability models, where a neural network is used as a selector to
allow for fast interpretation at inference time. Several popular interpretability methods are shown
to be cases of regularised maximum likelihood for our general model. We propose new datasets
with ground truth selection which allow for evaluating the features’ importance map. Using these
datasets, we show experimentally that using multiple imputations provides a more reasonable
interpretation.

Gianluigi Lopardo (3IA-UCA): A Sea of Words: An In-Depth Analysis of Anchors for Text
Data

Anchors (Ribeiro et al., 2018) is a post-hoc, rule-based interpretability method. For text data,
it proposes to explain a decision by highlighting a small set of words (an anchor) such that the
model to explain has similar outputs when they are present in a document. We present the first
theoretical analysis of Anchors, considering that the search for the best anchor is exhaustive. After
formalizing the algorithm for text classification, we present explicit results on different classes of
models when the preprocessing step is TF-IDF vectorization, including elementary if-then rules and
linear classifiers. We then leverage this analysis to gain insights on the behavior of Anchors for any
differentiable classifiers. For neural networks, we empirically show that the words corresponding to
the highest partial derivatives of the model with respect to the input, reweighted by the inverse
document frequencies, are selected by Anchors.

Gabriele Ciravegna (3IA-UCA): Entropy-Based Logic Explanations of Neural Networks
Explainable artificial intelligence has rapidly emerged since lawmakers have started requiring

interpretable models for safety-critical domains. Concept-based neural networks have arisen as
explainable-by-design methods as they leverage human-understandable symbols (i.e. concepts) to
predict class memberships. However, most of these approaches focus on the identification of the most
relevant concepts but do not provide concise, formal explanations of how such concepts are leveraged
by the classifier to make predictions. In this paper, we propose a novel end-to-end differentiable
approach enabling the extraction of logic explanations from neural networks using the formalism of
First-Order Logic. The method relies on an entropy-based criterion which automatically identifies
the most relevant concepts. We consider four different case studies to demonstrate that: (i) this
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entropy-based criterion enables the distillation of concise logic explanations in safety-critical domains
from clinical data to computer vision; (ii) the proposed approach outperforms state-of-the-art
white-box models in terms of classification accuracy and matches black box performances.

Jean-Michel Loubes (Université Toulouse Paul Sabatier): Explainability of a Model under
stress

We propose to study another type of explanation : the response of an algorithm when confronted
to constraints on the test distribution. In order to avoid outliers we consider distributions that
satisfy a stress constraint while being as close as possible to the original distribution. We define
entropic projections under constraints that satisfy such conditions and thus provide some theoretical
guarantees for such models. The method is analysed here.

Yann Chevaleyre (Paris Dauphine): Learning interpretable scoring rules
Interpretability is a quite old topic in machine learning, which recently gained a lot of traction.

In this talk, we will discuss about the need for interpretability in machine learning and what is
meant by interpretability. Then, we will present the problem of learning interpretable scoring rules,
and how this problem can be relaxed into a standard convex optimization problem. Finally, we will
show some applications.

Alexandre Benoit (Université Savoie Mont Blanc): Explainable AI for Earth Observation
Earth Observation (EO), as for other domains, is subject to impressive advances thanks to

the availability of abundant data, modern AI methods and more specifically deep neural networks.
However, most of the available EO data is generally unlabelled, generally illustrates very local
context with specific orientation, climate and so on such that the generalization behaviours of
machine learning models can be limited. In addition, the implication of model inference applied to
EO may lead to costly decisions such as infrastructure design or modification or crop yield. Then
automatic decisions should be justified or explained. However, in the era of deep learning-based
models, opening those black boxes is a challenge in itself. In this talk, we will present a variety
of activities related to EO and explainable AI at LISTIC Lab. A focus on contributions related
to explainable AI relying on 3 complementary directions : black box explanation, explanation by
model design and redescription mining. These contributions highlight the interest of explanation
methods combinations in order to present more concise and focused explanation to the human
experts.

Salim Amoukou (Université Paris Saclay): Consistent Sufficient Explanations and Minimal
Local Rules for explaining regression and classification models

To explain the decision of any model, we extend the notion of probabilistic Sufficient Explanations
(P-SE). For each instance, this approach selects the minimal subset of features that is sufficient to
yield the same prediction with high probability, while removing other features. The crux of P-SE is
to compute the conditional probability of maintaining the same prediction. Therefore, we introduce
an accurate and fast estimator of this probability via random Forests for any data (X, Y ) and
show its efficiency through a theoretical analysis of its consistency. As a consequence, we extend
the PSE to regression problems. In addition, we deal with non-binary features, without learning
the distribution of X nor having the model for making predictions. Finally, we introduce local
rule-based explanations for regression/classification based on the P-SE and compare our approaches
w.r.t other explainable AI methods. These methods are publicly available as a Python package.

Giorgio Visani (University of Bologna): Inspecting Stability and Reliability of Explanations
Explanations of automated decision systems are extremely important in highly regulated domains.
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One of the most well-known solutions to obtain model explanations is the LIME technique. In
the talk, we will discuss the technique in general, with a special focus on its reliability. Ad-hoc
Stability Indices are going to be presented as a tool to discern whether the explanations can be
trusted. Building on the Stability Indices, the OptiLIME policy focuses on obtaining stable and
reliable LIME explanations. Stability Indices and the OptiLIME policy represent an important
step toward LIME compliance, from a regulatory point of view.

Hidde Fokkema (Korteweg-de Vries Institute): Attribution-based Explanations that Provide
Recourse Cannot be Robust

When automated machine learning decisions lead to undesirable outcomes for users, recourse
methods from explainable machine learning can inform users how to change the decisions. It is
often argued that such explanations should be robust to small measurement errors in the users’
features. We show that, unfortunately, this type of robustness is impossible to achieve for any
method that also gives useful explanations whenever possible. We further discuss possible ways to
work around our impossibility result, for instance by allowing the output to consist of sets with
multiple attributions. Finally, we strengthen our impossibility result for the restricted case where
users are only able to change a single attribute of x, by providing an exact characterization of the
functions f to which impossibility applies.

Mara Graziani (IBM Research): Reliable AI in healthcare: from model validation to hypothesis
generation

Deep learning models in healthcare are yielding exceptional results for the characterization of
cancer biomarkers in imaging and molecular data, at times even exceeding human performance.
However, assessing the reliability of the predicted outcomes is still a challenge, with predictions
lacking robustness to covariate shifts. Moreover, it is still unclear what informative patterns
lead to the high performance gains given by the deep models. In this talk, I discuss how model
interpretability and reliable AI development can address the tasks of model validation. After briefly
introducing the terminology related to reliable AI, I will provide examples on semi-transparent
model designs that can be used to introduce desired inductive biases during model training. Finally,
I will look at the future potential of interpretability developments for accelerating scientific discovery.
In particular, I will discuss the potential of attention mechanisms for scientific hypotheses generation
in histopathology.

Pietro Barbiero (Cambridge University): Concept Embedding Models: Beyond the Accuracy-
Explainability Trade-Off

Human trust in deep neural networks is currently an open problem as their decision process is
opaque. Current methods such as Concept Bottleneck Models make the models more interpretable at
the cost of decreasing accuracy (or vice versa). To address this issue, we propose Concept Embedding
Models, a novel family of concept bottleneck models which goes beyond the current accuracy-vs-
interpretability trade-off by learning interpretable high-dimensional concept representations.
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