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1. Executive Summary
This deliverable presents the research outcomes of Task 5.2 (Media Content Production) during the first
18 months of the AI4Media project. We present in detail the motivation, the developed methods, and the
obtained results, making explicit references to publications authored by partners, software developed by
them and relevant contributions to the WP8 use cases.

Research activities in T5.2 cover a wide range of topics relevant to multimedia content production,
including content enhancement techniques for images and video, generation of playable video, automated
cinematography, generation of synthetic musical mixes, and more. The results of these research activities
have been successfully published in top journals and conferences.

More specifically, the following research outcomes have been produced, roughly classified in three
categories, i.e. content generation, content enhancement and content generation automation:

• Content generation: Several methodologies and tools have been developed for content generation,
providing solutions for creating new content in several domains with a wide range of applications
such as 3D terrain generation, conditional video and audio generation. Ongoing work includes: (i)
a novel attention-guided discriminator which only considers attended regions for guided image gen-
eration; (ii) the extension of an audio synthesis model allowing to generate realistic symbolic piano
performances without aligned music scores; (iii) a GAN extension based on an implicit style function
that enables cost-effective multi-modal unsupervised image-to-image translations.

• Content enhancement: We also deal with content enhancement techniques to improve content de-
livery and user experience, specifically for standard and 360◦video streams and gaming. The tools
developed provide solutions for accurately predicting user attention in 360◦video so to better allocate
bandwidth selectively, for improving compressed video with a fast network able to run also on low-
end devices, for evaluating the quality of restored media and for modelling the video game player
experience. Ongoing work includes: (i) the application of memory based multimodal trajectory pre-
diction networks to head motion prediction; and (ii) the extension of video enhancement approaches
to include the capability to incorporate sporadic high quality content.

• Automation of content generation process: Finally, we propose new methods for the full automa-
tion of UAVs use in the footage shooting process. The tools developed provide solutions that allow
to learn agents able to plan valid combinations of Camera Motion Types and Framing Shot Types.
Among ongoing work, we have the extension of the developed Deep Reinforcement Learning meth-
ods to all target-tracking Camera Motion Types.

The goal in the near future is to extend these research outcomes, integrate them in WP8 use case demon-
strators where possible, and also foster joint research that can result in developments that are mutually
beneficial to the cooperating partners.
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2. Introduction
Task 5.2 “Media content production” of AI4Media investigates multiple aspects of (semi-)automatic me-
dia content production, focusing on the creation, adaptation and enhancement of media content. The task
examines both the pure synthesis of media content exploiting computational methods such as Deep Genera-
tive Models as well as methodologies that help in the acquisition and streaming of such content to end-user
devices.

According to the AI4Media Description of Action (DoA), research activities in T5.2 cover a wide range
of topics relevant to content production, including: cinematography planning, with emphasis on UAV media
production; novel enhancement techniques for videos beyond the visible domain, exploiting multimodality;
procedural content generation; sound synthesis of musical instruments based on synthetic music sounds;
adaptation of AR/VR content to specific users and environments aiming to address the problem of efficiently
streaming such heavy contents.

During the first 18 months of the project, research focused on the following aspects of multimedia
content production:

• Novel content generation, specifically in the 3D, video and audio domain. In section 3.4, a novel
terrain generation algorithm, based on GANs has been proposed. Generating realistic and varied 3D
meshes of terrain is critical for VR applications such as games and simulations. In sections 3.3 and
3.2, two generative approaches have been proposed, able to create new content from conditioning
variables. In section 3.3, video generation is performed in a controlled manner. More specifically, by
learning a set of distinct actions it is possible to offer users the possibility to interactively generate
new videos. In section 3.2, two generators are learned: an image generator in the pixel domain and
a guidance generator in a possibly different modality used for guidance. This way it is possible, for
example, to better generate faces, by conditioning with landmark positions. Finally, in section 3.8,
an audio generation approach is proposed. Audio generation is a key problem in game, documentary
and movie production. The proposed approach deals with piano sound synthesis from a symbolic
representation handling polyphonic MIDI and also modelling particular properties of the piano sound,
such as partials inharmonicity, partials beating, and noise of the hammers, the keys and the pedals.

• Content enhancement and delivery. A key aspect of content delivery is the possible degradation that
happens caused by compression. Heavy content such as video is often compressed. This is especially
true when dealing with 360◦videos, for example. In section 3.1, a novel super-resolution and artefact
removal network is proposed, specifically designed to be efficient in order to run on end-user devices.
One key aspect of this work is also the capability of such an architecture to be fine-tuned on specific
content so to further improve the per-video enhancement. When it comes to serving 360◦videos we
have a different challenge: codecs must attempt to predict user attention and exploit this information
to selectively code video. To decrease the bandwidth usage, it is common to stream in high resolution
only the portion of the sphere in the user Field of View. In section 3.6, a new Deep Learning based
architecture is proposed, yielding state-of-the art results in head motion prediction in 360◦videos.
Finally, when dealing with content enhancement it is also important to design novel methods to
evaluate content quality. Currently, approaches are either tuned on specific datasets or distortions,
or fail to correctly score high quality images derived from GAN based enhancers. In section 3.1.2,
we present a work that exploits a multimodal task (image captioning) to estimate image quality. The
proposed method is extremely simple but powerful and versatile, showing many advantages over other
image similarity metrics. Finally, in section 3.7, a set of ML techniques to model player experience
in videogames is presented. The main idea is to identify player populations so to understand and
enhance different aspects of player experience. This is a prerequisite for the design of entirely new
and engaging gameplay via game content generation.
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• Automated Cinematography. While many approaches in T5.2 deal with the direct generation of
content exploiting Deep Generative Models, we must keep in mind that the main source of high-
resolution high-quality content is provided by shooting footage directly. To lower production costs
and to allow filming crews to deploy UAVs easier, automatic cinematography methods are sought
in section 3.5. We propose to adapt a Deep Deterministic Policy Gradient (DDPG) agent training a
task-specific reward function; moreover, a novel on-line distillation policy is developed from a Model
Predictive Control teacher network.

All these works are described in section 3. For each one of them, we provide links to relevant publica-
tions and open software developed by the AI4Media partners, while also explaining how they connect with
AI4Media uses cases and specific user requirements. Section 4 briefly summarises the AI4Media use cases
and the corresponding requirements (Epics) that the techniques described in this deliverable contribute to.
Finally, section 5 concludes the deliverable, describing also plans for future extensions and developments
in T5.2 by the different contributing partners.
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3. Content Production(Task 5.2)
Contributing partners: UNIFI, UNITN, AUTH, 3IA-UCA, MODL, IRCAM

In this section, we present the research outcomes of T5.2 during the first 18 months of the project,
addressing multiple aspects of (semi-)automatic media content production, including novel content gener-
ation, specifically in the 3D, video and audio domain, content enhancement and delivery, and automated
cinematography. Most of the presented works have already been published in journals or conference pro-
ceedings, contributing to the advancement of the state-of-the-art in their specific domains. Relevant papers,
open software and connection with AI4Media use cases are also presented.

3.1. Media Quality Enhancement and Assessment
Contributing partners: UNIFI

In this section, we report two contributions on image quality enhancement and image quality assessment
developed by UNIFI. The former [5] allows to perform super-resolution and compression artefact removal
with real-time performance. The latter [6] addresses the issue of obtaining a reliable and general image
quality estimator, also for images enhanced via GANs.

3.1.1. Fast Video Visual Quality and Resolution Improvement using SR-UNet

Video streaming has become the major source of Internet traffic in the last years, over desktop and mobile
platforms, either for work or entertainment. Videoconferencing has become an important form of communi-
cation, especially after the emergence of the COVID-19 pandemic, and video on demand (VOD) streaming
services like Netflix, Amazon Prime Video and Disney+ provide an alternative to cable or satellite TV, of-
fering movies and shows along with broadcasters that offer their live programmes through streaming apps.
All of these applications require video compression algorithms like H.264, or the more recent H.265, to
optimize the available bandwidth and reduce transmission costs. However, these compression algorithms
are usually lossy and they introduce visual artifacts like blocking, mosquito noise, posterization, etc. that
may hinder the user experience.

In this work, we propose to use a novel neural network, called SR-UNet, to improve the visual quality
of the decoded video on the device of the end user in real-time, without requiring any change in the video
compression and delivery pipeline. This network is designed to improve the visual quality while reducing
the bandwidth required to stream a video; it does so by performing both super resolution, i.e. reconstructing
high resolution frames from a low resolution stream, and reducing video compression artifacts. Considering
the visual quality improved by these operations, in order to reduce bandwidth consumption, videos may be
streamed at lower resolution or with a higher compression factor.

The main contributions of this work are:

• a novel network that extends the UNet architecture by reducing its size and computational cost;

• a loss that combines signal-based and perceptual-based losses within a Generative Adversarial Net-
work (GAN) framework.

• Furthermore, we show how the proposed network can be tailored on specific video clips, to further
improve the performance of the base SR-UNet model.

This operating context is particularly relevant for VOD services. They commonly aim to reduce the
bandwidth required to transmit videos, for instance, by looking for the best encoding parameters of each
video. Extensive experiments on a standard video dataset encoded with H.265 show that the proposed
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network outperforms baselines and other state-of-the-art approaches; objective and subjective evaluations
show that the network is able to improve the visual appearance of videos at different compression rates.

Our test set is composed from clips downloaded from 14 non-compressed clips of the Derf’s Collection
[7], that is commonly used to evaluate video coding and streaming [8], super resolution [9], compression
artifact reduction [10] and visual quality improvement tasks [11]. The clips were compressed from 1080p
to 540p with the H.265 codec with CRF 23, preparing an analogue setting as the train set. The clips are:
Ducks take-off, Crowd run, Controlled burn, Aspen, Snow mountain, Touchdown pass, Station 2, Rush hour,
Blue sky, Riverbed, Old town cross, Rush field, Into tree and Sun flower.

In the first experiment, we compare our SR-UNet with a UNet baseline to assess the performance of
our proposed changes and, with a H.265+bicubic interpolation to assess the improvement of the methods.
We compare our method also with two other competing approaches. In particular, both the base UNet,
and a 6-layer ESPCN [12] network implement Rep-VGG residual layers calibrated for processing at the
same frame-rate; the last competing state-of-the-art approach is an 8-layer SR-ResNet [13], which is much
slower than the other architectures. All the models have been trained with the same methodology; frames
are rescaled from 540p to 1080p (Full-HD).

Table 2 reports the results in terms of Structural Similarity Index Measure (SSIM), Learned Perceptual
Image Patch Similarity (LPIPS) and Video Multi-Method Assessment Fusion (VMAF), reporting also the
frames per second processed by each method, as obtained on a NVIDIA GTX 1080Ti. We notice that our
architecture largely improves the perceptual metric (LPIPS) over H.265, thanks to the compression artifacts
reduction and to the increase of frequencies in the high-frequency spectrum, and the quality improvement
is also notable by the increase in VMAF. The SSIM metric, although being more perception-oriented than
PSNR (Peak Signal-to-Noise Ratio), is still based on the original signal, thus it is somehow predictable
how its score is reduced by the adversarial and perceptual-driven training, as reported also in [14]. SR-
UNet obtains a large speed-up over the SR-ResNet while maintaining the same quality. This is obtained
since our model optimizes residual layers, compresses the up-scaling layer, and removes non-useful batch-
normalizations, exploiting the particular U-Net architecture.

Table 2. Comparison between models performances. ↑ indicates that higher values are better, ↓ indicates that lower values are better.
Best results are highlighted in bold, second best are underlined.

Architecture SSIM ↑ LPIPS ↓ VMAF ↑ FPS ↑

SR-UNet (ours) 0.7190 0.2067 84.30 46.1
UNet 0.7273 0.2193 85.32 45.4
SR-ResNet-8 [13] 0.7278 0.2130 84.24 6.4
ESPCN-6 [12] 0.7159 0.2125 82.29 45.0
H.265 + bicubic 0.7209 0.2821 79.15 -

In the second experiment, we evaluate rate/distortion at different CRF values, comparing the results of
using our SR-Unet to scale from a 720p (HD) source to 1080p (Full-HD), with that of the source 720p reso-
lution and the target 1080p resolution. In this case, the source 720p is upscaled by SR-UNet to 1440p, then
bicubic sampling is used to downscale to 1080p; this approach is similar in spirit to that of supersampling
anti-aliasing (SSAA), used in computer graphics to improve the visual quality of renderings. To further
reduce the size and computational cost of the network, we reduce filters and layers by 1/4, resulting in a
network size of only 1.1MB. Fig. 1 reports the distortion in terms of VMAF, while Fig. 2 reports distortion
in terms of LPIPS. Table 3 reports a selection of visual quality metrics and bitrate for some CRF values.
Observing the curves in Fig. 1 and 2 shows that using SR-UNet results in a visual quality that is similar
to, or better than, that of the 1080p resolution but at a much lower bitrate (20%-33% less bandwidth for
the same quality). This is clearly visible in the table: the bitrate is the same of the 720p, since the network
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is applied as a filter before showing the frame to the user. There is no change in the video stream that is
transmitted, but visual quality in terms of VMAF and LPIPS is typically better. The table shows, again, that
SSIM score is penalized by the generative approach of our method.

Figure 1. Rate/VMAF-distortion curve the varying of the compression CRF. We observe that after CRF 23-24, the 720p and 1080p
curves merge. In this zone, the lower resolution of 720p is compensated from the lesser presence of compression artifacts, which
instead may be visible on the original resolution.

Table 3. Comparison of encoding methods performances. Each triplet compares (from top to bottom): the super-resolved video
metrics, a 1080p reference of similar quality and the low-quality video fed to the network. After enhancement, the video has similar
perceptual quality to the higher resolution one, while preserving the bitrate for the low resolution.

Method SSIM ↑ LPIPS ↓ VMAF ↑ Bitrate (kb/s) ↓

720p CRF 18 + SR-UNet 0.7611 0.1251 95.3133 11,846
1080p CRF 22 0.8181 0.1237 94.8185 14,225
720p CRF 18 0.7987 0.1835 92.8792 11,846
720p CRF 21 + SR-UNet 0.7711 0.1494 92.864 7,585
1080p CRF 24 0.8016 0.1440 92.824 10,105
720p CRF 21 0.7793 0.2024 89.964 7,585
720p CRF 23 + SR-UNet 0.7611 0.16790 90.9682 5,678
1080p CRF 26 0.7836 0.1634 90.2208 7,290
720p CRF 23 0.7639 0.2161 87.33 5,678
720p CRF 25 + SR-UNet 0.7402 0.1798 88.174 4,243
1080p CRF 28 0.7737 0.1834 86.920 5,306
720p CRF 25 0.7461 0.2312 84.065 4,243

3.1.2. Language Based Image Quality Assessment

In the last years, models able to generate novel images by implicit sampling from the data distribution have
been proposed [15]. While these models are extremely appealing, generating for example photo realistic
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Figure 2. Rate/LPIPS-distortion curve at the varying of the compression CRF. The LPIPS distance, is way more sensitive to the
higher frequencies sampled at higher resolution, however has a tendency to ignore some types of artifacts.

faces [16] or landscapes [17], they are hard to evaluate. Often anecdotal qualitative examples are presented
to the reader with little quantitative and objective evidence, and evaluation of generative models is still
undergoing a debate regarding how to perform it. The idea of using a computer vision classifier to evaluate
the veracity of generated images was first proposed in [18]. The authors propose the Inception Score
(IS), which is obtained by applying the Inception model [19] to every generated image in order to obtain
the conditional label distribution p(y|x). Realistic images should contain one or few well defined objects
therefore leading to a low entropy in the conditional label distribution p(y|x). An improved evaluation
metric, named Frechét Inception Distance (FID), has been proposed by [20]. The authors show that FID
is more consistent than Inception Score with increasing disturbances and human judgment. FID performs
better as an evaluation metric since it also exploits the statistics of the real images.

Recently [21, 22, 14] have specifically addressed methods to evaluate GANs. In [21] two methods have
been proposed that evaluate diversity and quality of generated images using classifiers trained and tested
on generated images. In [23] an IQA model is trained with generated images. In [22] a discussion of
24 quantitative and 5 qualitative measures for evaluating generative models is provided, including IS and
FID, image retrieval and classification performance. In [14] it is observed that many existing image quality
algorithms do not assess correctly GAN generated content, especially when considering textured regions;
this is due to the fact that although GANs generate very realistic images that may look like the original
one, they match them poorly when considering pixel-based metrics. The proposed metric, called SSQP
(Structural and Statistical Quality Predictor), is based on the “naturalness” of the image.

The main contributions of this work are the following:

• We propose an image quality assessment method based on language models, so called Language
Based Image Quality Assessment (LIQA). To the best of our knowledge, language has never been
used to evaluate the quality of images.
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• Our evaluation protocol shows consistency across different captioning algorithms [24, 25] and lan-
guage similarity metrics. Interestingly, improving the language generation model also improves the
correlation between our score and MOS (Mean Opinion Score).

• Experiments show that our approach does not suffer from drawbacks of common full-reference and
no-reference metrics when evaluating GAN enhanced images and keeps a high accordance with hu-
man scores for compressed images and for images restored via deep learning.

In Table 4 we report results using various captioning metrics. Interestingly all metrics show that captions
over reconstructed images (REC rows) are better with respect to caption computed over compressed images
(JPEG rows). This shows that image details that are compromised by the strong compression induce errors
in the captioning algorithm. On the other hand, the GAN approach is able to recover an image which is not
only pleasant to the human eye but recovers details which are also semantically relevant to an algorithm.

Table 4. Evaluation of image restoration over compression artifacts using GAN and captioning as a semantic task (best results
highlighted in bold). Captions created from reconstructed images obtain a better score for every metric.

QUALITY BLEU 1↑ METEOR↑ ROUGE↑ CIDEr↑ SPICE↑
JPEG 10 0.589 0.173 0.427 0.496 0.103
REC 10 0.730 0.253 0.527 1.032 0.189
JPEG 20 0.709 0.241 0.513 0.937 0.174
REC 20 0.751 0.266 0.543 1.105 0.201
JPEG 30 0.740 0.258 0.535 1.054 0.194
REC 30 0.757 0.269 0.549 1.133 0.205
JPEG 40 0.748 0.263 0.542 1.087 0.200
REC 40 0.758 0.270 0.549 1.132 0.206
JPEG 60 0.755 0.267 0.546 1.117 0.204
REC 60 0.760 0.270 0.550 1.137 0.207
ORIGINAL 0.766 0.274 0.556 1.166 0.211

In this work, we propose a new idea to evaluate image enhancement methods. Existing metrics based
on the comparison of the restored image with an undistorted version may give counter-intuitive results. On
the other hand, the use of naturalness based scores may in certain cases rank restored images higher than
original ones.

We have shown that instead of using signal based metrics, semantic computer vision tasks can be used to
evaluate results of image enhancement methods. Our claim is that a fine grained semantic computer vision
task can be a great proxy for human level image judgement.

We show that employing algorithms mapping input images to a finer output label space, such as cap-
tioning, leads to more discriminative metrics. Future work will regard the evaluation of captions provided
by humans over compressed and restored images. Moreover, we will take into account the accuracy of
captions as a further metric to optimize.

3.1.3. Relevant publications

• Vaccaro, F., Bertini, M., Uricchio, T., & Del Bimbo, A. (2021, October). Fast Video Visual Quality
and Resolution Improvement using SR-UNet. In Proceedings of the 29th ACM International Confer-
ence on Multimedia (pp. 1221-1229). [5].
Zenodo record: https://zenodo.org/record/5545598#.YgOC7b9Khrk.

• Leonardo Galteri, Lorenzo Seidenari, Pietro Bongini, Marco Bertini, and Alberto Del Bimbo. 2021.
Language Based Image Quality Assessment. In ACM Multimedia Asia (MMAsia ’21). Association
for Computing Machinery, New York, NY, USA, Article 25, 1–7. DOI: https://doi.org/10.1145/3469877.3490605[26].
Zenodo record: https://zenodo.org/record/6334282#.YiXnor_MJrk.
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3.1.4. Relevant software and/or external resources

The Pytorch implementation of our work “Fast Video Visual Quality and Resolution Improvement using
SR-UNet” can be found at https://github.com/fede-vaccaro/fast-sr-unet.

3.1.5. Relevant WP8 Use Cases

3C2-9 Management of contribution under bandwidth constraints. Fast SR-UNET can be deployed for real-
time image enhancement when bandwidth constraints limit video quality. 3B2-1 (Video super resolution).
Our SR-UNET can provide super resolution also for archives. Our LIQA approach can help in evaluating
the quality of restored content and to score existing content quality.

3.2. Generative Adversarial Networks for Generating Human Faces, Hands, Bod-
ies, and Natural Scenes

Contributing partners: UNITN

In this work, we focus on how to generate a target image given an input image. This has many appli-
cation scenarios such as human-computer interaction, entertainment, virtual reality, and data augmentation.
However, this task is challenging since it needs a high-level semantic understanding of the image map-
ping between the input and the output domains. Recently, Generative Adversarial Networks (GANs) [15]
have shown the potential to solve this challenging task. GANs have produced promising results in many
tasks such as image generation [27, 28], image inpainting [29, 30], video captioning [31], and cross-modal
retrieval/matching [32, 33].

Recent works have developed powerful image-to-image translation systems, e.g., Pix2pix [34],
Pix2pixHD [35], and GauGAN [36] in supervised settings, and CycleGAN [37] and DualGAN [38] in
unsupervised settings. However, these methods are tailored to merely two domains at a time and scaling
them to more domains requires a quadratic number of models to be trained. For instance, with m differ-
ent image domains, CycleGAN and Pix2pix need to train m(m−1)/2 and m(m−1) models, respectively.
To overcome this, Choi et al. propose StarGAN [39], in which a single generator/discriminator performs
image-to-image translation for multiple domains. However, StarGAN is not effective in handling some spe-
cific image-to-image translation tasks such as human pose generation [1, 2], hand gesture generation [40],
and cross-view image translation [41], in which image generation could involve infinite image domains
since human body, hand gestures, and natural scenes in the wild can have arbitrary poses, sizes, appear-
ances, locations, and viewpoints.

To address these limitations, many methods have been proposed to generate images based on an extra
semantic guidance, such as object keypoints [42, 43, 44, 1], human skeletons [2, 40], or segmentation maps
[41, 45, 46, 36, 47, 48]. For instance, Song et al. [44] propose a G2GAN framework for facial expression
synthesis based on facial landmarks. Siarohin et al. [2] introduce a PoseGAN model for pose-based human
image generation conditioned on human body skeletons. Regmi and Borji [41] propose both X-Fork and
X-Seq for cross-view image translation conditioned on segmentation maps. However, the current state-
of-the-art guided image-to-image translation methods such as PG2 [1], PoseGAN [2], X-Fork [41], and
X-Seq [41] have two main issues: 1) they directly transfer a source image and the target guidance to the
target domain (i.e., [Ix, Ly]

Gi→ I
′

y in Fig. 3), without considering the mutual translation between each other,
while the translation across different image and guidance modalities in an unified framework would bring
rich cross-modal information; 2) they simply employ the guidance data as input to guide the generation
process, without involving the generated guidance as supervisory signals to further improve the network
optimization. Both issues lead to unsatisfactory results.
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Figure 3. Overview of the proposed C2GAN, which consists of two types of generators, i.e., image generator Gi and guidance
generator Gg . Parameter-sharing strategies can be used in between the image or the guidance generators to reduce the model
capacity. During the training stage, two generators Gi and Gg are explicitly connected and trained by three cycles, i.e., the image

cycle I2I2I: [Ix, Ly ]
Gi→ [I

′
y , Lx]

Gi→ I
′
x and two guidance cycles G2I2G: [Ix, Ly ]

Gi→ I
′
y

Gg→ L
′
y , G2R2G: [I

′
y , Lx]

Gi→ I
′
x

Gg→ L
′
x.

The right side of the figure shows the cross-modal discriminators (i.e., Di and Dg) for a better network optimization.

Figure 4. The motivation of the guidance cycle. If the generated guidance L
′
y is close to the real guidance Ly , then the

corresponding images (i.e., I
′
y and Iy) should be similar.

To address these issues, we propose a novel and unified Cycle In Cycle Generative Adversarial Network
(C2GAN), in which three cycled sub-nets are explicitly formed to learn both image and guidance modalities
in a joint model. The framework of the proposed C2GAN is shown in Fig. 3. Specifically, to address the
first limitation, C2GAN contains an image cycle, i.e., I2I2I ([Ix, Ly]

Gi→ [I
′

y, Lx]
Gi→ I

′

x), which aims at
reconstructing the input and further refines the generated images I

′

y . To address the second limitation, the
guidance information (such as the human body skeleton) in C2GAN is not only utilized as input but also
acts as output, meaning that the guidance is also a generative objective. The input and output of the guidance

are connected by two novel guidance cycles, i.e., G2I2G ([Ix, Ly]
Gi→ I

′

y

Gg→ L
′

y) and G2R2G ([I
′

y, Lx]
Gi→

I
′

x

Gg→ L
′

x), where Gi and Gg denote an image and a guidance generator, respectively. In this way, guidance
cycles can provide weak supervision to the generated images I

′

y . The intuition behind the guidance cycles
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Figure 5. Qualitative comparison of person image generation on the Market-1501 dataset. From left to right: Input, Body Skeleton,
PG2 [1], PoseGAN [2], Pix2pixSC [3], CocosNet [4], C2GAN (Ours), and Ground Truth (GT).

is that if the generated guidance is very close to the real guidance, then the corresponding images should
be similar (see Fig. 4). In other words, a better guidance generation will boost the performance of image
generation, and conversely the improved image generation will further facilitate the guidance generation.
The proposed three cycles inherently constraint each other in an end-to-end training fashion. Moreover,
for a better optimization of the proposed three cycles, we further propose two novel cycle losses, i.e.,
Image Cycle-consistency loss (IC) and Guidance Cycle-consistency loss (GC). With both cycle losses, each
cycle can benefit from each other in a joint learning way. We also propose two cross-modal discriminators
corresponding to the generators.

Our contributions can be summarized as follows:

• We propose C2GAN, a novel and unified cross-modal generative adversarial network for guided
image-to-image translation tasks, which organizes the guidance and image data in an interactive man-
ner, instead of using as input only the guidance information.

• The proposed cycle in cycle network structure is a new design which explores the effective use of
cross-modal information for guided image-to-image translation tasks. The designed cycled subnet-
works connect different modalities and implicitly constrain each other, leading to extra supervision
signals for better image generation. We also investigate cross-modal discriminators and cycle losses
for a more robust network optimization.

We conducted extensive experiments on generating a large variety of content including persons, fa-
cial expressions, hand gestures, and natural scenes. For brevity, here we present only the person image
generation results and we refer the interested reader to [49].

For person image generation, we employed the Market-1501 dataset [50]. This dataset is a challenging
person-reID dataset containing 32,668 images of 1,501 persons collected from six surveillance cameras.
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Table 5. Quantitative comparison of person image generation on the Market-1501 dataset. For all the metrics, higher is better.

Model AMT (R2G) ↑ AMT (G2R) ↑ SSIM ↑ IS ↑ Mask-SSIM ↑ Mask-IS ↑

PG2 [1] 11.2 5.5 0.253 3.460 0.792 3.435
DPIG [53] - - 0.099 3.483 0.614 3.491

PoseGAN [2] 22.7 50.2 0.290 3.185 0.805 3.502
Pix2pixSC [3] 18.6 41.5 0.275 3.141 0.790 3.468
CocosNet [4] 20.1 45.7 0.280 3.275 0.801 3.514

C2GAN (Ours) 23.8 47.3 0.285 3.362 0.813 3.526
Real Data - - 1.000 3.860 1.000 3.360

We adopted the training and testing splits used in [2] and obtained 263,631 and 12,000 pairs for the train-
ing and testing subset. We followed [2, 1] and adopted Inception Score (IS) [51], Structural Similarity
(SSIM) [52], and their masked versions Mask-SSIM and Mask-IS as our evaluation metrics. Moreover, the
AMT perceptual user study has been adopted to evaluate the generated images by different models.

We compared C2GAN with PG2 [1], DPIG [53], PoseGAN [2], Pix2pixSC [3], and CocosNet [4]. Dif-
ferent from these models which focus on person image generation, our method is a general framework and
learns image and guidance generation simultaneously in a joint network. Quantitative results are shown in
Table 5. C2GAN achieves better results than PG2, DPIG, Pix2pixSC, and CocosNet. Moreover, compared
to PoseGAN [2], C2GAN yields better results on most metrics, i.e., AMT (R2G), IS, mask-SSIM, and
mask-IS. Qualitative comparison results compared with PG2 and PoseGAN are shown in Fig. 5. C2GAN
can generate more clear and visually plausible person images than both leading methods, validating the
effectiveness of C2GAN. Moreover, our generated images are more similar to the ground truth.

3.2.1. Relevant publications

Hao Tang and Nicu Sebe, “Total Generate: Cycle in Cycle Generative Adversarial Networks for Gen-
erating Human Faces, Hands, Bodies, and Natural Scenes”, IEEE Transactions on Multimedia, DOI:
10.1109/TMM.2021.3091847, 2022
https://ieeexplore.ieee.org/document/9464730 [49]

3.2.2. Relevant software and/or external resources

The Pytorch implementation of our work “Total Generate: Cycle in Cycle Generative Adversarial Networks
for Generating Human Faces, Hands, Bodies, and Natural Scenes” can be found at https://github.
com/Ha0Tang/C2GAN.

3.2.3. Relevant WP8 Use Cases

3C2-8 (Synthetic Video Generation from Single Semantic Label Map). C2GAN is a generic tool capable
of generating photo-realistic images from a wide variety of domains with convincing details.

3.3. Playable Video Generation
Contributing partners: UNITN

Humans at a very early age can identify key objects and how each object can interact with its environ-
ment. This ability is particularly notable when watching videos of sports or games. In tennis and football,
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(a) Playable Video Generation (b) Our results

Figure 6. We introduce the task of playable video generation in an unsupervised setting (left). Given a set of unlabeled video
sequences, a set of discrete actions are learned in order to condition video generation. At test time, using our method, named
CADDY, the user can control the generated video on-the-fly providing action labels.

for example, the skill is taken to the extreme. Spectators and sportscasters often argue which action or
movement the player should have performed in the field. We can understand and anticipate actions in
videos despite never being given an explicit list of plausible actions. We develop this skill in an unsuper-
vised manner as we see actions live and on the screen. We can further analyze the technique with which
an action is performed as well as the “amount” of action, i.e. how much to the left. Furthermore, we can
reason about what happens if the player took a different action and how this would change the video.

From this observation, we propose a new task, Playable Video Generation (PVG) illustrated in Fig 6a.
In PVG, the goal is to learn a set of distinct actions from real-world video clips in an unsupervised manner
(green block) in order to offer the user the possibility to interactively generate new videos (red block).
As shown in Fig 6b, at test time, the user provides a discrete action label at every time step and can see
live its impact on the generated video, similarly to video games. Introducing this novel problem paves the
way toward methods that can automatically simulate real-world environments and provide a gaming-like
experience.

PVG is related to the future frame prediction problem [54, 55, 56, 57, 58, 59] and in particular to meth-
ods that condition future frames on action labels [60, 61, 62]. Given one or few initial frames and the labels
of the performed actions, such systems aim at predicting what happens next in the video. For example, this
framework can be used to imitate a desired video game using a neural network with a remarkable gener-
ation quality [60, 62]. However, at training time, these methods require videos with their corresponding
frame-level action at every time step. Consequently, these methods are limited to video game environ-
ments [60, 62] or robotic data [61] and cannot be employed in real-world environments. As an alternative,
the annotation effort required to address real-world videos can be reduced using a single action label to
condition the whole video [63], but it limits interactivity since the user cannot control the generated video
on-the-fly. Conversely, in PVG, the user can control the generation process by providing an action at every
time-step after observing the last generated frame.

This research addresses these limitations introducing a novel framework for PVG named Clustering
for Action Decomposition and DiscoverY (CADDY). Our approach discovers a set of distinct actions after
watching multiple videos through a clustering procedure blended with the generation process that, at infer-
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ence time, outputs playable videos. We adopt an encoder-decoder architecture where a discrete bottleneck
layer is employed to obtain a discrete representation of the transitions between consecutive frames. A re-
construction loss is used as main driving loss, avoiding the need for neither action label supervision nor
even the precise number of actions. A major difficulty in PVG is that discrete action labels cannot capture
the stochasticity typical of real-world videos. To address this difficulty, we introduce an action network that
estimates the action label posterior distribution by decomposing actions in a discrete label and a continuous
component. While the discrete action label captures the main semantics of the performed action, the con-
tinuous component captures how the action is performed. At test time, the user provides only the discrete
actions to interact with the generation process.

Encoder DecoderTemporal model
Action

Act
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Figure 7. CADDY’s training procedure for unsupervised playable video generation. An encoder E extracts frame representations
from the input sequence. A temporal model estimates the successive states using a recurrent dynamics network R and an action
network A which predicts the action label corresponding to the current action performed in the input sequence. Finally, a decoder D
reconstructs the input frames. The model is trained using reconstruction as the main driving loss.

In our framework, a user can interactively control the video generation process by selecting an action
at every time step among a set of K discrete actions. Our method is trained on a dataset of unannotated
videos. We only assume that the video sequences depict a single agent acting in an environment. No action
labels are required.

Inspired by Reinforcement Learning (RL) literature [64], the object in the scene is modeled as an agent
interacting with its environment by performing an action at every time step. Differently from RL, our
goal is to jointly learn the action space, the state representation that describes the state of the agent and
its environment, and a decoder that reconstructs the observations (i.e., frames) from the state. CADDY
is articulated into four main modules illustrated in Fig. 7: (i) an encoder employs a network E to extract
frame representations; (ii) a temporal model estimates the label corresponding to the action performed in the
current frame and predicts a state st+1 that describes the environment at the next time step, after performing
the detected action. The action label is predicted via a network A that receives the frame representations
from the current and next frames. To predict the next frame environment state st+1, we employ a recurrent
neural network R that we refer to as Dynamics network. (iii) a decoder module employs a network D to
reconstruct each frame from the frame embedding predicted by the temporal model. (iv) the reconstructed
frames are fed to the encoder to assess the quality of the estimated action labels. The overall pipeline is
trained in an end-to-end fashion using as main driving loss a reconstruction loss on the output frames. The
key idea of our approach is that the action network A needs to predict consistent action labels in order to
correctly estimate the next frame embeddings st+1, and then, accurately reconstruct the input frames.

We evaluate our method on three video datasets: (1) BAIR robot pushing dataset [65]. We employ a
version of the dataset in 256x256 resolution, composed of about 44K videos of 30 frames. Ground-truth
robotic arm positions are available but are only used for evaluation purposes; (2) Atari Breakout dataset. We
collect a dataset using a Rainbow DQN agent [66] trained on the Atari Breakout video game environment.
We collect 1,407 sequences of about 32 frames with resolution 160x210 (358 for training, 546 sequences
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for validation and 503 for testing); (3) Tennis dataset. We collect Youtube videos corresponding to two
tennis matches from which we extract about 900 videos with resolution 256x96. To respect the single agent
assumption, we consider only the lower part of the field.

We propose to evaluate both action and video generation qualities by comparing the models on the video
reconstruction task. A test sequence is considered and the action network is used to extract the sequence
of learned discrete actions characterizing the input sequence. Starting from the initial frame, the extracted
actions are used to reconstruct the remaining of the sequence. The evaluation is completed with a user-study
that directly assesses the quality of the learned set of discrete actions. We adopt a large set of metrics.

Video quality metrics: (1) LPIPS [67]. We report the average LPIPS computed on corresponding
frames of input and reconstructed sequences; (2) FID [68]. We report the average FID between the original
and reconstructed frames; (3) FVD [69]. We compute the FVD between the original and reconstructed
videos.

Action space metrics. We also introduce two metrics that measure the quality of the action space.
Both metrics use additional knowledge (i.e., ground-truth information or an externally trained detector) to
measure motion consistency among frames where the same action is performed. Assuming two consecutive
frames, we measure the displacement ∆ of a reference point on the object of interest. On the Tennis
dataset, we employ FasterRCNN [70] to detect the player and use the bounding box center as the reference
point. On Atari Breakout, we employ a simple pixel matching search to detect the rectangular platform
and use its center as the reference point. Finally, on BAIR, we use the ground-truth location information
of the robotic arm. The key idea of the two action quality metrics is to assess whether the predicted action
labels and the displacement ∆ are consistent by trying to predict one from the other: (1) ∆ Mean Squared
Error (∆-MSE). This metric measures how ∆ can be regressed from the action label. For each action, we
estimate the average displacement ∆, which is the optimal estimator for ∆ (in terms of MSE). We report
the MSE to evaluate regression quality. To facilitate comparison among datasets, we normalize the MSE
by the variance of ∆ over the dataset; (2) ∆-based Action Accuracy (∆-Acc). This metric measures how
the predicted action can be predicted from the displacement ∆. To this aim, we train a linear classifier and
report the action-accuracy measured on the test set.

Action-conditioning metrics. Finally, we consider two metrics that measure how the action label
conditions the generated video. Therefore, it evaluates both generation quality and the learned action space:
(1) Average Detection Distance (ADD). Similarly to [71], we report the Euclidean distance between the
reference object keypoints in the original and reconstructed frames. We employ the same detector as for
the action-quality metrics to estimate the reference points. (2) Missing Detection Rate (MDR). We report
the percentage of detections that are successful in the input sequence, but not in the reconstructed one. This
represents the proportion of frames where the object of interest is missing.

Since we present the first method for unsupervised PVG, we compare the proposed model against a
selection of baselines, adapting existing methods to this new setting. We consider two criteria in the selec-
tion of the baselines: the architecture should be adaptable to the new setting without deep modifications,
and the source code must be available to include these modifications. Comparing existing video prediction
methods in terms of FVD shows that SAVP (Stochastic Adversarial Video Prediction) [55] is the best per-
forming method with the code publicly available. Only the methods described in [72, 73, 74] are marginally
outperforming SAVP but their code is not available.

Furthermore, SAVP [55] is widely used and features an architecture prone to be adapted to the current
setting. During training, SAVP learns an encoder E that encodes information relative to the transition be-
tween successive frames which is used by the generator in the synthesis of the next frame. After training the
SAVP model, we cluster the latent space learned by the encoder network on the training sequences using
K-means. This procedure produces a set of K centroids that we use as action labels. During evaluation,
we compute the latent representations for the input sequence and assign them the index of the nearest cen-
troid. As a second baseline, we choose MoCoGAN [58]. This method possesses favorable characteristics
for adaptation: it separates the content from the motion space and it employs an InfoGAN [75] loss to
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Figure 8. Reconstruction results on the BAIR (left) and Tennis (right) datasets. We zoom in for better visualization.

learn discrete video categories. We consider 6-frame short videos and assume a constant action over them.
We employ an action discriminator that predicts the action performed in the input video sequence. This
predicted action is used as an auxiliary input to the generator and the InfoGAN loss is used to learn the
action space. Finally, we also include SRVP [54] in our comparison. SRVP is modified similarly to SAVP
[55] to handle PVG. However, due to the poor empirical results and the high training costs, we consider
this baseline only on the BAIR dataset. Several other works have been considered, but not adopted [76, 77]
since they would require too important modifications to handle the PVG problem.

SAVP [55], MoCoGAN [58] and SRVP [54] are designed for video generation at resolutions lower than
our datasets. Therefore, we generate videos at the resolution of 64x80, 64x64 and 128x48 respectively for
the Atari Breakout, BAIR and Tennis datasets, and then upscale to full resolution for evaluation. In addition,
we create two other baselines, referred to as SAVP+ and MoCoGAN+, obtained by increasing the capacity
of the respective networks to generate videos at full resolution. Due to the high memory requirements of
SRVP [54], it was not feasible to produce a version operating at full resolution.

The evaluation results on the Tennis dataset are reported in Tab. 6. With the exception of FVD, where
the result is close to SAVP+, our method obtains the best performance in all the metrics. A ∆-MSE of
72.2% shows that actions with a consistent associated movement are learned. On the other hand, the ∆-
MSE scores of the other baselines show that the movements associated with each action do not present a
consistent meaning. Moreover, our method features the lowest ADD and a significantly lower MDR of
1.01%, which indicate that our method consistently generates players and moves them accurately on the
field.

In Fig. 8, we show examples of reconstructed sequences on the BAIR and Tennis datasets. Our method
achieves a precise placement of the object of interest with respect to the input sequence.

To complete our evaluation, we performed a user study on the Tennis dataset. We sample 23 random
frames that we use as initial frames. For each of them, we generate K continuations of the sequences, one
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Table 6. Comparison with baselines on the Tennis dataset. ∆-MSE, ∆-Acc and MDR in %, ADD in pixels.

LPIPS↓ FID↓ FVD↓∆-MSE↓∆-Acc↑ (ADD, MDR)↓

MoCoGAN [58] 0.266 132 3400 101 26.4 28.5, 20.2
MoCoGAN+ 0.166 56.8 1410 103 28.3 48.2, 27.0
SAVP [55] 0.245 156 3270 112 19.6 10.7, 19.7
SAVP+ 0.104 25.2 223 116 33.1 13.4, 19.2

CADDY (Ours) 0.102 13.7 239 72.2 45.5 8.85, 1.01

Table 7. User study results on the Tennis dataset.

Agreement Diversity Other votes

MoCoGAN [58] -3.15e-3 1.58 1.80%
MoCoGAN+ -2.84e-3 1.51 28.0%
SAVP [55] 0.0718 1.69 7.14%
SAVP+ -1.97e-3 1.80 5.40%

CADDY (Ours) 0.469 1.65 1.61%

for each action, each produced by repeatedly selecting the corresponding action. For each sequence, users
are asked to select the performed action among a predefined set (Left, Right, Forward, Backward, Hit the
ball or Stay). An additional option Other is provided in case the user cannot recognize any action. We
measure user agreement using the Fleiss’ kappa measure [78] that is commonly used to evaluate agreement
between categorical ratings [79]. In addition, to validate that all the actions can be generated (i.e., detecting
mode collapse), we compute the diversity of the action space, expressed as the entropy of the user-selected
actions. Results are shown in Tab. 7. While all methods capture actions with high diversity, our method
shows a higher agreement, indicating that users consistently associate the same action label to each learned
action. Looking at the details of the votes for our method, we observe that most disagreements are due to
cases where the player hits the ball while moving. In contrast, the other methods do not obtain high user
agreement, with actions assuming different meanings, depending on the particular frame used as context.

3.3.1. Relevant publications

W. Menapace, S. Lathuiliere, S. Tulyakov, A.Siarohin and E. Ricci, “Playable Video Generation”, IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2021
https://zenodo.org/record/5014666 [80]

3.3.2. Relevant software and/or external resources

The Pytorch implementation of our work ”Playable Video Generation” can be found at https://github.
com/willi-menapace/PlayableVideoGeneration.

3.3.3. Relevant WP8 Use Cases

3C2-8 (Synthetic Video Generation from Single Semantic Label Map). Our approach presents a solution to
the challenging task of unsupervised learning of playable video generation.

Initial report on Multimedia Production 29 of 76

https://zenodo.org/record/5014666
https://github.com/willi-menapace/PlayableVideoGeneration
https://github.com/willi-menapace/PlayableVideoGeneration


3.4. Procedural Terrain Generation
Contributing partners: AUTH

Synthetic terrain realism is critical in VR applications based on computer graphics (e.g., games, sim-
ulations). However, manually-created virtual terrains are still superior in quality compared to the ones
derived with automated means, at the cost of significant labour and time expenses. The complexity of the
real world (rocks, grass, trees, mountains) renders the creation of plausible, original terrain content still
a challenging task. This issue can be bypassed using Procedural Content Generation (PCG) methods for
(semi-)automatically creating new content on-the-fly, and thus replacing the artistic part of content gen-
eration with a choice of tweakable parameters and random elements. PCG algorithms can be used for
on-the-fly creating 2D terrain images that encode 3D characteristics (e.g., altitude); this terrain image can
then be transformed into a 3D terrain mesh at a final post-processing step.

Typical noise-based terrain generators (e.g., Worley [81], simplex [82], Perlin [82], value [83] or
diamond-square [84]) suffer with regard to memory/computational requirements and/or output quality.
More recent PCG approaches that have been applied for terrain generation, such as Software Agents [85],
Erosion Modeling [86] and Evolutionary Algorithms [87] also typically require significant manual post-
processing (e.g., applying an image overlay to achieve a realistic look) and/or extensive manual parameter
tuning. Thus, Deep Neural Networks (DNNs) such as Generative Adversarial Networks (GANs) [88] have
been alternatively explored for visual content generation. In [89] a GAN-based method is presented for
multi-scale terrain texturing with reduced tiling artifacts. It involves training a GAN to upsample and tex-
ture map a low-resolution terrain input. Thus, during the inference stage, low-resolution terrain images can
be translated on-the-fly to high-resolution ones; thus, the terrain is needed upfront as input to be up-scaled.
Other GAN-based methods [90] [91] create mountain-like 3D terrains, using information extracted from
training height map data. Acquiring height maps is not trivial, while the generated results need to be heav-
ily post-processed, since they are missing textures and realistic visual features (e.g., grass, rivers, forests,
etc.).

In comparison, AUTH developed a novel GAN-based method for procedural terrain generation with
significantly more relaxed input data requirements (very loose constraints are only imposed upon the in-
put data) and a higher diversity of terrain results. We call this proposed method GAN-terrain. Unlike
other GAN-based terrain generation methods, it does not require sophisticated input data types (e.g., height
maps). Thus, after training, it only incurs minimal manual supervision, since its required input simply
consists of easily constructed (in a matter of seconds), rough 2D scatter plots of desired Points-of-Interest
(PoIs) in image form; we call such a plot an “altitude image”. The output is a 2D textured terrain re-
sembling a satellite image, with colour encoding height and/or geomorphological properties (e.g., snow,
water-body, forest, etc.), so that it can then be trivially post-processed and converted into a semantically
annotated 3D terrain mesh. During training, the model learns to extract altitude/spatial information from
colour density/distances of input PoIs.

GANs can easily learn complex real-word semantic content, like mountains, sea, deserts, islands, or
flora, in a way that follows natural spatial alignment constraints (e.g., no jungles depicted in frozen Arctic
regions, no rivers flowing uphill, etc.). However, simply training a GAN on a large set of ground-truth ter-
rain images does not guarantee that the Generator will learn to produce complex content that obeys similar
restrictions. Therefore, we opted for an Image-to-Image Translation GAN, training it using geographic co-
ordinates and altitude information from a dataset of neighbouring landmarks, paired with the corresponding
satellite image of their region.

The main advantage of GAN-terrain lies in its novel input strategy that simplifies the actual use of the
deployed DNN model on the field: new inputs for the trained network, i.e., novel altitude images at the
inference stage, can be trivially created in a matter of seconds with any image processing software. In fact,
although the training/evaluation dataset for this paper was constructed using real geographic data, we have
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successfully tested the trained GAN-terrain model with arbitrary input images; the Generator still predicts
relatively realistic terrain images.

The only existing methods partly similar to GAN-terrain are [92] and [93]. However, the first one
also requires height maps for training, while both of them rely on unconditional GANs for 2D terrain
image/texture generation. In contrast, GAN-terrain does not require height maps and is built upon the
Image-to-Image Translation framework for increased robustness.

GAN-terrain. Conditional GANs for Image-to-Image Translation [94] are employed as the primary
tool for completing the procedural terrain generation task. The proposed GAN-terrain method consists in
training a conditional GAN for image synthesis so that it learns to map rough 2D Point-of-Interest (PoI)
scatter maps (so-called altitude images) into realistic satellite terrain images containing geomorphological
details. In the inference/deployment stage, after training has been completed, a similar altitude image can
be easily crafted at minimal labour and time expense (within seconds), in order to be fed to the trained
model as observed input image X. The corresponding model output Y will be a procedurally generated 2D
terrain image with rich, color-coded geomorphology that typically does not violate spatial intuitions.

To train the desired conditional GAN model under this framework, we initially collect a set of N earth
surface PoIs pi = [λi, ϕi, Ri]

T ∈ R3, i = 1, ..., N , composed of longitude λi, latitude ϕi and altitude
Ri components. The altitude is rescaled and quantized to integer interval [0, 253], assuming the height
of the mount Everest (8.848m) is the maximum possible value. These N vectors can be grouped into
geographic patches, i.e., rectangle-shaped earth regions defined from 4 PoIs. Subsequently, this set is
uniformly sampled to select a set of M geographic patches, so that most earth region terrain variations
are represented on the training dataset. Such a representation of all earth terrain variations is essential
for high-quality, diverse content generation. Finally, for each of the M geographic patches, we collect a
random number of PoIs falling geographically within it, as well as a satellite image of the patch. Patch
PoIs pji,i = 1, ...N are employed to construct a 2D altitude image (λj , ϕj), of patch j = 1, ...M where
the horizontal/vertical coordinate corresponds to PoI latitude/longitude(λji, ϕji), respectively, while the
luminance of each point encodes PoI normalized altitude Rji. Such altitude images are very sparse, since
typically we sample only few Earth surface points pji,j = 1, ...M per patch. All other altitude image pixels
have a value of 255 (white on grayscale) or (255,255,255) (white on RGB) and are excluded from altitude
evaluation. This 2D altitude image, converted into image form, is an observed input image Xj , j = 1, ...M .
The corresponding satellite image (depicting actual geomorphology of the patch region) is employed as
ground-truth output image Yj , j = 1, ...M . Thus, the training dataset is constructed by pairs {Xj , Yj},
j = 1, ...M .

Each 2D altitude image Xj can be constructed in two slightly different ways: a) a grayscale one-channel
image can be derived by encoding normalized altitude Rji per-PoI as a pixel luminance value. Alternatively,
a linear color palette can be used to convert normalized altitude Rji into RGB color values, in order to finally
obtain a three-channel colored image (e.g., one from blue to yellow, where the deepest blue/yellow denotes
sea level/highest mountain peak level, respectively). Both approaches were implemented and compared in
the context of this work.

As shown in Figure 9, the visual properties of the generated content are correlated with the color-coded
altitude of the input PoIs; in all other respects GAN-terrain has realistically filled-in the generated terrain
details fully autonomously. At model deployment-time, random input altitude images can be constructed
very rapidly on-the-fly in an automated manner, thanks to the very minimal amount of required information.
Even manually drawn, swiftly sketched arbitrary images can be utilized as inputs; a trained GAN-terrain
model will successfully interpret them as altitude images.

In general, output diversity is an important property of a successful PCG system. In the GAN-terrain
case, the purpose of the final trained GAN model during system deployment is not to precisely translate
the input altitude image into an actual satellite image, but to procedurally generate a new, realistic but
imaginary terrain, which may be only vaguely based on the given input. Thus, in order to enhance trained
model output diversity, we optionally perform random rotations and/or flipping of each Xj , j = 1, ...M
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Figure 9. Four examples of GAN-terrain input/ground-truth/prediction triplets, having NHI similarity scores: a) 0.8393, b) 0.8824, c)
0.9482, d) 0.7944.

to augment the training dataset, without changing the corresponding Yj , j = 1, ...M . Below, we refer
to GAN-terrain models trained with/without this optional augmentation strategy as “Augmented”/“Non-
augmented”, respectively.

This training set augmentation strategy allows the final GAN to synthesize terrain images of greater
apparent diversity, by forcing it to ignore input orientation during training. Thus, during deployment of
the trained model, small rotations to the input altitude image may produce arbitrarily large rotations to the
output, since output orientation is in fact arbitrarily “decided” by the model and not constrained by input
orientation. Thus, the Non-augmented model is forced more intensely to mimic ground-truth, while the
Augmented one typically provides a more diverse result.

Evaluation. Publicly available geographical data [95] were employed in order to construct the training
and testing sets for GAN-terrain. We initially collected N = 11.2 million world PoIs, which were utilized
to create M = 4, 300 geographic patches and attach their corresponding satellite images (of 512 × 512
pixels resolution) using the Microsoft Bing Maps API.

The employed GAN architecture was based on the Pix2Pix Network [94]. The network was trained
using 3,000 input/output patch pairs {Xj , Yj} and was evaluated using a test set of 1,300 input/output
patch pairs. Color and grayscale variants of the dataset were used for training separate GAN-terrain models.
Color 2D altitude images resulted in predicted network outputs with a higher level of detail than the ones
obtained using grayscale inputs, thus GAN-terrain evaluation proceeded with the color variant only. The
results were impressive, as GAN-terrain successfully created highly realistic complex terrain images from
very simplistic inputs.

A simple objective evaluation approach was selected, exploiting the fact that pixel color in the output
image encodes semantic information. Thus, we measured the Normalized Histogram Intersection similar-
ity (NHI) [96] between the 64-bin joint HSV color histograms [97] of each GAN-terrain prediction and
its corresponding ground-truth image from the test set. Minimum/maximum NHI similarity values are
0.0/1.0, respectively. High NHI similarity between the ground-truth and predicted image histograms can
be interpreted as high semantic concordance among them, with regard to the distribution of visible geomor-
phological details (water bodies, forest, snow, mountains, etc.).

Quantitative results indicate that the mean NHI similarity between 1,300 ground-truth and predicted
images is indeed relatively high (0.7665). This implies that, when the trained GAN model is given a
previously unseen 2D altitude image, it synthesizes a highly similar terrain image in terms of semantic
concordance. Although NHI similarity does not capture differences between the two terrain images in
terms of the the exact landmass/coastline shape/orientation, this is rather irrelevant to the terrain image
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Table 8. Evaluation results of the Non-augmented GAN-terrain model. Correspondence and plausibility are scored using a scale in
[1, 5], while NHI similarity is a percentage. In all cases higher is better.

Type
Mean NHI
Similarity

Mean
Correspondence

Mean
Plausibility

Predicted
Image

0.7665 4.6633 4.4682

Ground
Truth

N/A 4.6138 4.5955

Table 9. Predicted images diversity comparison between the Non-augmented and Augmented model, using GIST descriptors and total
variance.

Measure
Non-
augmented

Augmented

Trace of GIST cov. matrix 0.18995 0.23454
Mean of the main diagonal
of GIST cov. matrix

0.000207 0.000244

Variance of the main diagonal
of GIST cov. matrix

3.33e-8 3.55e-8

Mean of NHI similarities
of joint HSV histograms
between ground-truth and
predictions

0.7665 0.74172

generation task, since our goal is not to replicate the ground-truth terrain. Examples of altitude image,
ground-truth terrain image and predicted output image triplets are presented in Figure 9. NHI similarity for
each triplet is included for visual inspection purposes.

Additionally, we performed a subjective evaluation of generated terrain images, using 40 terrain images
from our test set and 10 observers. The goal of the subjective evaluation was to let observers deduce in a
systematic manner: a) whether the predicted terrain images resemble a real satellite terrain image (“plau-
sibility”), and b) the spatial correspondence between the input 2D altitude image PoIs and the predicted
terrain image (“correspondence”). We employed 20 predicted generated terrain images shuffled with 20
ground-truth terrain images for control purposes, totalling 40 terrain images. The participating subjects did
not know whether each terrain image they saw was a ground-truth or a predicted one. For each image,
they recorded two integer score values in the range [1, 5] for plausibility and correspondence evaluation,
respectively.

Subjective evaluation results, shown in Table 8, indicate that ground-truth and predicted images are
nearly indistinguishable by human subjects: mean correspondence for predicted/ground-truth images was
4.6633/4.6138, respectively, while mean plausibility for predicted/ground-truth images was 4.4682/4.5955,
respectively. In fact, artificial GAN-terrain images performed even better than the real ones.

Subjective evaluation was necessarily performed with a GAN model trained using the non-augmented
training dataset variant of the proposed method, due to the nature of the employed “correspondence” qual-
itative metric. Disabling the proposed training data augmentation strategy imposes shape/orientation con-
straints to be learned by GAN-terrain. Thus, absence of training dataset augmentation may reduce the
diversity of GAN-terrain outputs during deployment. To quantify this possibility, we trained a second GAN-
terrain model using training data augmentation and then compared the predictions of the two GAN-terrain
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models on the test set. Evaluation consisted in calculating a GIST global image description vector [98]
for each predicted terrain image in the test set, once for the Non-augmented and once for the Augmented
model, and subsequently computing the mean global dispersion of these descriptors. This can be measured
by averaging over the total variance (i.e., trace of the covariance matrix) of the 1,300 960-dimensional GIST
vectors fi,i = 1, ..., 1300, separately for the two models.

The results, shown in Table 9, indicate that the mean global dispersion/total variance of test set pre-
dictions is significantly greater on the Augmented model variant, where our input augmentation strategy
was enabled during training: it is 0.23454/0.18995 for the Augmented/Non-Augmented variant, respec-
tively. To grasp a sense of the significance of this difference in total variance magnitude, we report that the
mean/variance of the main diagonal of GIST covariance matrix in the Augmented variant is 0.000244/3.55e-
8, respectively. On the other hand, mean NHI similarity of joint HSV histograms between ground-truth and
predictions is slightly higher for the Non-augmented GAN-terrain model: it is 0.7665, versus 0.74172 for
the Augmented case. This indicates a slight trade-off between semantic concordance and output diversity.

3.4.1. Relevant publications

• G. Voulgaris, I. Mademlis and I.Pitas, ”Procedural Terrain Generation Using Generative Adversarial
Networks”, Proceedings of the EURASIP European Conference on Signal Processing (EUSIPCO),
2021. [99].
Zenodo record: https://zenodo.org/record/5718545#.Yg0PRpaxVEY.

3.4.2. Relevant WP8 Use Cases

3C2 Just-in-time content creation adaptation. GAN-terrain can be employed for fast generation of synthetic
terrain images with realistic appearance.

3.5. Automated Cinematography
Contributing partners: AUTH, RAI

The rapid popularization of commercial, battery-powered, camera-equipped Unmanned Aerial Vehicles
(UAVs, or “drones”) during the past decade has deeply affected media production. UAVs have proven
to be an affordable, flexible means for swiftly acquiring impressive aerial footage in diverse scenarios.
They are suitable for movie/TV filming, outdoor event coverage for live or delayed broadcast, advertising
or newsgathering, partially replacing dollies and helicopters. They offer fast and adaptive shot setup, the
ability to hover above a point of interest, access to narrow spaces, as well as the possibility for novel aerial
shot types not easily achievable otherwise, at a minimal cost [100].

Given the taxonomy in [100], UAV shots consist in valid combinations of Camera Motion Types (CMTs)
and Framing Shot Types (FSTs). The most interesting among them involve a still or moving target/subject.
Professional UAV filming requires specialised personnel for flight and filming control, i.e., separate drone
and camera operators. That renders the possibility of fully autonomous drones highly attractive, since it
would reduce the need for human operators and the time overhead that comes with executing demanding
CMTs, such as “Orbit”. The ultimate goal would be a fully autonomous agent that can smoothly control the
UAV on-the-fly in order to execute the desired CMT, while taking into consideration basic navigation and
cinematography requirements.

3.5.1. Autonomous execution of Camera Motion Types using MPC distillation

A class of very popular methods for achieving autonomy in complex unknown and stochastic environments
is Deep Reinforcement Learning (DRL), which relies on Deep Neural Networks (DNNs). Classical control
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algorithms such as Model Predictive Control (MPC) become highly complex in large scale problems and
require sensor information that in most cases is not available, or is very expensive to acquire. DRL agents on
the other hand can learn to navigate in stochastic environments with limited sensor information [101][102].

In the context of T5.2, AUTH tried to leverage the benefits of both worlds, with as little overhead
as possible: after the proposed novel DRL-based agent has been trained, it constantly and autonomously
adjusts the UAV’s trajectory so that a desired CMT is executed, without relying on detailed 3D maps or on
knowledge of the 3D position of the target being filmed. It only requires RGB video input from the UAV-
mounted camera. However, during training, it exploits knowledge conveyed by a suitable MPC controller,
which requires 3D target position information in order to function. The training process is complemented by
collision and occlusion avoidance objectives. In the end, the proposed MPC-distilled DRL agent exhibits
superior performance in comparison to the baseline one, while simultaneously requiring minimal sensor
input in comparison to the MPC controller during the test stage.

Unlike DRL for generic robotic and UAV control, DRL specifically for UAV cinematography tasks has
not been explored in depth. A few relevant algorithms have been presented for frontal view person shooting
[103], for object tracking using multiple drones, or for combining trajectory optimisation and DRL in order
to automate artistic choices [104]. In contrast, the purpose of the proposed method is to present a novel,
purely visual-based, small-sized and quickly trainable DRL agent for UAV path planning in the context of
CMT execution. There is no need to rely on complex and time consuming trajectory optimisation, pose
estimation, 3D map reconstruction or state estimation methods. Just one compact Convolutional Neural
Network (CNN) takes a current RGB image as input and returns the optimal control signal for the UAV, at
each time step.

Technical Background. Key ideas used in the proposed method are reviewed below. The formulation
consists of a semi-expert MPC controller, able to autonomously orbit around a target and avoid obstacles,
and a CNN-based actor trained by DDPG with policy distillation.

1. Model Predictive Control. MPC is a discrete time control technique that provides a solution to the
finite horizon, constrained optimal control problem:

min
u(·)

Φ(x(tf )) +
∫ tf

0

l(x,u, t) dt

subject to x′ = f(x,u, t), x(0) = x0,

g(x,u, t) = 0,

h(x,u, t) ≥ 0,

(1)

where tf is the time horizon, x0 a given initial state, Φ(·) the final cost and l(·) the intermediate cost
function. f(·), g(·) and h(·) are time-dependent vector fields defining the system dynamics, the equality
constraints, and the inequality constraints, respectively [105]. The problem’s associated optimal value
function V (cost-to-go) is defined as:

V (t, x) = min
u

Φ(x(tf )) +
∫ tf

0

l(x,u, t) dt. (2)

MPC aims to solve the finite horizon, constrained optimal control problem, with explicit knowledge
of the system’s state and dynamics being required. In the examined task, partial dynamics knowledge is
available since only the drone kinematics are known a priori; not the environment dynamics. Additionally,
the only information available to the controller are the low-frequency RGB video frame it receives at the
sampling rate of the action. That makes the choice of sampling rate vital, since high sampling frequencies
result in more accurate control policies, but require faster inference times, which is not always feasible on
embedded/on-drone computational hardware. Thus, a sampling period of T = 0.4 seconds was chosen.

2. Partially Observable Markov Decision Processes. Partially Observable Markov Decision Pro-
cesses (POMDPs) are extensions to Markov Decision Processes (MDPs) with partially observable states,
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allowing for decision making under uncertain conditions. A MDP is composed of a state space S, an initial
state space S0 having an initial state distribution p(s0), an action space A, a state transition probability
distribution p(st+1|st, at) satisfying the Markov property, and a reward function r(st, at) : S x A → R
characterizing the environment’s feedback when action at is executed at state st. The state space and the
action space of a MDP could be either discrete or continuous. Since UAV control signals are continuous,
MDPs and POMDPs with continuous state and action spaces are described below.

MDPs are generally addressed via Reinforcement Learning (RL), i.e., by training a model which learns
an optimal policy π through repeated trial-and-error sessions. The policy could be either deterministic
or stochastic, where a deterministic policy, denoted as µ(s) : S → A, projects states to actions, and a
stochastic policy, denoted as a π(·|s) : S → P (A), where P (A) is the set of probability measures on
A, returns the probability density of available state and action pairs (s, a). If the action space is continuous,
the stochastic (or deterministic) policy is parameterized as a function a π(·|s, θ) (or a = µ(s, θ)), where
θ refers to the parameters of the function. To keep the notation simple, policy π (or µ) is assumed to be a
function of θ and all the gradients are assumed to be with respect to θ.

RL methods estimate value functions of states and action-value functions of state-action pairs. For
stochastic policies, the value function is defined as:

Vπ(st) = E

[ ∞∑
t=0

γtr(st+1, at+1)|st

]
, (3)

where γ is a real discount factor ranging from 0 to 1. The action-value function is:

Qπ(st, at) = E

[ ∞∑
t=0

γtr(st+1, at+1)|st, at

]
. (4)

A stochastic policy is optimal if an agent receives the maximum expected future discounted reward
(which is also referred to as target function) by executing it:

J(π) = E

[ ∞∑
t=0

γtr(st, at)

]
. (5)

For a deterministic policy, the value functions, action-value functions and target function can be obtained
by replacing at = π(·|st) with at = µ(st) in (3), (4), (5).

A MDP becomes a POMDP when an agent cannot observe state st, but instead receives an observa-
tion ot, having a distribution p(ot|st). The observation sequence no longer satisfies the Markov property:
p(ot+1|at, ot, at−1, ot−1, · · ·, o0) ̸= p(ot+1|ot, at). As a consequence, an agent needs access to the entire
history trajectory ht = (ot, at−1, ot−1, · · ·, o0) to infer the current state st and make decisions based on it.

The goal of RL in partially observable settings is thus to learn an optimal policy at π(·|ht) that projects
history trajectories to action distributions by maximizing (5).

3. Deep Reinforcement Learning and DDPG. DDPG is a model-free DRL algorithm for continuous
action control. It is a significant improvement in comparison to Deterministic Policy Gradient due to three
novelties: the utilisation of Deep Neural Networks (DNNs) for the functional approximation of the actor
and the critic, the use of target networks and the use of experience replay [106].

The main idea of actor-critic methods is to model the actor with a DNN and find the synaptic weights
that encode the optimal policy π∗. This is achieved by updating its weights in the direction of the gradients
of the expected future reward (5), using error back-propagation and a form of gradient descent. Because
that gradient needs an unbiased estimator of the Q function (4) in order to guide the weights of the actor
towards the optimal policy, the critic network is first updated towards the direction of the gradient of the
temporal difference at each training iteration.
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Target networks are networks of identical structure as the actor and critic, but their weights are updated
in such a way to slowly follow the weights of the actual actor and critic. This way, stability in the learning
process of the actor and the critic is improved. The concepts of target networks and the experience replay
have been introduced in Deep Q-Learning [107] and have become common in DRL algorithms.

Actor-critic methods can either be on-policy or off-policy, meaning that the action taken at every step for
exploring the environment is sampled from the actor network or from another policy, respectively. DDPG
is off-policy, in the sense that the action used at every step is the sum of the actor policy at the current state
of the environment plus an appropriate exploratory noise. In this paper, the Ornstein-Uhlenbeck process is
used as the additive exploration noise.

4. Policy Distillation. Policy distillation is the transfer of knowledge from a teacher actor T to a student
actor S. This is traditionally achieved by generating a dataset DT = {si, qi}N0 [108] using the teacher and,
subsequently, exploiting it as ground-truth to train the student Q-network through regression.

One core novelty of the proposed method is to exploit a suitable MPC controller as teacher under a
policy distillation framework, in order to augment the training process of a neural DRL agent. Thus, policy
distillation is modified in this paper in order to account for the semi-expert nature of the employed teacher.
The aim is to transfer knowledge to the student, while the latter becomes more robust and learns according
to rewards that cannot be incorporated in the MPC setting. The processes of knowledge transfer and DRL
training have to be simultaneous, leading to on-line policy distillation.

Proposed Method. The proposed method consists of a properly adapted form of a DDPG agent, trained
using a novel, task-specific reward function for autonomous UAV cinematography, and the novel on-line
policy distillation term from a MPC teacher. Autonomous execution of the “Orbit” CMT has been selected
below as the desired cinematography task, due to its challenging nature (it is difficult to execute manually)
and its high aesthetic appeal. However, the proposed method may alternatively be employed for executing
any UAV cinematography CMT, provided that a proper MPC controller can be designed.

1. MPC for Executing Orbit CMTs. Holding the assumption that the UAV is velocity-controlled
based only on its kinematics, the motion equations are:

ẋ = ax

ẏ = ay

ż = az,

(6)

where ai is the velocity set-point along direction i and the vector a = [ax, ay, az]
T represents the action.

We define q ∈ R3 as the actual position of the UAV in the environment and qd ∈ R3 as the orbital position
where, ideally, the UAV should currently be in if executing a proper “Orbit” CMT.

The MPC controller’s task is to track the orbital trajectory in 3D space, which is computed according to
the “Orbit” equation in [100]. This computation requires the 3D position of both the drone and the filmed
target/subject to be known. Furthermore, obstacle avoidance is implemented by surrounding all obstacles
by spheres and then using the distance of the UAV from the sphere as a constraint. Obviously, this also
requires the 3D positions in space of all obstacles to be known. The inequality constraints that arise are the
following ones:

di = ||q − ci||2 − r2i , for i = 1, 2, ..,M, (7)

where M is the number of spheres and ci/ri are the center/radius of the i-th sphere, respectively. Thus, the
M + 1 constraints are:

di ≥ 0, for i = 1, 2, ...,M

z > 0.
(8)

Function l(·) is constructed as the sum of the distance between the UAV and the ideal orbital position at
that time instant, the square of the action vector and a term for creating smooth action signals:

lt = ||qt − qdt
||2 + ||at||2 + aTt−1at. (9)
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(a) (b) (c)

(d)

Figure 10. Top-down view of the x− y plane trajectories outputted by the proposed MPC-distilled DDPG agent ((a) and (c)) and the
semi-expert MPC controller ((b) and (d)). In (a),(b) and (c),(d) the starting UAV position is [0, 0] and [0, 20], respectively.

2. MPC-distilled DDPG. After the task-specific MPC controller has been designed, the proposed
purely-vision based DRL agent can be trained using on-line policy distillation.

The main idea is to leverage the useful properties MPC carries in a DRL framework. Since the task
of autonomous “Orbit” execution from visual input only is highly complex, solving it with a baseline,
pure DRL method would result in a prohibitively high required training time and in a DNN size too large
for embedded computers. Moreover, accurate reward shaping is crucial, but rather difficult in large-scale
problems such as this one, since any defects in its design would likely lead to even higher training times,
instabilities and sub-optimal solutions.

All these issues are significantly ameliorated by introducing a loss term that penalizes distance between
the student’s action and the MPC-teacher’s action, at each step of the training process. This serves as a
way to exploit the known UAV kinematics model while training the DRL agent, in order to improve its
performance. The proposed distillation loss term is incorporated into the gradient of the cost J [106], in
order to guide the policy being learnt near to the MPC controller’s policy. Notably, the MPC controller is
not a perfect expert (as is typically the case in imitation learning) but simply an automated algorithm with
access to additional information (i.e., the target’s 3D position at each time step). The gradient that is used
to update the weights of the actor DNN is:

∇θµJ = Est ρβ

[
∇θµQ(s, µ(s)|θQ)|s=st∇θµµ(s|θµ)|s=st

+ ∇θµ l(µ(s|θµ), aMPC(s))|s=st

(10)

In the problem tackled, the state st ∈ R84x84x3 is the RGB image that the drone camera captures in
time t, at ∈ R3 the action vector as defined in (6) and aMPC ∈ R3 the corresponding MPC action given
UAV position qt.

4. Reward shaping for the DDPG agent. In order to train a suitable DDPG agent, 4 individual rewards
were linearly combined to form the final complete reward function. These rewards are presented below.
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First, the UAV must learn how to orbit the target. To achieve this, the next orbital trajectory waypoint
qd is computed based on the “Orbit” equations from [100] and the following error is defined:

ed = ||q− qd||2. (11)

Next, an error threshold is defined, above which the orbital reward becomes zero [103]. Eventually, the
reward for the orbital trajectory is:

rd =

{
0 , if e ≥ eth,

1− ed
eth

, else
(12)

Additionally, a reward that punishes low or high altitudes is defined. This is motivated by the fact that the
footage needs to be captured from an altitude not much greater than that of the filmed target, thus avoiding
too large a gimbal pitch angle which would corrupt the CMT. Two options are viable to achieve this: a)
explicitly reward small pitch angles, or b) specify a band of altitudes within which the reward is zero, but
outside of it, it is -0.5. Option b) was chosen for this paper:

rz =

{
−0.5 , if z ≥ zmax or z ≤ zmin,

0 , else
(13)

Moreover, obstacle avoidance is an essential factor for robotic navigation within complex environments.
Although obstacle avoidance is implemented by the MPC controller and the student DDPG actor will distill
that knowledge, an optional obstacle avoidance reward term was still defined for DRL training. This is
significantly more accurate than the bounding sphere approximations internally computed by the MPC
controller. An on-board LiDAR is used to sense obstacles located within a range of up to dmax meters from
the UAV, along a FoV of 360o around it. Then, the minimum value dlidarmin

of the LiDAR output is used
to form the reward:

robs = −e−α
dlidarmin

dmax . (14)

Table 10. Accumulated rewards for the test cases shown in Fig. 10, using the fully trained agents. Evidently, the MPC-distilled
DDPG agent is able to reap higher/lower rewards when the target is visible/invisible at the very first steps, respectively. The baseline
DDPG agent completely fails to achieve the task and crashes.

Accumulated rewards for the cases of Fig. 10
Algorithm Initial Position

[0, 0]
Initial Position
[0, 20]

MPC 0.72595 0.69523
MPC-distilled
DDPG

0.74524 0.50416

Baseline DDPG 0.10650 0.39576

Lastly, a visual occlusion avoidance reward term is defined, since the UAV is expected to capture clear
images of the target being filmed while executing the “Orbit” CMT. This reward term was borrowed from
[104], where a semantic segmentation map is used during training to find the on-frame surface of the
bounding box surrounding the filmed target. The UAV is set to various positions inside the environment,
where the target/subject is not occluded from the camera’s FoV. Then, the various measured distances
between the UAV and the bounding box of the target/subject are used as data pairs for curve fitting a
polynomial p(d). The actual reward term is:

rocc = e−β(Sactual−Smeasured)
2

, (15)
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Figure 11. Average reward for the MPC-distilled DDPG and the baseline DDPG, with both of them trained using the proposed
reward function. Evidently, the proposed distillation loss term significantly speeds up learning. The corresponding MPC controller’s
reward is shown in green, for comparison purposes.

where Sactual/Smeasured is the estimated actual/measured bounding box surface, respectively.
All the individual reward terms described above are combined into the final reward function:

r = σdrd + σzrz + σobsrobs + σoccrocc, (16)

where σi are the reward coefficients.
Evaluation. The method was evaluated by training an MPC-Distilled DDPG agent in a virtual environ-

ment from the AirSim simulator [109]. The environment consists of obstacles in the form of grey boxes
and a still target around which an “Orbit” CMT must be performed. The target is orange in color, so that it
is clearly distinguishable in the RGB images the UAV gets. The environment is visible in Fig. 10.

The employed hyperparameter values were the following ones: the action sampling time was set to
0.4 seconds, the MPC horizon to 10 time steps, the reward coefficients to σd = 1 , σz = 1 , σobs =
0.7 , σocc = 0.6 and the learning rates for the actor and the critic subnetwork to 0.0001 and 0.0002,
respectively. Identical CNNs were used for the actor and critic subnetworks.

The average rewards for MPC-Distilled DDPG and the baseline DDPG, along with comparisons against
the MPC controller, are presented in Fig. 11. Evidently, while the baseline DDPG is unable to learn in
1,000 episodes a good policy, MPC distillation allows the proposed augmented DDPG agent to rapidly
learn the desired task in just 200 episodes. This is extremely fast for such a difficult task in such a complex
environment. On the other hand, unlike the MPC controller, the MPC-Distilled DDPG can operate after
training without access to the target’s 3D position at each time step.

Fig. 10 depicts a top-down view of the trajectories that the MPC-distilled DDPG agent and the MPC
agent have followed. In Fig. 10a,b the agent’s starting position is [0, 0] while in Fig. 10c,d it is [0, 20].
Evidently, the two trajectories look similar when there is no occlusion, or when the distance from the
obstacles is large enough, but with the proposed MPC-distilled DDPG agent’s trajectory being a lot less
smooth once the UAV reaches the target’s vicinity. However, the proposed agent chose to follow from the
start a trajectory that provides the minimum occlusion, while the MPC controller does not account at all for
visual occlusions.

The above observations illustrate the key idea of the proposed method: it leverages semi-expert MPC
knowledge to reduce DNN size/complexity and significantly lower required training time, while allowing
the agent to learn to behave according to the rewards designed for the DDPG algorithm. Thus, the proposed
agent is able to choose trajectories satisfying requirements that the semi-expert policy does not account for
(i.e., visual occlusion avoidance, improved obstacle avoidance). Although the final behaviour of the trained
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MPC-distilled DDPG agent is not as smooth as that of the MPC controller, the proposed agent has the
advantage of not requiring knowledge of the target’s 3D position at each time step.

Moreover, additional reward terms could be added in the future to its training process in order to
smoothen the produced UAV trajectories. This could be combined with tasking the proposed agent to also
control the camera gimbal based only on visual information. Finally, the method is going to be evaluated
with moving filmed targets as well.

This is still on-going research, expected to finish within 2022. A relevant technical report is under
preparation, with the intention to have it submitted as a journal article.

3.5.2. Autonomous execution of Camera Motion Types with differential control outputs

In the context of T5.2, AUTH also experimented with a different DRL-based formulation of the autonomous
CMT execution task. In this formulation, the actions of the DRL agent are not absolute velocity vectors
but differential commands to the autopilot hardware, forcing the UAV to slightly adjust its current velocity
vector in a relative manner (turn to the left/right, turn up/down, accelerate/decelerate). Thus, ideally, not
only the filmed target’s 3D position will not be required to be known during test, but neither the UAV’s.

In order to differentiate this method as much as possible from the one presented in Subsection 3.5.1,
several research parameters were changed in this work:

• A different virtual training environment in AirSim was employed, with significantly more realistic
appearance, much larger scale and a moving filmed target (a car).

• MPC distillation was not exploited at all.

• The improved TD3 DRL algorithm [110] was employed, instead of the less efficient DDPG.

• Instead of simple CNNs, the agent’ DNNs were composed of CNN+LSTM architectures, equipping
them with long-term memory in lieu of the reactive agents of subsection 3.5.1. This is expected to
make them much more robust in conditions of partial environment observability.

• Collision avoidance and visual occlusion avoidance rewards were not included here, in order to purely
focus on the autonomous CMT execution task.

Twin Delayed Deep Deterministic Policy Gradient (TD3) [110] is a recent development, building upon
DDPG. Instead of using a single critic network to get the predicted Q-value in state sn+1 for bootstrap-
ping the Q-value of the current state sn and action an, it uses two separate networks, Qα1

and Qα2 and
chooses the minimum output value. In this way, the overestimation problem in Actor-Critic methods [111]
is addressed. Additionally, to decouple value and policy, the ”target” policy network that is used for boot-
strapping is updated periodically, after m regular networks’ updates.

States. Since it is desired that the UAV is self controlled using information about its environment that
it can obtain without cost-ineffective and heavy sensors or data sent to it by a third party sensor (would
induce additional latency), RGB images In ∈ RN1×N2 , N1, N2 ∈ N captured by a standard RGB camera
mounted on the vehicle are used as the main state description. In order to aid the gimbal control, additional
information about the gimbal orientation is included, more specifically the relative angle ω between the 3D
UAV velocity vector un = [un1, un2, un3]

T (WCS) and the 3D camera axis cn:

cos (ω) = uT
ncn/ |un| . (17)

A visual representation of ω can be seen in Figure 12.In conclusion, at time instance n, the observation on
about the real state sn will be the set on = {In, ω}.

Actions. Smooth, visually pleasing cinematographic camera motion can only be achieved via precise
drone and camera gimbal motion control. Although most related works [112, 113, 104, 114] use a small set
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Figure 12. Visual representation of ω, the relative angle between the 3D UAV velocity vector and the 3D camera axis.

of discrete high level action commands to the UAV flight controller in order to translate them to low level
motor commands, it can be easily deduced that having such limited options for movement would not be
ideal for cinematographic motion. Thus, a continuous action space is selected, which is described by four
continuous variables:

• Instant UAV pitch and yaw rotation angle changes ∆θD,n and ∆ϕD,n,

• instant camera pitch and yaw rotation angle changes ∆θC,n and ∆ϕC,n, and

• linear UAV acceleration/deceleration along UAV velocity vector direction ∆un.

Using certain values for these variables, the UAV can be successfully moved to any position X′
n+1 and,

similarly, the camera axis can be rotated to point to any direction, becoming c′n+1.
Given a certain action an = (∆θD,n,∆ϕD,n,∆θC,n,∆ϕC,n,∆un) the UAV velocity changes from u′

n

to u′
n+1:

u′
n+1 = Ry(∆θD,n)Rz(∆ϕD,n)

u′
n

un
(un +∆un), (18)

where:

Ry (θ) =

 cos (θ) 0 sin(θ)

0 1 0

− sin (θ) 0 cos(θ)

 , Rz (θ) =

cos (θ) − sin (θ) 0

sin(θ) cos(θ) 0

0 0 1

 . (19)

With the change in the velocity vector u′
n+1, the UAV will move from point X′

n to X′
n+1:

X′
n+1 = X′

n + u′
n∆t, (20)

where ∆t is the time step duration. Action an will have an effect on c′n as well:

c′n+1 = Ry(∆θC,n)Rz(∆ϕC,n)c′n, (21)

where, the eventual pose of the gimbal with respect to the x axis in the BFS could also be represented by:

θC,n+1 = θC,n +∆θC,n, (22)

and:
ϕC,n+1 = ϕC,n +∆ϕC,n, (23)

since the gimbal motion is restricted to only rotations around the pitch and yaw axes.
Ultimately, u′

n+1 and c′n+1 are given to the flight controller to translate it to actual propeller and gimbal
motor torques τp,n+1, τg,n+1 = f(u′

n+1, c′n+1).
Rewards. A reward is essentially a metric that defines how ideal the actions that an actor took at a

certain time instance were, regarding to the state in that time instance. In our case, a good action would be
one that would:
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• drive the UAV from X′
n to a new 3D location X′

n+1 so that it coincides with 3D point Xn+1 which is
computed using the predefined mathematical definition of the desirable CMT [115].

• keep the target centered on the image, by tweaking the UAV camera look-at vector c′n so that it
coincides with cn+1, where:

cn+1 =
Pn+1 − X′

n+1∣∣Pn+1 − X′
n+1

∣∣ . (24)

Taking inspiration from the existing literature [112, 116], rewards are shaped to be a function of the eu-
clidean distance between the resulting vectors X′

n+1, c′n+1 and Xn+1, cn+1, forming the following rewards:

• Positional reward: favor small euclidean distance between Xn+1 and X′
n+1:

Rn1 =

{
1− ∥Xn+1−X′

n+1∥2

r , ∥Xn+1 − X′
n+1∥2 ≤ r

0, ∥Xn+1 − X′
n+1∥2 > r

where r is a fixed distance radius, out of which the returned reward equals to zero.

Alternatively, instead of rewarding the close proximity of the reached UAV position to the ideal UAV
position at time n+ 1, the similarity between the selected velocity u′

n+1 and the ideal one un+1 can
be considered:

• Velocity reward: favor minimized difference between u′
n+1 and un+1:

Rn2 = κ
u′
n+1 · u′

n+1

∥u′
n+1∥∥un+1∥

− λ
√

∥u′
n+1∥2 − ∥un+1∥2. (25)

Essentially, the velocity direction similarity is decoupled from the velocity norm error and combines
them with different weights κ, λ to give different degrees of importance.

• Lock-target reward: penalize difference between cn+1 and X′
n+1:

Rn3 = −∥cn+1 − c′n+1∥2. (26)

To combine the three reward functions into a single one, a simple linear combination is proposed:

Rn = αRn1 + βRn2 + γRn3, α, β ∈ R. (27)

Training Environment. Since training a reinforcement learning agent in a real world environment
would be an extremely expensive, time consuming and dangerous process, the optimal cinematographic
policy could be learned in a simulated environment.

For this purpose, a large realistic 3D Environment was created on the Unreal Engine 4 simulator along
with Airsim plugin for drone and gimbal manipulation, via the Airsim API. It features a single car that runs
in a predefined path, and a single drone with a gimbal holding an RGB camera mounted on the bottom
center part. The surrounding environment is rich in terrain textures, includes multiple plant species, has two
lakes and several buildings. The developed simulation environment can be observed in Figure 13.

Proposed DRL method. Having opted for continuous control of both the UAV and the camera gimbal,
the evident solution is to propose a deep policy gradient reinforcement learning framework. To keep up
with recent developments in the area, state-of-the art TD3 [110] RL agent is used.

Due to the fact that an RGB image taken from the UAV camera gives only partial information about the
true state of the environment, the problem needs to be formulated as a partially observable Markov decision
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Figure 13. Screenshots of the simulated 3D environment.

process (POMDP). POMDPs extend the standard MDP quadruplets by adding an observation space O,
which contains the agent’s observations of the true states S, and an observation model Ω. Therefore, they
can be defined by the 6-tuple (S,A, P,R,O,Ω). As the agent moves through space, using past observations
along with the current one can give a more complete perception about the true current state. In practice,
previous works have used LSTM networks to deal with partially observability [117, 118, 119] as they can
encode past information in their hidden state.

In that sense, a TD3 agent is proposed, with both the actor and the critic networks being CNNs following
a lightweight backbone architecture, followed by LSTM layers to capture as much of the true environment
state as possible, through a history of observations:

Hn = {(oi, ai, Ri, oi+1)}ni=0. (28)

The actor network follows the architecture depicted in Figure 14. The critic networks follow the same
architecture, with the exceptions being: i) the current action selected by the actor network is also given
as input to the convolutional module, ii) the last linear layer has only 1 neuron, the activation of which
represents the estimated Q-value (linear activation function is used).

Evaluation. The “Ascent” UAV CMT is used to evaluate the proposed RL method. According to [100]:
“Ascent” is a parametric CMT, where the camera gimbal is slowly rotating (mainly along the pitch axis), so
as to always keep the still or linearly moving target properly framed. The UAV linearly backs away from the
target from behind or from the front, at a steadily increasing altitude (relative to the target), with constant
velocity. The UAV keeps flying away from the target, with the camera still focusing on the latter.

The proposed TD3-LSTM agent was trained on the simulated 3D environment that was described in the
previous section for 2,000 episodes of 20 time steps each. The velocity reward from Eq. (25) was only used
for this experiment with κ = 8 and λ = 0.02. In the preliminary experiments performed up to now, the
camera was automatically rotated to always point to the target. Consequently, the actor network has only 3
output neurons, to extract commands for ∆θD,n,∆ϕD,n, and ∆un.

Figure 15 shows the rewards that were accumulated after each episode. As it can be observed, the re-
wards are maximized approximately at episode 250, meaning that the agent has already almost successfully
learned the CMT that it was assigned to perform.
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Figure 14. Actor network architecture. The encircled plus sign represents the concatenation operation. The information flows in a
top-down fashion. To concatenate the input RGB image with the last action, each component of the latter is converted to a single
channeled image of identical spatial dimensions to the RGB one. The concatenation is then conducted along the channel dimension.

The experimental results showed that the proposed agent was indeed able to successfully plan correct
UAV trajectories following the constraints imposed by the “Ascent” CMT.

This is still on-going research, expected to finish within 2022. The proposed method will be extended
so that the DRL agent also directly controls the camera gimbal. Additionally, besides “Ascent”, the method
will also be evaluated in all the 10 target-tracking UAV CMTs described in [100] and [115]. A relevant
technical report is under preparation, with the intent to have it submitted as a journal paper.

3.5.3. Leader and breakaway detection in racing videos

Two related and important problems in TV coverage of racing sports events (e.g., cycling, boat or car races)
are automated leader and breakaway detection. The leader’s proper framing is a pivotal issue from a cine-
matography perspective, when the racing event has a linear spatial deployment. Similarly, a breakaway is
the occasion where, starting from a spatially compact racer group, one athlete accelerates and distances fast
from the rest of the athletes of the group, making this event very significant for deciding frame composi-
tion. Automating these tasks in the context of autonomous UAV cinematography applied to racing coverage
would indeed be highly useful: it is important that the UAV-mounted camera automatically centers on a
potential leader, while detecting a breakaway could trigger automatic CMT re-selection based on a rule sys-
tem. Additionally, automatic leader and/breakaway detection could also be potentially applicable off-line,
in archival videos, leading to the extraction of useful metadata.
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Figure 15. Rewards returned after each episode, while training for the “Ascent” CMT. For the sake of intelligibility, the actual
rewards have been filtered using a moving average filter with a window size of 30.

In the context of T5.2 of AI4Media, AUTH explored these issues by extending preliminary work initi-
ated originally during the final stage of the H2020 RIA project MULTIDRONE1. In AI4Media, this work
was improved, evaluated and presented as a conference paper.

Proposed Method. Although there have been numerous works that study athletic performance at an
individual athlete level, primarily by modeling biomechanics [120, 121, 122], there has been no research on
the kinematics and dynamics of racing sports involving a group of athletes using only visual information.

The novel leader detection method proposed by AUTH uses global optical flow, in order to estimate
camera motion direction. The underlying assumption is that the drone already follows the athlete group,
either from above or from a lateral position, according to the chosen drone cinematography mode [100]. A
visual target (object) detector and tracker is employed for finding regions of interest (ROI) of the targets
(athletes) on the image plane. In the next step, the target ROI centers are projected on the median optical
flow unit direction vector and, lastly, the leading target (athlete) is detected. Moreover, the athlete winning
order (1st, 2nd, 3rd, etc), as well as their spatial distribution over time can be determined as well, thus
providing very useful information for computational racing sports coaching.

In the context of this work, the breakaway detection problem is solved as well, by introducing additional
target breakaway detection metrics, the derivatives of which can indicate the happening of a breakaway.

Leader detection performance was evaluated in a video dataset of cycling races provided by Radiotele-
visione Italiana (RAI) 2. The cyclist detector [123] was employed for target detection.

Using a dataset of 1,571 bicycle racing video frame pairs, the leader detection algorithm achieved a high
leader detection accuracy of 97.2%, while in detecting the second best it achieved 95.6% accuracy. It can
run in real time, as only around 24 ms are needed to process a single video frame pair on a cheap consumer
graphics card.

As cyclist breakaway videos are rather scarce, the event was simulated in AirSim. If the derivatives of
the proposed breakaway metrics surpass a certain threshold, it can successfully indicate the time instances
when the breakaways take place, as shown in Figure 16, illustrating the first derivative of a specific proposed
metric. The choice of the optimal thresholds are investigated as well. First the PDFs of the metrics in
presence and in absence of breakaway are estimated using Kernel Density Estimation [124] with Gaussian
Kernel, and then the optimal thresholds that minimize the detection error are opted to be the intersection
point of the two PDFs (Figure 17).

Conclusions. Although the evaluation results showed that the leader and breakaway detection algo-
rithms can yield satisfactory results, there are certain limitations that must be taken into consideration. First
and foremost, the leader detection algorithm is applicable only in scenarios where the targets move on a
relatively straight line. Turns produce complex optical flow behavior, such that the motion direction cannot
be estimated by a single averaging.

1https://multidrone.eu/
2http://www.aiia.csd.auth.gr/LAB_PROJECTS/MULTIDRONE/AUTH_MULTIDRONE_Dataset.html
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Figure 16. Plot of the first derivative of a proposed breakaway detection metric (r2).

3.5.4. Relevant publications

• A. Sochopoulos, I. Mademlis and I.Pitas, ”Deep Reinforcement Learning with semi-expert distillation
for autonomous UAV cinematography”, technical report, under preparation.

• S. Papadopoulos, I. Mademlis and I.Pitas, ”Autonomous UAV Cinematography using Deep Rein-
forcement Learning”, technical report, under preparation.

• S. Papadopoulos, C. Symeonidis and I. Pitas, ”Leader and breakaway detection in racing sports
videos”, Proceedings of the IEEE International Workshop on Multimedia Signal Processing (MMSP),
2021 [125].
Zenodo record: https://zenodo.org/record/6141654#.Yg__tpaxVEY.

3.5.5. Relevant WP8 Use Cases

3B1-3 (Video synthesis from 3D environment). Autonomous execution of UAV CMTs is essential for auto-
mated media production using intelligent shooting approaches, relying on high-level directorial guidelines.
Leader and breakaway detection algorithms could aid an autonomous UAV take better decisions about cin-
ematic coverage of a racing event.
3A3 (Archive Exploitation). Leader and breakaway detection algorithms could be applied off-line in
archival videos, so that useful metadata can be extracted.

3.6. Predicting user attention in 360◦ videos
Contributing partners: 3IA-UCA

Context Immersive media are on the rise, with 360◦ videos being a major modality of Virtual Reality
(VR), with developing applications in storytelling, journalism or remote education. These contents are
meant to be watched in a head-mounted display where the user can explore in at least 3 Degrees of Freedom
(DoF), possibly in 6DoF.
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Figure 17. r3 detection threshold.

To ensure sound content design and high Quality of Experience when accessing these contents online, it
is crucial to understand and predict the user’s attentional process, specifically the head movements. Indeed,
the development of online 360◦ videos is persistently hindered by the difficulty to access immersive content
through Internet streaming: owing to the closer proximity of the screen to the eye in VR and to the width of
the content (2π steradians in azimuth and π in elevation angles), the data rate is two orders of magnitude that
of a regular video [126]. To decrease the amount of data to stream, a solution is to send in high resolution
only the portion of the sphere the user has access to at each point in time, named the Field of View (FoV).
This requires to know the user’s head position in advance, that is at the time of sending the content from
the server. Failing to predict correctly the future user’s positions can lead to a lower quality displayed in the
FoV, which can impair the user’s experience.

In this work, we consider the problem of predicting the user’s head motion in 360◦ videos over a future
horizon, based both and only on the past trajectory and on the video content. Various methods tackling this
problem with deep neural networks have therefore been proposed (e.g., [127, 128, 129]). We show that the
relevant existing methods have hidden flaws, that we thoroughly analyze to overcome with a new proposal
establishing state-of-the-art performance. We next present our two contributions, focused on multimodal
fusion (past trajectory coordinates and visual content) with deep architectures.

Hidden flaws of existing methods and root-cause analysis After a review and taxonomy of the relevant
methods (e.g., [127], [128], [129]), we compare them to common baselines. First, comparing against the
trivial-static baseline, we obtain the intriguing result that they all perform worse, on their exact original
settings, metrics and datasets. Second, we show it is indeed possible to outperform the trivial-static baseline
(and hence the existing methods) by designing a stronger baseline, named the deep-position-only baseline:
it is an LSTM-based architecture considering only the positional information, while the existing methods
are meant to benefit both from the history of past positions and knowledge of the video content.

From there, we carry out a thorough root-cause analysis to understand why the existing methods perform
worse than baselines that do not consider the content information.

Looking into the metrics and the data, we show that: (i) evaluating only on some specific pieces of
trajectories or specific videos, where the content is proved useful, does not change the comparison results,
and that (ii) the content can indeed inform the head position prediction, but for prediction horizons longer
than 2 to 3 sec.. All these existing methods consider shorter horizons.
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Looking into the neural network architectures, we identify that: (iii) when the provided content features
are the ground-truth saliency, the only architecture not degrading away from the baseline is the one with a
Recurrent Neural Network (RNN) layer dedicated to the positional input, but (iv) when fed with saliency
estimated from the content, the performance of this architecture degrades away from the deep-position-only
baseline again.
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Figure 18. Prediction error of CB-sal CVPR18-improved (with Content-Based saliency) against GT-sal CVPR18-improved (with
Ground-Truth saliency) and baselines.

Fig. 18 shows the expected degradation using the content-based saliency (obtained from PanoSalNet)
compared with the ground-truth saliency: the CB saliency-only baseline (dashed red line) is much less
accurate than the GT saliency-only baseline (solid red line). We also observe that, despite performing
well with ground-truth saliency, method CVPR18-improved fed with content-based saliency degrades again
away from the deep-position-only baseline.

Building on the above analysis and results, we build a new deep architecture able to benefit from (ap-
proximate) content-based saliency, as described next.

A new deep neural architecture achieving state-of-the-art prediction performance The fundamental
characteristic of the problem at hand is: over the prediction horizon, the relative importance of both modal-
ities (past positions and content) varies. Indeed, we expect the motion inertia to be more prominent first,
and only then the content to possibly attract attention and change the course of the motion. It is there-
fore crucial to have a way of combining both modality features in a time-dependent manner to produce the
final prediction. However, in the best-performing architecture so far, CVPR18-improved, we notice that
the single RNN component enables this time-dependent modulation only for the positional features, while
the importance of the content cannot be modulated over time. Replacing the ground-truth saliency with
content-based saliency, the saliency map becomes much less correlated with the positions to predict. It is
therefore important to be able to attenuate its effect in the first prediction steps, and give it more importance
in the later prediction step.

From the latter analysis, a key architectural element to add is a RNN processing the visual features (such
as CB-sal), before combining it with the positional features. Furthermore, this analysis connects with the
seminal work of Jain et al., introducing Structural-RNN in [130]. It consists in casting a spatio-temporal
graph describing a problem’s structure into a rich RNN mixture following well-defined steps. Though the
connection with head motion prediction is not direct, we can formulate our problem structure in the same
terms. First, two contributing factor components are involved: the user’s FoV and the video content. We
can therefore express the spatio-temporal graph of a human watching a 360◦ video in a headset. Second,
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these two components are semantically different, and are therefore associated with: (i) an edgeRNN and
a nodeRNN for the FoV, (ii) an edgeRNN for the video (only one input to the node), resulting in the
architectural block shown in purple in Fig. 19. Embedded into a sequence-to-sequence framework, we
name this architecture TRACK.

Figure 19. The proposed TRACK architecture. The building block (in purple) is made of a an Inertia RNN processing the previous
position (light brown), a Content RNN processing the content-based saliency (blue) and a Fusion RNN merging both modalities (dark
brown).

Results Gains on video categories: The results of the root cause analysis analyzing the data have shown
that the gains that can be expected from a multimodal architecture over the deep-position-only baseline are
different depending on the video category: whether it is a focus-type or an exploratory video. The results
of TRACK averaged over all the videos of a test set show improvements, but are therefore not entirely
representative. We analyze the gains of TRACK over different video categories, by splitting manually the 5
videos of a small test set of the MMSys18 dataset, while for CVPR18 and PAMI18, we consider the entropy
of the GT saliency map of each video to assign the video to one category or the other. We sort the videos
of the test set in increasing entropy, and we represent in Fig. 20 the results averaged over the bottom 10%
(focus-type videos) and top 10% (exploratory videos).
• On the low-entropy/focus-type videos and for s ≥ 3 sec., TRACK significantly outperforms the second-
best method: by 16% for PAMI18 to 20% for both CVPR18 and MMSys18 at s = H = 5 sec. TRACK
performs similarly or better for s < 3 sec.
• On the high-entropy/exploratory videos, the gains of TRACK are much less significant: TRACK often
performs similarly or slightly worse than the deep-position-only baseline, yet never degrading significantly
away from this baseline, as the other methods do. Such results are expected from the root cause analysis
showing that the saliency-only baseline does not outperform the deep-position-only baseline on exploratory
videos.
Qualitative examples: In Fig. 21, we exemplify the results on two low-entropy videos, also showing a
representative frame with a user’s future trajectory and the prediction of TRACK. On focus-type videos,
TRACK outperforms significantly the second-best method: by up to 25% in the examples.
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Figure 20. Top row (resp. bottom row): results averaged over the 10% test videos having lowest entropy (resp. highest entropy) of the
GT saliency map. For the MMSys dataset, the sorting has been made using the Exploration/Focus categories. Legend and axis labels
are the same in all figures.

Figure 21. Example of performance on two individual test videos of type Focus. On the frame, the green line represents the ground
truth trajectory, and the corresponding prediction by TRACK is shown in red.

Conclusion This work has brought two main contributions. First, we carried out a critical and principled
re-examination of the existing deep learning-based methods to predict head motion in 360◦ videos, with the
knowledge of the past user’s position and the video content. We have shown that all the considered existing
methods are outperformed, on their datasets and with their test metrics, by baselines exploiting only the
positional modality. To understand why, we have analyzed the datasets to identify how and when should the
prediction benefit from the knowledge of the content. We have analyzed the neural architectures and shown
there is only one whose performance does not degrade compared with the baselines, provided that ground-
truth saliency information is provided, and none of the existing architectures can be trained to compete with
the baselines over the 0-5 sec. horizon when the saliency features are extracted from the content.

Second, decomposing the structure of the problem and supporting our analysis with the concept of
Structural-RNN, we have designed a new deep neural architecture, named TRACK. TRACK establishes
state-of-the-art performance on all the prediction horizons H ∈ [0 sec,5 sec] and all the datasets of the
existing competitors. In the 2-5 sec horizon, TRACK outperforms the second-best method by up to 20% on
focus-type videos, i.e., videos with low-entropy saliency maps.

In future works, we will investigate deep attention mechanisms to refine the time- and space-varying
fusion of modalities, as well as consider variational approaches (with VRNN) to also obtain confidence on
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the prediction, which is crucial for decision-making.

3.6.1. Relevant publications

• Romero-Rondon, M. F., Sassatelli, L., Aparicio-Pardo, R., & Precioso, F. (2021). TRACK: A new
method from a re-examination of deep architectures for head motion prediction in 360-degree videos.
IEEE Transactions on Pattern Analysis and Machine Intelligence. [131] https://zenodo.org/
record/4673531

• M. F. Romero-Rondon, D. Zanca, S. Melacci, M. Gori, and L. Sassatelli, “Hemog: A white-box mod-
elto unveil the connection between saliency information and human head motion in virtual reality,”
in IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), pp. 10–18,
2021. [132] https://zenodo.org/record/5563115

3.6.2. Relevant software and/or external resources

• M. Romero, L. Sassatelli, R. Aparicio-Pardo, and F. Precioso. A Unified Evaluation Framework for
Head Motion Prediction Methods in 360° Videos. ACM International Conference on Multimedia
Systems (MMSys), Open Dataset and Software track, Istambul, Turkey, June 2020. Code avail-
able at https://gitlab.com/miguelfromeror/head-motion-prediction/tree/
master.

3.6.3. Relevant WP8 Use Cases

3C2-9 (Management of contribution under bandwidth constraints). User gaze and head motion prediction
is crucial to optimize bandwidth when streaming VR content such as 360 videos.

3.7. Interactive Content Improvement
Contributing partners: MODL

This section focuses on the application of Machine Learning (ML) techniques to model the player expe-
rience of videogames based on gameplay telemetry. Such models can help us identify player populations,
understand and enhance different aspects of player experience and lead to the design of entirely new and
engaging gameplay via game content generation [133]. Beyond building better games for entertainment ad-
vancements on the field, it can also help improve other domains. Serious games are used in healthcare and
rehabilitation as therapeutic [134, 135] and research tools [136, 137], and in education [138, 139] where
adaptive models can enhance and personalise educational content. Games can provide robust test beds
for a wide spectrum of domains through a unique combination of interactivity, freedom, and constrained
environments.

In this section, we are focusing on motivation prediction based on game telemetry. We focus on user
behaviour as it is readily available for capture for most game developers. While affective computing appli-
cations in lab environments often rely on physiological signals, in the wild, we face more limited data. To
capture dimensions of player motivation, we use the Ubisoft Perceived Experience Questionnaire (UPEQ)
[140], which is based on the Theory of Self-Determination [141]. We use Preference Learning (PL) to model
the captured data, which has been proved to be a robust way to process and predict human-generated data
[142]. Finally, we present a web interface prototype, which we are developing in React to visualize the data
and model predictions. Our preliminary analysis highlights four populations in the observed player-base
with a unique behaviour and motivational profile.
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Player Modelling Player Modelling (PM) is a field of Games Research that generally aims to predict
either the behaviour (i.e. what players do) or emotions (i.e. how players feel) of users. The presented
work threads the line between these two approaches and focuses on player motivation, using methodology
from the PM field. Though common computational approaches to user analytics use k-means clustering,
self-organising maps [143], matrix factorisation [144], archetypal analysis [145, 146], and sequence mining
[147, 148, 149], here we are focusing specifically on the predictive modelling side of PM through supervised
Machine Learning (ML) techniques. Notable applications of player modelling include predicting player
behaviour [150] such as churn [151, 152, 153], playtime [154], or player experience [155, 142]. While
several of these studies focus on multimodal player data that fuse gameplay with physiological data [156,
157, 158] or data from video streams [159], we rely solely on gameplay data, which is more readily available
in the wild [160, 161].

Motivation is a crucial element of player experience and research, as it is closely related to engagement
and—more directly—to game enjoyment [162]. A meta-review of 87 studies on the subject [162] reveals
that a high level of motivation is a core component of the positive emotional valence associated with playing
a given game. While the connection between motivation and enjoyment is clear, here, we focus solely on
the former. In contrast to enjoyment, which often encompasses flow [163], presence and immersion [164],
and fun [165], motivation is a more action-oriented concept. Because of this focus on what drives players to
engage with and act in the game, the concept of motivation can be more easily adapted during development
into data-driven frameworks such as adaptive and generative systems [166].

Self Determination Theory The Self Determination Theory (SDT)—developed by Deci and Ryan [167,
141]—is a general theory of motivation that focuses on the facilitation of intrinsic motivation. Intrinsic
motivation describe a drive that is not affected by outside pressures and rewards, and it is generally asso-
ciated with positive outcomes regarding one’s mental well-being [168]. In contrast, extrinsic motivation
has measurable diminishing returns and can lead to a feeling of burn-out. SDT revolves around three basic
psychological needs—competence, autonomy, and relatedness. Competence describes a sense of accom-
plishment and mastery; Autonomy describes a sense of control and self-efficacy; and Relatedness describes
a sense of belonging and connection. According to SDT, experiences—such as videogames [164]—that
facilitate these psychological needs well, will foster a greater sense of motivation and fulfilment.

The Ubisoft Perceived Experience Questionnaire (UPEQ) [140] was designed to capture players’ sense
of competence, autonomy, and relatedness—along with spatial presence—specifically in the games domain.
UPEQ extends the original three factors with presence, as it is a major facilitator of the game experience
[164]. Presence is the illusion of an unmediated experience that in a mediated environment, such as a
videogame [169, 170]. UPEQ uses 5-point Likert-scales to measure these dimensions through a 24-item
survey (with 7 items for each of competence, autonomy, and relatedness, and 3 items for presence). The
survey was developed based on the Basic Need Satisfaction Scale(s) [171], addressing limitations of con-
temporary surveys for measuring SDT in games [172, 173, 174]. UPEQ has been used in the past to
successfully as input to predict solo playtime, group playtime, and money spent [140] and as output to
model motivation based on gameplay [160].

Motivation Modelling In this case study, we instrumented a simple racing game example (see Figure 22)
with an integrated survey, which allowed us to collect UPEQ answers and plug them directly into a stream-
lined pipeline that collects both game telemetry and user response seamlessly. Figure 23 shows how the
survey was integrated into the game. We collect 34 telemetry measures from the game, including data on the
player’s velocity, collision, input controls, and distance from obstacles and bots in the scene. The collected
telemetry is aggregated on the session level and describes the player’s performance throughout the session.

To model the data, we chose a Preference Learning (PL) approach. PL is a ML paradigm which focuses
on the relative relationships within the data [175]. We apply PL through a pairwise transformation to model
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Figure 22. Simple racing game demo to collect telemetry data

Figure 23. UPEQ survey integrated into the game.
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Figure 24. Preliminary results of the motivational models for each measured factor. The error bars show the 95% confidence interval.

the preference relation of data points. The pairwise transformation increases the number of observations
in a dataset exponentially, providing more information on individual data points, while still preserving the
relative relationships in the data. This provides a reliable basis for experience and motivation modelling
[142]. Through this method of PL we are leveraging binary classification after the pairwise transformation
of the dataset [176]. During this transformation, pairs of data inputs (xi, xj) ∈ X and their corresponding
outputs (yi, yj) ∈ Y are observed. The observed points are discarded and two new data points are created.
These points express the difference between the original data points. In case of yi > yj , xi is preferred
over xj (formally: xi ≻ xj) and we label xi − xj as 1 and xj − xi as −1 to signify the direction of
their preference relation. Learning to predict this relation becomes a problem of binary classification. As
an added benefit, because we make two observations every time, the method also creates a 50% baseline,
without further data manipulation such as under- and over-sampling.

To solve the binary classification task, we used a simple Random Forest (RF) algorithm. RFs are widely
used in PM contexts due to their fast training and robustness [177, 178]. When it comes to predict human
data, RF algorithms can often perform comparably to deep learning methods [179]. RFs are ensemble
learning methods mainly used for classification and regression. As the name suggests, RFs operate by
constructing a number of randomly initialised independent decision trees during training and use their
predictions as a meta output. Decision trees themselves operate by constructing an acyclical network of
nodes, which split the features of the given dataset into simpler decisions [180]. In this case study, we use
an implantation of RFs based on an optimised Classification And Regression Tree (CART) algorithm—first
proposed by Breiman [181]. The CART method uses a generalisation of the binomial variance to evaluate
the impurity (and thus splitting criterion) of nodes [182] and relies on a process of “overgrowing” and
pruning trees [180] to minimise training errors without overfitting.

Figure 24 shows the preliminary results of the modelling effort. Results show that PL works reasonably
well on limited datasets, with room for future improvements. The constructed models reach a good level
of accuracy at Competence 76% (up to 88%), Autonomy 71% (up to 88%), Relatedness 74% (up to 87%),
and Presence 68% (up to 79%). To verify the results, we also look at the Kendall’s tau correlation between
the predicted motivation factors and the input features. This provides a good sanity check about the survey
results but also helps us understand the player population better. Based on the correlations we can iden-
tify players’ motivational profiles, which more or less correspond to the motivational factors measured by
UPEQ. High competence players have an early high velocity and higher standing at the end of the race.
High autonomy players have more collisions and off-road travel while still maintaining high standing. High
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Figure 25. Web interface prototype to view motivation modelling results and game telemetry.

relatedness players have a larger amount of collisions and an overall smaller distance to bots. Finally, a high
presence score generally correlates with novice players (low initial velocity and lower average standing).

Telemetry Visualization To provide a better overview of our results, we are developing a web interface
prototype that lets us visualise the collected data and the predictions of our models. Figure 25 shows the
intended layout of the web interface. The interface displays the predicted motivation profile of players,
and the features associated with their performance. It also visualises the correlation between the predicted
motivation rank and their telemetry, giving a fuller picture about the game’s population. Although the PL
task learns to predict which point is preferred between two examples, we can convert the predictions of PL
algorithms into a global ranking based on repeated pairwise observations.

3.7.1. Relevant publications

• Melhart, David, Daniele Gravina, and Georgios N. Yannakakis. ”Moment-to-moment Engagement
Prediction through the Eyes of the Observer: PUBG Streaming on Twitch.” International Confer-
ence on the Foundations of Digital Games. 2020. [183] https://dl.acm.org/doi/abs/10.
1145/3402942.3402958

3.7.2. Relevant WP8 Use Cases

5A and specifically 5A3-2 (Telemetry logging). The motivation prediction models can be used to make the
automated testing of AI agents (Use Case 5A, Automated Testing for Games) more human-like by modeling
different user behaviours.

Initial report on Multimedia Production 56 of 76

https://dl.acm.org/doi/abs/10.1145/3402942.3402958
https://dl.acm.org/doi/abs/10.1145/3402942.3402958


3.8. Synthetic Audio Generation
Contributing partners: IRCAM

The present research aims to develop innovative algorithms to generate synthetic yet realistic musical
sound mixes starting from musical scores present in a digital format. First, this approach can be employed
to generate music content in media or video games, and it can also have artistic applications for music
composers, by rendering previews of their compositions before hiring musicians. Second, on top of the
aforementioned artistic purposes, this approach is interesting for producing large datasets of realistic musi-
cal mixes from symbolic annotations [184]. Such automatically generated datasets of realistic mixes will
be used to further train models for various Music Information Retrieval (MIR) tasks, such as automatic
transcription, instrument identification, tempo and down-beat estimation, or key and mode recognition. To
this end, we propose a neural synthesis model for realistic instrument sounds from a symbolic musical
representation, that is the MIDI format.

3.8.1. Audio generation context

Many methods already exist for the synthesis of musical instrument sounds. A straightforward technique
consists in concatenative samplers which playback high-fidelity recordings of isolated notes, but these ap-
proaches only provide a very limited amount of control and they cannot reproduce interactions between
notes. On the contrary, physical-based modeling can achieve realistic, interpretable and controllable sound
synthesis, but requires extensive modeling and precise measurements of physical components [185], which
limits the application of this approach to one class of instrument at a time. Traditional signal-based meth-
ods [186, 187] are light, flexible and controllable, but often lack realism in the synthesis. Finally, black-
box neural-based approaches successfully adapt text-to-speech techniques to produce realistic instrument
sounds [188, 189], but they require a significant amount of annotated recordings and they are difficult to
control as they do not explicitly model instrument properties.

Recently, the Differentiable Digital Signal Processing (DDSP) library [190] introduced traditional signal-
based synthesis tools as differentiable output layers in a neural-based audio synthesis model. The modular-
ity of a DDSP-based architecture enables the injection of acoustic modeling knowledge into a deep learning
framework, thus imposing strong apriori on the sound structure. This would alleviate the need for large
quantity of training data and reduce the number of parameters, while exploiting the expressiveness of neu-
ral networks for realistic sound synthesis. Several improvements have been made to make the approach
compatible with MIDI inputs [191, 192, 193] but only in the monophonic scenario.

Our first proposed approach tackles the task of piano sound synthesis from a symbolic representation, by
enhancing and adapting the DDSP framework to handle polyphonic MIDI input and to reproduce particular
properties of the piano sound, such as partials inharmonicity, partials beating, and noise of the hammers,
the keys and the pedals.

3.8.2. Proposed approach for piano sound synthesis

The full synthesis architecture is illustrated in Figure 26. It takes as input all the parameters that a pianist
has over its instrument, being the played notes (pitches and velocities), the pedal actions, and the piano
and room context. The synthesis is controlled by a neural network, and the audio signal is computed by
summing the outputs of multiple monophonic additive and subtractive differentiable synthesizers. Finally,
the room reverberation is produced by a learned impulse response. The following paragraphs detail the
sub-modules presented in Figure 26:
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Figure 26. Synthesizer Architecture. The blue boxes represent the trained modules for the control of the synthesis. The synthesis
modules from DDSP are represented by yellow boxes (Additive, Filtered Noise, and Reverberation). Finally, the Multi-Resolution
Spectral Loss compares the input target signal (bottom left) and the output synthesized sound (bottom right).

Polyphony manager: The played notes are encoded as onsets and active pianorolls, as in [194], which
informs when the notes are being played, for how long and at which velocity. For memory efficiency,
the pianorolls are reduced from the whole piano tessitura (88) to a 16-channel conditioning vector by the
Polyphony Manager sub-layer. This layer ensures that monophonic note information (pitch and velocity)
are contained within a single channel in the conditioning vector. The number of simultaneous notes our
model can handle is conditioned by this layer.

Note release, Inharmonicity network, & Detuner: The activity conditioning is extended by a fixed du-
ration to let the model capture the remaining string vibration after the notes are released, since the energy
absorption is not instantaneous [185]. Also, the string stiffness leads to the partials of a piano note not being
pure harmonics of the fundamental frequency: such characteristic is implemented with an explicit inhar-
monicity model over the whole tessitura, taken from [195]. Furthermore, piano strings are often doubled or
tripled for each note: they are slightly detuned from one to another, which creates partials beating [196]. A
detuning factor of the fundamental frequency is computed by the Detuner sub-layer.

Context network: The piano model, the effects of the pedals and the interaction between simultaneous
notes change the timbre of an individual note [185]. A piano model embedding is forwarded with the pedal
signals and the conditioning vector to a context network. This recurrent network (based on GRU cells)
computes a context vector, which is applied to all monophonic channels to influence the computation of the
synthesizer controls.

Monophonic network: The monophonic network computes the remaining synthesizers’ controls from
the extended conditioning vector, the context vector and the notes fundamental frequencies, inharmonicity
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and detuning coefficients. Since it is applied channel-wise, this recurrent network learns a monophonic
string model to predict the notes amplitude, harmonic energy distribution and noise magnitudes.

Differentiable synthesis: The differentiable synthesizer layers convert the controls into audio signals, in
the spectral modeling paradigm [186]. The additive synthesizer generates the (quasi-)harmonic components
of a piano note by summing multiple sinusoids at frequencies computed from the fundamental frequency,
the detuning factor and the inharmonicity coefficient, and at magnitude given by the global amplitude and
harmonic distribution. The subtractive synthesizer generates the noisy elements (hammer, key and pedal
noises) by filtering a white noise with filters computed from the noise magnitudes as in [190].

Reverberation: The room acoustics of the piano recordings is modeled by a differentiable convolutional
reverberation. An impulse response is learned for each room context and it is applied to the sum of au-
dio signals from the bank of additive and subtractive synthesizers. In some experimentations, it has been
observed that this module tried to reproduce the note releases, which provided an abnormal reverberation.
So, a L1 regularization loss is applied on the impulse response parameters to prevent the reverberation
layer from also learning the note decay and sustain behaviors, which are supposed to be learned by the
monophonic network.

Multi-resolution spectral loss: The final audio output is compared to the ground-truth audio with a multi-
resolution spectral loss, as in [188, 190], and the whole model is trained with the Adam optimizer. Piano
recordings and their corresponding MIDI performances of the MAESTRO dataset [189] were used for
training, and to be comparable with a pure DNN baseline [188], but realistic results have been also obtained
on the smaller MAPS dataset [197].

3.8.3. Results

An example of audio synthesis from the proposed model is shown in Figure 27 against the ground-truth
audio. The MIDI input of the model corresponds to the recorded performance of the target audio, which was
not seen during training. One can notice that the frequency distribution and amplitude decays of the notes
partials (horizontal lines) are well reproduced by the model. The residual noise is also globally matched,
with the exception of noisy events that do not come from the piano itself (such as the creak coming from
the hall happening at around 1.5 seconds).

Listening tests are currently being conducted to compare the synthesis quality of our model against
samplers, a physical-based model and a black-box DNN model. The proposed approach and results are to
be then submitted at a conference in the near future.

3.8.4. Relevant WP8 Use Cases

5B (Improved music analysis and synthesis for Games). The developed approach is directly related to
5B1 (Sound synthesis of background audio track) of the use-case UC5 (AI for Games). 6A1 (Automatic
Composition), 6C1 (Real-time automatic music generation. The approach can in general help in the creation
of original music.
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Figure 27. Spectrograms of a target piano recording (left) and the synthesized audio by the proposed model from the corresponding
MIDI performance (right). The creak happening at around 1.5 seconds in the target audio is not coming from the piano, which our
model cannot reproduce since it has no correlation with the performance input.
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4. Contributions to the AI4Media WP8 Use Cases
Each contribution of this deliverable is mapped to a use case in WP8. WP8 operates 7 use cases, which
defined their user needs for AI functions in the format of user stories. The user stories (described in detail in
deliverable D8.1) were grouped into ”Features” (sub use cases) and ”Epics” (groups of related user stories).
Each Epic has its own ID (e.g. Epic 3A3-11) (see Table 11).

Table 11. WP8 Use case Epics in which research from partners in T5.2 will contribute to.

WP8 Use Case Epics
Use Cases Features Epic ID Requirement Title

AI in Vision

Archive exploitation 3A3-11 Visual indexing and search
Environment Investigation 3B1-3 Video synthesis from 3D environment
Archive valorisation 3B2-1 Video super resolution
Just-in-time content creation & adaptation 3C2-8 Synthetic Video Generation from Single Semantic Label Map
Management of unexpected event occurrence 3C2-9 Management of contribution under bandwidth constraints

AI for Games
Automated testing for Games 5A3-2 Telemetry logging
Improved music analysis and synthesis for Games 5B1 Sound synthesis of background audio track

AI for Human Co-Creation
Automatic Music Generation 6A1 Automatic composition
Real-time automatic content generation 6C1 Real-time music generation
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5. Ongoing Work and Conclusions

5.1. Conclusion and Future Work
This document presented the outcomes of AI4Media research activities in Task T5.2 for the period M1-
M18 of the project. The majority of the work presented deals with approaches to create or enhance data,
thus producing new media, relying heavily on deep learning approaches. Notably, generative models, such
as GANs, are often exploited for a variety of modalities, from videos to audio. Instead of relying on
machine learning to directly produce or alter videos, we also worked on strategies to automatize the shot of
sequences exploiting drones - in this case Deep Reinforcement Learning has been the tool of choice. All
in all, this task produced a high amount of relevant publications, totalling 2 top-tier journal publications
and 7 conference publications. Moreover, we also shared 4 open source software implementations, which
will also be provided for exploitation in use cases. Regarding the AI4Media use cases, all of the proposed
approaches are mapped to one or more use cases and requirements, as reported in every section. Below, we
briefly summarize the ongoing work associated with each partner in this task.

UNIFI UNIFI has been extending the research on trajectory prediction in order to exploit social cues.
This is a relevant direction for automated cinematography and in general improves over our previous work
for multiple trajectory prediction, which we developed in conjunction with 3IA-UCA. The current approach
is not trained end-to-end and the memory can not be used for reasoning. To this day, no end-to-end memory
augmented network for multiple trajectory prediction has been developed.

UNIFI is also keeping active its line of work on image and video enhancement for reuse of media
archives. In particular, we are extending our previous works [198, 199], in order to exploit the streaming
nature of videos, by leveraging the presence of sporadic high quality frames that can be transmitted. More-
over, we are working towards restoration networks that do not require prior knowledge of the distortion.

3IA-UCA 3IA-UCA has been working on the problem of head motion prediction in 360◦ videos and
has contributed a deep prediction model based on a sequence-to-sequence framework that was able to
efficiently fuse both positional and visual input modalities, as presented in section 3.6. However, legacy
regression approaches are only partly able to consider the intrinsic uncertainty of the human movement.
To date, no prediction method foreseeing multiple possible future trajectories exists for predicting head or
gaze movements of users of 360◦ videos. The immediate future work is hence to design uncertainty-aware
prediction models, capable of generating diverse plausible future trajectories, and the respective likelihood
of each. To do so, a collaboration has been initiated between UNIFI and 3IA-UCA, as UNIFI has recent
prominent contributions on the use of Memory Augmented Networks for multiple trajectory prediction for
autonomous vehicles. We are going to investigate such types of approaches, and compare with diverse
solutions relying on the broad family of dynamic variational auto-encoders.

UNITN In the near future, UNITN will concentrate on a new Attention-Guided Generative Adversarial
Network (AttentionGAN) for the unpaired image-to-image translation task. AttentionGAN should be able
to identify the most discriminative foreground objects and minimize the change of the background. At the
same time, attention-guided generators in AttentionGAN should be able to produce attention masks, and
then fuse the generation output with the attention masks to obtain high-quality target images. Accordingly,
we will also develop a novel attention-guided discriminator which only considers attended regions. We are
currently preparing a manuscript to be submitted to IEEE Transactions on Neural Networks and Learning
Systems.

We have also started to work on an implicit style function (ISF) to straightforwardly achieve multi-
modal and multi-domain image-to-image translation from pre-trained unconditional generators. The ISF
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manipulates the semantics of a latent code to ensure that the image generated from the manipulated code
lies in the desired visual domain. Our preliminary results on human faces and animal image manipulations
show significantly improved results over the baselines. The proposed model enables cost-effective multi-
modal unsupervised image-to-image translations at high resolution using pre-trained unconditional GANs.
We are currently preparing a manuscript to be submitted to IEEE Transactions on Multimedia.

MODL We are expanding on our preliminary work, both in terms of modelling and visualization. We
are working on developing our telemetry visualization interface into an interactive platform that allows
for easy access to player data. The users will have access to a statistical summary alongside predicted
motivation scores and predicted user profile. We are hoping to provide value and be able to integrate into
industrial quality assurance workflows with the final interface. On the modelling side, we are investigating
methods to process and model the data, and post-process predictions to provide a clearer picture about the
users’ motivational drives. We are looking into cleaning and transformation techniques to prepare data for
preference learning and investigating different modelling methods, which might yield more robust models.
Finally, we are investigating post-processing methods to format the results in a way that is easier to interpret.
A common issue with pairwise preference learning is the disconnect between prediction and usage. This
type of machine learning models learn a pairwise function that requires two inputs to compare, however,
in the wild we often want to see point-wise predictions. We are planning to address this limitation with
post-processing of our results.

AUTH We plan to finish currently on-going work about autonomous UAV cinematography, by extending
the developed Deep Reinforcement Learning (DRL) methods to all target-tracking Camera Motion Types
(CMTs) and improving upon them (e.g., by inserting reward terms for smooth drone trajectories). After
preparing and submitting the planned journal papers, we intend to explore DRL for high-level UAV cine-
matography planning. That is, to design, implement and evaluate a DRL agent that takes artistic decisions
about the optimal sequence of CMTs in the footage that is about to be filmed, instead of simply planning
on-the-fly UAV paths that facilitate the vehicle to execute a desired, prespecified CMT.

IRCAM Using our work on differentiable piano sound synthesis from symbolic musical representation,
we will develop a performance generation model that introduces into simplified piano music scores small
variations of velocity and note placement in time, for example, in way that it sounds more human. The
model will take inspiration from CycleGANs [37] to generate realistic symbolic performances without
aligned music scores, by comparing real performance recordings with synthetic performances rendered
with our differentiable piano model. Adding this performance generation models for other instruments
[193, 200], we will be able to synthetically generate realistic musical mixes from symbolic music where
MIR annotations are easier to extract.
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[152] Á. Periáñez, A. Saas, A. Guitart, and C. Magne, “Churn prediction in mobile social games: towards
a complete assessment using survival ensembles,” in Proceedings of the International Conference on
Data Science and Advanced Analytics (DSAA), pp. 564–573, 2016.

[153] M. Viljanen, A. Airola, J. Heikkonen, and T. Pahikkala, “Playtime measurement with survival anal-
ysis,” IEEE Transactions on Games, vol. 10, no. 2, pp. 128–138, 2018.

[154] T. Mahlmann, A. Drachen, J. Togelius, A. Canossa, and G. N. Yannakakis, “Predicting player behav-
ior in Tomb Raider: Underworld,” in Proceedings of the Symposium on Computational Intelligence
and Games (CIG), pp. 178–185, IEEE, 2010.

[155] K. Makantasis, A. Liapis, and G. N. Yannakakis, “From pixels to affect: a study on games and player
experience,” in Proceedings of the International Conference on Affective Computing and Intelligent
Interaction (ACII), pp. 1–7, IEEE, 2019.

[156] H. P. Martı́nez, M. Garbarino, and G. N. Yannakakis, “Generic physiological features as predictors
of player experience,” in Proceedings of the International Conference on Affective Computing and
Intelligent Interaction (ACII), pp. 267–276, Springer, 2011.

[157] V. Georges, F. Courtemanche, M. Fredette, P.-M. Léger, and S. Sénécal, “Developing personas based
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