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1. Executive Summary

Deliverable D5.1 “Initial report on Multimedia Summarisation and Analysis” is the first pub-
lic deliverable of Work-Package 5 (WP5) “Content-centered AI” of the AI4Media project. WP5
develops novel scientific approaches for content-centered AI, targeting issues in media content pro-
duction/processing and mostly relying on Deep Neural Networks (DNNs). Its scope broadly covers
AI for textual, visual, and audio media, multimedia production, enhancement, and summarisation.
D5.1 contains results of WP5 activities concerning Tasks T5.1 (“Media analysis and summarisa-
tion”), T5.3 (“Learning with scarce data”) and T5.6 (“Music Annotation and Audio Provenance
Analysis”) performed during the period M1-M12 of the project. It presents the developed methods
in their scientific context, the obtained evaluation results, as well as any relevant publications,
public software or plans for AI4EU software integration.

The deliverable sums up all research activities of the AI4Media partners participating in these
three Tasks up to M12, most of which have already led to several papers submitted or published
to well-known, relevant scientific venues. Moreover, the majority of the presented work is clearly
aligned with AI4Media use-cases identified in WP8, since WP5 aims at research with a direct
application focus. The deliverable concludes with a short discussion on future research directions
for the involved Tasks.

Task T5.1 focuses on AI-based analysis and summarisation of media data, such as images
or video. Work performed up to now and presented in this deliverable mainly consists of: a)
an exhaustive overview of the state-of-the-art in unsupervised video summarisation, along with
identification of current limitations and promising directions for future research, b) two novel,
complementary methods for unsupervised video summarisation, c) a literature survey on optical
flow estimation, instance segmentation and their joint calculation, d) development of novel AI
tools for creating, curating and managing media datasets based on archival data, and e) a novel
method for information retrieval on cultural media datasets, relying on a synthesis of computational
deep learning with symbolic semantic reasoning. The tools and methods developed in this Task
contribute to project use cases 1D1, 1D2, 3C2, 3A1 and 3A3, which concern search and management
of audiovisual items in archives, media content creation and adaptation, as well as intelligent
exploitation of pre-existing archives and informative content.

Task T5.3 deals with learning from scarce data, focusing on training or adapting DNNs for
scenarios marked by a lack of large-scale, domain-specific datasets and/or annotations. Work
performed up to now and presented in this deliverable mainly consists of: a) two novel methods
for few-shot visual object detection, b) an end-to-end CNN-based unsupervised domain adaptation
algorithm for traffic density estimation and counting, c) a visual content-based retrieval system
designed to support large-scale video search, d) a semi-supervised learning approach to fine-grained
visual categorization, e) a novel clustering method relying on a diversity-controlling objective, f)
a novel method for joint deep learning and dictionary-based representation learning for image
recognition with limited data, and g) a new curriculum self-paced learning approach to domain
adaptation for object detection. The tools and methods developed in this Task contribute to
project use cases 3A3, 3C2, 2B1 and 4C2, which concern intelligent exploitation of pre-existing
archives, media content creation and adaptation, automatic metadata tagging and video analysis.

Finally, Task T5.6 focuses on advanced audio analysis for automatic music annotation and
audio partial matching/reuse detection, mainly relying on DNNs. Work performed up to now and
presented in this deliverable mainly consists of: a) a novel method for music similarity analysis, b)
development of AI-based tools for generating music mixes based on MIDI, and c) a new approach
for audio phylogeny analysis with improved computational efficiency. The tools and methods
developed in this Task contribute to project use cases 5B2, 1A3 and 4C3, which concern musical
recording analysis, synthetic audio detection/verification and audio analysis.
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2. Introduction

AI4Media work-package 5 (WP5) is one of the main research work-packages of the project, with
a clear focus on developing novel approaches for content-centered AI that mostly rely on Deep
Neural Networks (DNNs). It has the following objectives:

1. Addressing AI issues in content production and processing in textual, visual and audio media,
multimedia production, enhancement, and summarisation.

2. Addressing limitations of Deep Learning related to training data scarcity, extending the
potential applicability of AI to a wider set of media.

3. Applying Deep Neural Networks (DNNs) to improve tools for analyzing content provenance
and reuse.

4. Investigating AI methods with the potential to revolutionize multimedia content production
by automating several processes.

5. Achieving improvements in the field of summarisation, specifically addressing high resolution
visual data and audio as special cases.

This document reports on activities concerning Tasks T5.1, T5.3 and T5.6, during Months
M1-M12 of the project. T5.1 relates to Objectives 1 and 5, T5.3 relates to Objective 2 and T5.6
relates to Objectives 1 and 3.

Efficient media analysis and summarisation is a set of hard computational problems, marked by
high application relevance in several domains. Modern AI can provide scientific tools for handling
similar problems, with existing methods being able to handle image, video, text and other data
modalities. T5.1 of AI4Media intends to advance the state-of-the-art in these areas, in a manner
consistent with application needs. Relevant project research gives special emphasis to unsupervised
video summarisation, i.e., the task of summing up a video into a set of temporally ordered key
video frames, that jointly capture the original video content in a succinct manner. In this context,
“unsupervised” refers to machine learning models trained without access to ground-truth, manually
annotated summaries, since constructing such summaries is difficult and time-consuming. Further-
more, AI4Media aims to investigate different ways of analyzing video using machine learning ap-
proaches, particularly modern DNNs, for tasks such as video captioning, face detection/recognition
or human activity recognition. Finally, T5.1 attempts to combine knowledge representations with
deep neurally-derived representations to design new information retrieval engines, where symbolic
reasoning and sub-symbolic learning are cooperating to increase media analysis potential. Progress
in these areas is detailed in Section 3 of this document.

Despite their high accuracy, DNNs typically require a lot of high-quality data to be properly
trained, making their deployment difficult in cases where large domain-specific datasets are not
readily available. Of course, fully supervised learning is the hardest scenario, since all training
examples have to be correctly annotated. T5.3 of AI4Media aims to advance the state-of-the-
art in methods attempting to facilitate DNN learning from multimedia content in the face of
data scarcity. Unsupervised domain adaptation, semi-supervised learning, few-shot learning, data
augmentation and unsupervised representation learning are approaches falling under this category,
sharing a common theme of reducing the need for massive, domain-specific, fully and manually
annotated training datasets. Methods of this type can increase applicability of DNNs in real-world
scenarios, with T5.3 also partially relating to WP3; notably to transfer learning and learning to
count. Progress of T5.3 activities is detailed in Section 4 of this document.
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Finally, AI-enabled music analysis is a topic of high industrial relevance that requires special
attention. T5.6 of AI4Media deals with automated music annotation and music similarity analysis,
as well as with audio partial matching/reuse detection and audio phylogeny analysis, mainly using
novel DNN-based methods. Music similarity analysis refers to the task of quantifying similarity
between different music tracks and is particularly significant for the music replacement problem,
i.e., when we search for a song as similar as possible to the query track. On the other hand,
automated music annotation refers to methods that permit automatic production/extraction of
annotation metadata for music tracks (e.g., for training DNNs in a supervised manner). Audio
phylogeny implies the automatic detection of processing history relationships between audio items,
while partial audio matching involves the detection and temporal localization of arbitrary partial
matches between different audio items. Progress of T5.6 activities is detailed in Section 5 of this
document, while Section 6 draws conclusions from the presented effort.
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3. Media analysis and summarisation methods

3.1. Overview

This Section reports work conducted on media analysis and summarisation. The first three subsec-
tions cover the topic of video summarisation: a literature survey that identifies promising future
research directions in summarisation, performed by CERTH, is followed by two novel methods for
unsupervised video key-frame extraction from AUTH. The next subsection presents an analysis
conducted by JR on the current state of the art for joint optical flow & instance segmentation,
taking into account combined methods as well as methods performing only one of these tasks.
Following this, the problem of unavailability of training data for developing media analysis meth-
ods is addressed; relevant end-to-end AI-based tools are presented that simplify the creation and
curation of data sets for training AI methods, developed by RAI. Finally, the last subsection
concerns 3IA-UCA research on using the outputs of media analysis for information retrieval, ex-
ploiting the combination of symbolic knowledge representations with sub-symbolic/computational
deep representations.

3.2. A Survey on Deep Learning Methods for Video Summarisation

Contributing partners: CERTH

3.2.1. Overview of the landscape and future directions

CERTH’s work initially focused on studying the recent advances in the field of automatic video
summarisation, with the aim to identify potential directions for future research. The outcome
of this study was a comprehensive survey of the existing deep-learning-based methods for video
summarisation, that represent the current state of the art. More than 40 different methods were
discussed in the survey, and grouped according to the taxonomy in Fig. 1. This taxonomy divides
the studied methods according to the utilized data modalities (first layer) and the adopted training
strategy (second layer). Then, the penultimate layer of this arboreal illustration shows the different
learning approaches that have been adopted in the bibliography. Finally, the leafs of each node of
this layer show the utilized techniques for implementing each learning approach. This taxonomy
was the basis for providing a systematic review of the relevant literature that showed the evolution
of the deep-learning-based video summarisation technologies and led to a few suggestions for future
developments.

Based on our study, we believe that future work should primarily target the development of
deep learning methods that can be trained effectively without the use of ground-truth data. In this
way, the research community will be able to tackle issues associated with the limited amount of
annotated data, and to significantly diminish (or even completely eliminate) the need for laborious
and time-demanding data annotation tasks. Towards this direction, the research community could
invest efforts in designing and developing deep learning architectures that can be trained in a
fully-unsupervised or in a semi-/weakly-supervised manner.

With respect to the development of unsupervised video summarisation methods, given the fact
that most of the existing approaches try to increase the representativenss of the generated sum-
mary with the help of summary-to-video reconstruction mechanisms, future work could target the
advancement of such methods by integrating mechanisms that force the outcome of the summari-
sation process to be aligned with additional criteria about the content of the generated summary,
such as its visual diversity (that was considered in [13, 14, 15, 16]) and its uniformity (that was
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Figure 1. A taxonomy of the existing deep-learning-based video summarisation methods.

Initial report on Multimedia Summarisation and Analysis 18 of 103



examined in [17]). On a similar basis, efforts could be put towards the extension of existing deep
learning architectures that combine the merits of adversarial and reinforcement learning [18], by
utilizing a Soft Actor-Critic [19] that is capable of further discovering the action space via automat-
ically defining a suitable value for the entropy regularization factor, or by introducing additional
rewards that are associated with the aforementioned summarisation criteria.

With regards to the development of semi- or weakly-supervised technologies, the goal would be
to investigate ways to intervene in the summary production process in order to force the outcome
(i.e., a video summary) to be aligned with user-specified rules. One approach in this direction,
is the generation of a summary according to a set of textual queries that relate to the summary
content (as in [20, 21, 22, 23, 24]). Another, more aspiring approach would be the use of an
on-line interaction channel between the user/editor and the trainable summarizer, in combination
with active learning algorithms that allow to incorporate the user’s/editor’s feedback with respect
to the generated summary (as in [25]). Finally, the possibility of adapting Graph Signal Pro-
cessing approaches [26], which have already been applied with success to data sampling [27] and
image/video analysis tasks [28, 29], for introducing such external supervision could be examined.
The development of effective semi- or weakly-supervised summarisation technologies will allow to
better meet the needs of specific summarisation scenarios and application domains. For example,
such developments are often important for the practical application of summarisation technologies
in the News/Media Industry, where complete automation that diminishes editorial control over the
generated summaries is not always preferred.

Concerning the training of unsupervised video summarisation methods, we show that most of
these methods rely on the adversarial training of GANs. However, open questions with respect
to the training of such architectures, such as sufficient convergence conditions and mode collapse,
still remain. So, another promising research direction could be to investigate ways to improve the
training process. For this, one strategy could be the use of augmented training data (that do not
require human annotation) in combination with curriculum learning approaches. Such approaches
have already been examined for improving the training of GANs (see [30, 31, 32]) in applications
other than video summarisation. We argue that transferring the gained knowledge from these works
to the video summarisation domain would contribute to advancing the effectiveness of unsupervised
GAN-based summarisation approaches. Regarding the training of semi- or weakly-supervised video
summarisation methods, besides the use of an on-line interaction channel between the user/editor
and the trainable summarizer that was discussed in the previous paragraph, supervision could
also relate to the collection of an adequately-large set of unpaired data (i.e., raw videos and video
summaries with no correspondence between them) from a particular summarisation domain or
application scenario. Taking inspiration from the method in [15], we believe that such a data-
driven weak-supervision approach would eliminate the need for fine-grained supervision signals
(i.e., human-generated ground-truth annotations for the collection of the raw videos) or hand-
crafted functions that model the domain rules (which in most cases are really hard to obtain), and
would allow a deep learning architecture to automatically learn a mapping function between the
raw videos and the summaries of the targeted domain.

Another future research objective involves efforts to overcome the identified weaknesses of
using RNNs for video summarisation that were discussed e.g., [33, 34, 14, 17] and mainly relate to
the computationally-demanding and hard-to-parallelize training process, as well as to the limited
memory capacity of these networks. For this, future work could examine the use of Independently
Recurrent Neural Networks [35] that were shown to alleviate the drawbacks of LSTMs with respect
to decaying, vanishing and exploding gradients [17], in combination with high-capacity memory
networks, such as the ones used in [36, 37]. Alternatively, future work could build on existing
approaches [33, 14, 38, 39] and develop more advanced attention mechanisms that encode the
relative position of video frames and model their temporal dependencies according to different
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granularities (e.g., considering the entire frame sequence, or also focusing on smaller parts of it).
Such methods would be particularly suited for summarizing long videos (e.g., movies). Finally,
with respect to video content representation, the above proposed research directions could also
involve the use of network architectures that model the spatiotemporal structure of the video, such
as 3D-CNNs and convolutional LSTMs.

Currently, the dominant approach with respect to the utilized data modality for learning sum-
marisation, is to focus on the analysis of the visual content. Nevertheless, the audio modality of
the video could be a rich source of information as well. For example, the audio content could help
to automatically identify the most thrilling parts of a movie that should appear in a movie trailer.
Moreover, the temporal segmentation of the video based also on the audio stream could allow
the production of summaries that offer a more natural story narration compared to the generated
summaries based on approaches that rely solely on the visual stream. We argue that deep-learning
architectures that have been utilized to model frames’ dependencies based on their visual content,
could be examined also for analyzing the audio modality. Following, the extracted representations
from these two modalities could be fused according to different strategies (e.g., after exploring the
latent consistency between them, as in [40]), to better indicate the most suitable parts for inclusion
in the video summary.

Finally, besides the aforementioned research directions that relate to the development and train-
ing of deep-learning-based architectures for video summarisation, we strongly believe that efforts
should be put towards the definition of better evaluation protocols to allow accurate comparison
of the developed methods in the future. The discussions in [41] and [42] showed that the existing
protocols have some imperfections that affect the reliability of performance comparisons. To elim-
inate the impact of the choices made when evaluating a summarisation algorithm (that e.g., relate
to the split of the utilized data or the number of different runs), the relevant community should
consider all the different parameters of the evaluation pipeline and precisely define a protocol that
leaves no questions about the experimental outcomes of a summarisation work. Then, the adoption
of this protocol by the relevant community will enable fair and accurate performance comparisons.

3.2.2. Contributions to WP8 Use cases

Relevant WP8 Use Cases: 1D2 (Audiovisual Item Management in Verification Archives), 3A1
(Informative Content exploitation). This study contributes to use cases 1D2 and 3A1, by providing
future directions of research towards addressing the need for algorithms that enable generating
video summaries. These are needed by journalists and programme producers, for allowing them
to quickly decide whether an original (typically, longer) video is the video that they need or are
searching for, and to (semi-)automatically generate the highlights from a retrieved video so as to
speed-up the editorial content creation process.

3.2.3. Relevant Publications

• E. Apostolidis, E. Adamantidou, A. Metsai, V. Mezaris, I. Patras, ”Video Summarisation Us-
ing Deep Neural Networks: A Survey”, arXiv:2101.06072, https://arxiv.org/abs/2101.06072.

3.3. Adversarial Reconstruction with Orthogonal Dictionaries for Deep
Unsupervised Video Summarisation

Contributing partners: AUTH
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3.3.1. Method Overview

AUTH worked on unsupervised video summarisation, using a state-of-the-art implementation [1]
of the common Deep Neural Network (DNN)-based adversarial reconstruction framework [43] as a
baseline. This framework is architecturally composed of a multi-branch LSTM/GAN combination
that is fed individual video frame representations, extracted from a pretrained CNN, as input.
Under this paradigm, the neural model learns to select key-frames that are jointly able to non-
linearly reconstruct the full original video sequence, while remaining diverse in visual content.
AUTH contributed a novel loss function that can be added to the set of adversarial reconstruction
training objectives, so as to further push the DNN towards selecting key-frames that can linearly
reconstruct the complete video sequence, using a learnt, orthonormal global visual dictionary.
Thus, this Orthonormal Dictionary-based Summarisation method is composed of three interacting
components:

• A Dictionary Loss term that penalizes the inability of the extracted summary to linearly
reconstruct the original video,

• An auxiliary Orthonormality Regularizer that affects the Dictionary Loss computation, and
• A Full-video Autoencoder LSTM, i.e., a new, pretrained neural branch that is appended to

the overall training-stage architecture and runs in parallel to the existing neural modules, so
that the Dictionary Loss can be computed. It can be discarded at the inference stage.

3.3.2. The adversarial reconstruction framework

The original/full/complete input video sequence is represented by a matrix X ∈ RM×T , where M is
the dimension of each input video frame representation and T is the total number of video frames in
the source sequence. The temporally ordered video frame representations xt ∈ RM , t ∈ [1, . . . , T ]
are typically extracted from a pretrained CNN. These representations are being sequentially fed
to the LSTM-based Summarizer which unfolds into T time steps. The Summarizer comprises of
three LSTM submodules: the Selector, the Encoder and the Decoder. The Selector outputs a
real vector s ∈ [0, 1]T which encodes the scalar importance of each input video frame, i.e., its
suitability as a key-frame. Subsequently, the scalar products stxt, t ∈ [1, . . . , T ] are computed
and fed to the Encoder, which in turn produces the internal fixed-length representation of the
summarized video e ∈ RH , where H is the vector length of the Encoder’s hidden state. Then,
e is fed to the Decoder, whose output is the summary-based reconstructed video sequence X̂ ∈
RM×T . Finally, the columns of X̂ and X are fed to the Discriminator LSTM, also unfolding
into T time steps, which is tasked to discern which sample is an original video real one and
which is a summary-based reconstruction. Thus, across all training iterations, the Discriminator
is fed both original input videos and summary-based reconstructions, as real and fake samples,
respectively, at an approximately 50:50 ratio. The overall architecture is depicted in Figure 2.
Training is performed with error back-propagation and gradient descent, with module parameters
being jointly learnt so that various loss functions are concurrently minimized. We define θs, θe, θd, θc
as the parameters of the Selector, the Encoder, the Decoder and the Discriminator, respectively.
Additionally, let φ(X)/φ(X̂) be the final hidden state vector of the Discriminator when it is fed as
input an original video/its summary-based reconstruction, respectively. Finally, let C(X)/C(X̂)
be the output probability of the Discriminator when it is fed X/X̂, respectively. The following loss
functions are used [43, 1]:

• Reconstruction Loss Lrecon = ||φ(X) − φ(X̂)||22. The distance between the Discriminator’s
internal fixed-length representation of an original video and of its summary-based reconstruc-
tion (outputted by the Decoder) is used to update parameters θs, θe and θd. This is the main
loss directing the training of the LSTM-based Autoencoder and the Selector.
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• Originality Loss Loriginal = (1− C(X))
2
, represents the mean squared error between a

ground-truth label of 1, denoting that the Discriminator’s input is actually an original/complete/full
(“real”) video, and the Discriminator output. It is used to update θc.

• Summary Loss Lsum =
(
C(X̂)

)2
, which penalizes the deviation between a ground-truth label

of 0, denoting that the Discriminator’s input is actually a summary-based reconstruction
(“fake”) video, and the Discriminator output. It is used to update θc.

• Generator Loss Lgen =
(

1− C(X̂)
)

represents the mean squared error between a label of 1

and the Discriminator output, when the Discriminator’s input is actually a summary-based
reconstruction (“fake”) video. It is used to update θd, so that the Decoder learns to fool the
Discriminator.

• Sparsity Loss Lsparsity = || 1T
∑T
t=1 st−σ||2, which pushes the Selector towards assigning high

importance (i.e., key-frame status probability) to a specific percentage of the total number
of original video frames, defined by a scalar hyperparameter σ ∈ [0, 1]. This penalty term
updates θs.

• Determinantal Point Process (DPP) Loss, which is a regularizer pushing towards high global
summary saliency (i.e., high visual content diversity in the selected key-frames). It is used
to update θs and θe. First, we consider a matrix L ∈ RT×T by computing the pairwise
cosine similarity for time step t and t′ that is, L = etet′ . Then, the DPP loss is given by

Ldpp =
det(Ly)
det(L−I) where Ly is a minor submatrix of L whose rows and columns are dictated

by the indices of the selected key-frames, according to s, and I is the identity matrix.
After training is complete, the Selector LSTM is the only component needed for inference; the

Autoencoder and the Discriminator can be readily discarded.

3.3.3. Proposed Method

The Full-video Autoencoder is composed of two LSTM submodules. Its encoder sequentially re-
ceives original video frame representations xt and its decoder reconstructs them across T time
steps. The final hidden state of the encoder h ∈ RN , obtained after the T -th video frame has
been processed, constitutes an internal, fixed-length representation of the entire full/original input
video. The Full-video Autoencoder is pretrained before being inserted into the general adversarial
reconstruction framework, by minimizing a MSE-based reconstruction loss function. However, af-
ter it has been trained, its decoding LSTM is no longer required; only the encoding part is in fact
needed for inference, while training the augmented adversarial reconstruction architecture.

The addition of the Full-video Autoencoder permits us to compute an “ideal” fixed-length rep-
resentation h of the original/complete video, which reflects original visual content more accurately
than the Discriminator’s internal representation φ(X). This is because the latter one is optimized
for discerning between “real” and “fake” examples and not for serving as a compressed, fixed-length
representation of the original video.

The proposed Dictionary Loss term, which is added to the pool of employed loss terms described
in 3.3.2, employs the video-specific representation h and a learnable matrix A ∈ RN×H , shared
across all training videos. It is defined as follows:

Ldict = ||h−Ae||2, (1)

where e ∈ RH is the final hidden state of the LSTM Encoder, i.e., a fixed-length representation of
the summary video.

Each time Ldict is computed, A projects e onto a vector space that is being learnt from the
original data distribution, rendering A a global visual dictionary. The benefit we reap from this
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Figure 2. The proposed Orthonormal Dictionary-based Summarisation training-stage architecture. AUTH
contributions are encompassed in the light gray bounding box.

is double-fold. First, each summarized video representation e is forced to be a set of coefficients
capable of linearly reconstructing the corresponding original input representation h. This linear
reconstruction constraint is complementary to the non-linear one enforced by the Decoder and
Lrecon, thus pushing further towards selecting key-frames that are visually representative of the
full original video. Secondly, Ldict is only used to update parameters θs, θe and matrix A, thus
preventing an overfitting of θd to the training set to compensate for subpar key-frame selection by
the Selector.

In order to push the atoms of the global visual dictionary A towards being independent, thus
minimizing redundancy, an additional Orthonormality Regularizer is also proposed that exhorts
the columns of matrix A to be orthonormal. Thus, they are strongly encouraged to be linearly
independent basis vectors. This is accomplished by the following loss term:

Lortho = ||AAT − I||22, (2)

where I is the identity matrix. The gradient signal produced by this regularizer, penalizes the
entries of matrix A and pushes its rank to maximization. As a result, training tends to converge
to a A which is orthogonal (if N = H) or semi-orthogonal (if N 6= H).
Ldict and Ldict are jointly employed, along with the pretrained encoding part of the Full-video

Autoencoder, at the training stage only. Both matrix A and the Full-video Autoencoder can be
discarded afterwards, so that the runtime overhead of the proposed method during inference is
zero.

3.3.4. Evaluation

Evaluation of unsupervised video key-frame extraction methods on a dataset is typically conducted
using the popular F-Measure metric (F ), also known as F-Score, or F1. Assuming that: a) a
summary/key-frame set is represented as a binary vector y ∈ RT , where the entry yi, 1 ≤ i ≤ T is
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Method TVSum SumMe

SUM-GAN-AAE [1] 58.3% 48.9%

SUM-GAN-AAE [1]+Ldpp 61.0% 56.5%

SUM-FCNunsupervised [44] 52.7% 41.5%

DR-DSN [45] 57.6% 41.4%

EDSN [46] 57.6% 42.6%

Unpaired VSN [47] 55.6% 47.5%

PCDL [48] 58.4% 42.7%

SUM-GAN-sl [49] 58.4% 47.8%

Cycle-SUM [50] 57.6% 41.9%

ACGAN [51] 58.5% 46.0%

Proposed Method 65.0% 62.2%

Table 1. Comparative F-Score results of several DNN-based unsupervised video summarisation methods in two
common benchmark datasets. The reported figures are from the original papers. The best results are highlighted in
bold. The second best results are underlined.

1/0 if the i-th video frame is/is not a part of this summary, and b) a ground-truth summary exists
for the test set, then:

F = 2× PR

P +R
× 100%, (3)

where P is the precision and the R the recall. Assuming that the DNN-generated summary/key-
frame set is s and the ground-truth one is g, it holds that:

P =
s ∩ g

|s|
, (4)

R =
s ∩ g

|g|
. (5)

An implementation of the adversarial reconstruction framework augmented with the proposed
method achieves state-of-the-art results in quantitative comparisons with competing unsupervised
approaches, in two commonly employed and publicly available datasets (TVSum [52], SumMe [53]):
it achieves F-Score gains of 4%/5.7%, in the TVSum/SumMe dataset, respectively, compared to
baseline. Table 1 depicts F-Score results for several recent DNN-based unsupervised key-frame
extraction methods, given a sparsity percentage of σ = 15% (meaning that the requested summary
must have approximately 15% of the temporal length of the original video). To better analyze the
performance of the proposed method, an ablation study was conducted on top of the [1] codebase.

This work has been submitted as a conference paper. Previously, a preliminary version (without
the Orthonormality Regularizer and building upon a less advanced baseline) had also been accepted
as a paper to the IEEE International Conference on Image Processing 2021 (ICIP), showcasing
less impressive F-Score gains compared to baseline (1%/2.1%).

3.3.5. WP8 Use cases Contributions

Relevant WP8 Use Cases: 1D2 (Audiovisual Item Management in Verification Archives), 3A1
(Informative Content exploitation). This method contributes to use cases 1D2 and 3A1, by pro-
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Regularizer combination TVSum SumMe

Lsparsity ([1]) 58.3% 48.9%

Lsparsity + Ldpp 61.0% 56.5%

Lsparsity + Ldict 59.3% 51.0%

Lsparsity + Ldict + Lortho 64.9% 59.3%

Lsparsity + Ldict + Lortho + Ldpp 65.0% 62.2%

Table 2. Regularizer ablation study, using [1] as the main codebase in all cases. The proposed novel terms are
Ldict and Lortho.

viding algorithms supporting easy video storage and browsing. These are needed by journalists
and programme producers.

3.3.6. Relevant Publications

• M. Kaseris, I. Mademlis, I. Pitas, ”Adversarial Unsupervised Video Summarisation Aug-
mented With Dictionary Loss”, IEEE International Conference on Image Processing (ICIP)
2021, accepted for presentation (Zenodo Record: https://zenodo.org/record/4899284).

• M. Kaseris, I. Mademlis, I. Pitas, ”Learning Orthonormal Dictionaries for Deep Unsupervised
Video Summarisation”, technical report, submitted as conference paper

3.4. Exploiting Caption Diversity for Unsupervised Video Summarisa-
tion

Contributing partners: AUTH

3.4.1. Method Overview

Independently from Orthonormal Dictionary-based Summarisation, AUTH also investigated a way
to increase key-frame extraction performance of the common Deep Neural Network (DNN)-based
adversarial reconstruction framework [43] (as described in Subsection 3.3.2), using [1] as a baseline.
To this end, a novel regularizer was devised that pushes towards increased diversity on the selected
key-frames, with regard to their caption-related latent representations. These representations are
LSTM hidden states, corresponding to each selected key-frame, that are being internally produced
by a pretrained DNN-based image captioner. Each time the summarizer DNN processes a video
frame, the latter one is also fed to the captioner DNN in order to compute its respective caption-
related latent representation. Thus, the novel regularizer penalizes key-frame sets with low caption
diversity. Similarly to Orthonormal Dictionary-based Summarisation, this method too imposes zero
runtime overhead during inference.

3.4.2. DPP-caption Loss

Image captioning consists in generating a textual, natural-language description for a given RGB
image. The primary challenge lies in two aspects: extracting adequate information from the
visual content and generating grammatically correct, human-readable sentences. Several supervised
DNN-based image captioning approaches exist, mostly involving architectures relying on CNNs and
LSTMs.
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The proposed method is a reformulation of the so-called DPP loss, which has been successfully
applied as a regularizer for enforcing summary diversity in [43]. Determinantal Point Processes
(DPPs) are elegant probabilistic models of repulsion that, in the video summarisation context,
quantify the variance of selected key-frame representations. Since the employed convolutional
representations per video frame encode object-centric semantic information, the original DPP loss
pushes towards summaries composed of key-frames that depict different objects.

In the context of this work, a novel variant of the DPP loss is proposed, called DPP-caption
loss, or Ldpp−c, which relies on a pretrained DNN-based image captioner. At each iteration of
the summarisation DNN training, Ldpp−c pushes towards selecting key-frames that differ in their
textual description according to the respective captioner output. This enforces additional diversity
in the derived summary, based on a non-object-centric semantic modality. For instance, an image
caption may focus on depicted activities or scene context, instead of the visible objects.

The proposed novel regularizer Ldpp−c requires an LSTM-based image captioner, pretrained on
a generic mass-scale annotated dataset, which we denote by P . During training an unsupervised
summarisation DNN falling under the adversarial reconstruction framework, each video frame is
forwarded to P (in inference mode), in parallel to feeding them to the encoder E. Thus, the
final hidden state of P encodes features representing a semantic textual description of said image,
including visible objects, activities and scene context.

Then, Ldpp−c can be computed as a loss term similarly to the original DPP term, in the
following manner:

Ldpp−c = −log
(
detP(s)

detP + I

)
, (6)

where P ∈ RN×N is a similarity matrix between every two final hidden states of the LSTM in P
and P(s) is a smaller square matrix cut down from P given s. Ldpp−c is also used to update θs.

Evidently, Ldpp−c induces a different kind of semantically informed diversity into the computed
summary, in comparison to original Ldpp. The proposed method simply consists in adding Ldpp−c
to the pool of the employed loss terms while training the complete summarisation DNN model.
After training is finished, P may be completely removed from the architecture; thus there is zero
runtime overhead in inference mode.

3.4.3. Evaluation

In order to evaluate the proposed method, the implementation [1] of the adversarial reconstruction
framework (SUM-GAN-AAE) was adopted as a baseline. The reason behind this choice was solely
practical; in principle, the proposed method can be used to augment any other variant of the general
framework, as well.

The employed image captioner was comprised of a typical Encoder-Decoder architecture. The
Encoder was a ResNet-152 CNN [54], pretrained for whole-image classification on the generic
ImageNet dataset [55]. The CNN produces a 2048-dimensional vector representation capturing
the semantic, object-centric content of the input image. Subsequently, this is fed to the LSTM
Decoder, in order to predict a textual, natural-language caption for the given image. The LSTM
is temporally unfolded for K time instances, where K is the maximum caption length (in words).

Evaluation was conducted on two publicly available, commonly used datasets: TVSum [52]
and SumMe [53]. Each one was partitioned into 5 random splits, using a 80%-to-20% ratio for
training and testing, respectively. The typically used F-Score metric was employed for performance
evaluation, as is common in the literature. Table 3 depicts F-Score results for several recent DNN-
based unsupervised key-frame extraction methods, given a sparsity percentage of σ = 15%. The
reported final figure is the mean F-Score performance across the 5 validation set splits. Evidently,
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Method TVSum SumMe

SUM-FCNunsupervised[44] 52.7% 41.5%

DR-DSN [45] 57.6% 41.4%

EDSN [46] 57.6% 42.6%

Unpaired VSN [47] 55.6% 47.5%

PCDL [48] 58.4% 42.7%

SUM-GAN-sl [49] 58.4% 47.8%

Cycle-SUM [50] 57.6% 41.9%

ACGAN [51] 58.5% 46.0%

SUM-GAN-AAE [1] 58.3% 48.9%

Proposed Method ([1] + Ldpp−c) 62.6% 56.9%
Table 3. Comparative study against competitive unsupervised learning methods. The metric used here for
evaluation is the F-score. Bold indicates the best results.

augmenting the baseline codebase of [1] with the proposed method during training, gives rise to
significant F-score gains.

This work has been submitted as a conference paper.

3.4.4. WP8 Use cases Contributions

Relevant WP8 Use Cases: 1D2 (Audiovisual Item Management in Verification Archives), 3A1
(Informative Content exploitation). This method contributes to use cases 1D2 and 3A1, by pro-
viding algorithms supporting easy video storage and browsing. These are needed by journalists
and programme producers.

3.4.5. Relevant Publications

• M. Kaseris, C. Aslanidou, I. Mademlis, I. Pitas, ”Exploiting Caption Diversity for Unsuper-
vised Video Summarisation”, technical report, submitted as conference paper

3.5. Joint optical flow and instance segmentation

Contributing partners: JR

3.5.1. Analysis of current state of the art for joint optical flow & instance segmen-
tation

JR did an analysis of the current state of the art for joint optical flow & instance segmentation,
taking into account combined methods as well as methods performing only one task and available
datasets for training. Based on this analysis, JR will research a first prototype for joint optical
flow & segmentation.

The term Optical Flow describes the motion of each pixel in an image relative to another image
and was introduced in 1981 by Horn and Schunck [56]. This method is based on energy minimiza-
tion, and is thus computationally expensive. Early methods, like the Lucas-Kanade Registration
algorithm [57] have been replaced by deep learning methods. Some of these architectures make use
of CNNs, like FlowNet [58] and its improved version FlowNet 2.0 [59]. But as the FlowNet2 method
has a quite large model, it has a quite high memory footprint and is more prone to overfitting. A
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big improvement has been achieved with the PWC-Net [60]. It makes use of warping, pyramids
and cost volume and achieves a higher performance and accuracy than both FlowNet variants by
having a more compact model. Further improvements were made in the RAFT [61] paper, which
introduces an encoder-decoder based transformer [62] model. The latest state-of-the art method
is presented in the GMA [63] paper. It is based on RAFT [61] and additionally introduces global
motion aggregation. There, it is assumed that all points which belong to the same object are
moving into the same direction. As a result, especially occlusion handling in the two-frame setting
is significantly improved.

Semantic Segmentation defines the process of assigning each pixel in an image to a certain
class with a certain label. Instance Segmentation is a special case of Semantic Segmentation,
where a distinction between different in-class instances is made additionally. Well performing
methods like Mask R-CNN [64] use a two stage approach, where candidate regions of interest
(ROIs) are generated in the first and then classified and segmented in the second stage. This has
the disadvantage that the computation time is quite high and far away from real time (>= 30fps).
Another approach for Instance Segmentation has been proposed by Wang et al. [65]. There, the
SOLO [66] algorithm, where center locations and object sizes are taken into account for performing
the segmentation, was refined. This made it possible to solve the problem more efficiently and thus,
finally doing Real-Time Instance Segmentation with the SOLO approach. YOLACT [67] proposed
to split the instance segmentation problem into two parallel tasks, which are the generation of a
set of prototype masks and a prediction of the mask coefficients per instance. This is the first real-
time instance segmentation approach on the MS COCO [68] dataset, but with worse performance
than the slower Mask R-CNN algorithm in terms of accuracy. The YOLOACT algorithm has been
refined further in YOLACT++ [69], which came up with deformable convolutions in the backbone
and a fast mask re-scoring branch. SipMask [70] has been released after the YOLACT [67] paper
and states that the lack of accuracy in YOLACT has its reason in the loss of spatial information,
and tackles this problem by preserving it per bounding box. Also, the prediction of a mask is split
into multiple predictions of sub-masks. As a result, the delineation of spatially adjacent objects
has been improved compared to YOLACT. This is currently the best performing approach for
real-time Instance Segmentation.

Multi task learning [71] is a generalization improving approach, which uses the domain infor-
mation contained in two related tasks during training of two or more related tasks as inductive
bias. A shared representation is used for learning those tasks in parallel. In an optimal case, this
leads to better results for all of tasks, compared to doing the training individually. Although there
has been no research regarding joint learning of Optical Flow and Instance Segmentation in a real-
time scenario published yet, there are some approaches which combine Optical Flow with related
tasks like Semantic Segmentation [72] [73] [74], and both of them in combination with Disparity
Estimation [75]. Also, there has been research in the direction of combining Disparity Estimation
with Instance Segmentation [76]. Hur and Roth [72] use a Superpixel approach, published by Yao
et al. [77] for estimating the Optical Flow, combined with a FCN [78] for performing Segmentation.
SegFlow [73] uses a fully connected CNN-based architecture for the Semantic Segmentation branch
and a FlowNet [58] based architecture for the Optical Flow branch. In the paper it is shown that
joint learning of both Optical Flow and Semantic Segmentation clearly improves the results of both
tasks compared to learning them separately. Ding et al. [74] also perform Occlusion Estimation
and use an Encoder-Decoder based structure with a shared encoder and a separate decoder for
each, Flow estimation and Segmentation. This methodology outperforms all tasks in related set-
tings. SENSE [75] additionally performs Occlusion and Disparity estimation. It is also based on
an Encoder-Decoder architecture, having a shared encoder and separate decoders for each of the
tasks. Also, the decoders are designed in a plug and play architecture, where one or more tasks
can simply be removed or added from learning or inference.

Initial report on Multimedia Summarisation and Analysis 28 of 103



With regards to available datasets, one of the most often used training datasets for Optical
Flow is the Sintel [79] dataset. It is an animated short film which has explicitly been created for
Optical Flow evaluation and is known for being challenging for current estimation methods. Also,
the KITTI [80] dataset is well known for being widely used in Optical Flow evaluation. Flying
Chairs [58] is a dataset which has an Optical Flow ground truth and has been extended to Flying
Chairs 2 [81] with additional modalities. For Real-Time Instance Segmentation, mainly the MS
COCO [68] dataset is used for evaluation.

3.5.2. Contributions to WP8 Use cases

Relevant WP8 Use Cases: 3C2-6 (Video object recognition), 3C2-7 (Video object localisa-
tion). The instance segmentation can contribute to use-cases 3C2-6 and 3C2-7, by recognizing and
localizing (with a bounding box) objects in an image.

3.6. End-to-End Tools to Simplify the Creation, Curation and Usage of
Data Sets for AI Applications

Contributing partners: RAI

3.6.1. Method Overview

RAI worked on the study of end-to-end tools to simplify the creation, curation and usage of data
sets for AI applications. The work is supported by the observation that data sets for real-life tasks
are scarce, expensive to produce and (often) inaccurate. A common idea to solve this problem is
to exploit broadcaster’s archives as a source of ground truth and hence of data sets. However, this
approach has many advantages as well as disadvantages [82]. On the one hand, archival metadata
are curated and checked by professionals, thus ensuring high-quality and quantity annotations.
On the other hand, some important issues must be carefully considered. First, archive’s metadata
are stratified over many decades and compliant to different description models evolved over time.
Even in the case in which information schemes are shared, they may be used following distinct
criteria by different teams. Next, documentalists may interpret and apply annotation criteria
differently, making difficult to link content annotated by multiple people. Finally, long to mid-term
variations of documentation budget can influence the detail and depth of annotations, resulting in
heterogeneous metadata even for the same content genre. As an example, archival metadata tell us
that, e.g., some people are framed within a certain video segment, but no information is provided
about the exact positions in time and space where their faces appear.

To address the aforementioned issues, a hybrid approach was investigated, using archival an-
notations, archive content and external resources (e.g., Web knowledge bases) as key assets. As
representative case studies, two application scenarios were considered, namely Face Management,
and Landmark/Work-of-Art Detection, which are overviewed in the following subsections. This is
an on-going work for which preliminary results are presented later in Subsec. 3.6.4. Publication in
relevant conferences and journals in the area of computer applications will be considered.

3.6.2. Face Management

Face management deals with the problem of detecting, clustering and (possibly) identifying facial
images. Various approaches for unconstrained face recognition in videos have already been pro-
posed [83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94], but several further issues must be considered.
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To our knowledge, only few benchmark data sets have been publicly released to address this task.
Even if huge in size, collecting in some cases millions of images, they suffer from some intrinsic
limitations that impact on their usability. First, almost all of them focus on very popular celebri-
ties only. However, it is often desirable to be able to treat less familiar entities like e.g., minor
league players, supporting performers or emerging people. Next, they have been designed in terms
of either breadth (i.e., many people but few images for each person) or depth (i.e., few people but
many images for each person) of data, when they should instead combine both [95]. Moreover,
they are prone to technological (e.g., camera settings or lighting conditions) or demographic (e.g.,
ethnicity, gender, age) biases that negatively impact the ability of AI models to generalise across
data sets [96]. Finally, existing data sets are affected by incorrect annotations, which dramatically
increase along the data set size [97].

Broadcasters’ archives can help moving forward in this research endeavour. The workflow
under investigation runs as follows. First, given an input video (e.g., an episode of a fiction series),
the list of people involved in the video (e.g., the cast) is extracted with the help of the archive
documentation or other knowledge bases. Next, a set of images depicting those people is collected
from the Internet and used as reference gallery. Then, face detection, embedding and clustering
tasks are performed to group faces depicted in the input video. To this purpose, several state-of-
the-art face analysis and data clustering algorithms [98, 99, 100, 101, 102] have been studied and
experimented to find the most appropriate solution. Finally, clustered faces are used as a probe
set to be matched against the reference gallery, with the help of a state-of-art fast approximate
nearest neighbor search algorithm [103].

Exploiting the richness, breadth and diversity of the archives, the workflow presented above
may be used to construct more balanced data sets from a variety of input videos.

3.6.3. Landmark/Work of Art Detection

A similar approach has been adopted to address the landmark/work-of-art detection task. Land-
mark/work of art detection is a key task in multimedia management since it allows to enrich
content with features that are tightly linked to certain users’ needs. This is particularly true for
genres like art, culture and tourism, where the information about monuments, sculptures, paint-
ings and human-made landmarks are important for filtering and retrieval and for recommendation.
Also in this case, broadcasters’ archives are an important source of exemplary material, together
with publicly available data repositories and services, such as Wikidata [104]. Unlike other kind
of tasks, that of landmark recognition is one for which is quite difficult to build generic reference
data sets since the relevance of detection is highly dependent on the content genre, the purpose
of publication and the user context. For this reason, in the reference period, works have been
focused on reviewing and studying automatic/semiautomatic methods for reference database con-
struction rather than on the retrieval/matching technology. A visual model of the workflow under
investigation is shown in Fig. 3.

3.6.4. Evaluation

As stated earlier, the face management tool is built on a deep learning pipeline, whose tasks include
state-of-the-art algorithms for face finding, representation, grouping and labelling.

Finding the presence of faces in a video employs RetinaFace [98], a Feature Pyramid Network
(FPN) for accurate face detection and 2D face alignment. The authors of RetinaFace showed that
their method is robust, fast and highly accurate in estimating the position of faces even under
critical conditions such as pose variations, illumination changes and occlusions.
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Figure 3. Automated creation of reference data sets for landmark/work-of-art recognition.

Face representation uses ArcFace [99], a Deep Convolutional Neural Network (DCNN) that
implements an Additive Angular Margin Loss to obtain highly discriminative power of face feature
embeddings. The authors of ArcFace demonstrated that their approach outperforms the best face
recognition methods.

Face grouping first creates a graph of connected faces, where the nodes of the graph are the
ArcFace embeddings, and the edges are the Cosine similarity between them. Then, it applies the
Chinese Whispers graph clustering algorithm [102] to find groups of similar faces. The Chinese
Whispers algorithm was chosen among others due to its ability to handle clusters of different sizes,
densities and shapes in noisy high dimensional data, without the need of specifying any custom
parameters. Initial qualitative studies show that this clustering approach is very promising, being
able to group face images of the same person over different conditions like size, pose, illumination,
make up and occlusions (e.g., glasses, caps, masks).

Lastly, face labelling applies a retrieval-based open-set face identification strategy to assign
each cluster the identity of the corresponding person. In biometric applications, the objective of
open-set identification is to correctly identify probe faces that are present in a gallery of reference
faces, while rejecting probe faces that do not belong to the gallery. This is implemented through
the Hierarchical Navigable Small World (HNSW) library [103], an efficient algorithm to perform
approximate K-Nearest Neighbor (KNN) search. The capability of identifying people within the
clusters was tested using a gallery of 66 RAI newsreaders, and a probe set of about 10,000 faces
detected in RAI newscasts. The Cosine similarity was set as the distance metric. The performance
was measured computing the Detection and Identification Rate (DIR) versus the False Alarm Rate
(FAR) [105] for the rank K equal to one and Cosine similarity varying from zero to one (see Fig. 4).

Regarding the landmark/work of art detection task, initial experiments have been done using
WikiData SPARQL endpoint to retrieve reference still pictures data sets and on a combination of
state-of-the-art content analysis and management tools to build the detector, like MPEG CDVS
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Figure 4. DIR vs. FAR curve describing the trade-off for rank one identification and false alarms for the face
labelling task. The red dotted line represents a system that is no better than random guessing. The solid blue line
represents the measured values. The AUC (Area Under the Curve) score is 0.97, denoting an excellent
performance. The best balance between DIR and FAR is obtained for Cosine similarity equal to 0.4.

reference model [106], OpenCV and FFMPeg libraries.

3.6.5. Contributions to WP8 Use cases

Relevant WP8 Use Cases: 3A1 (Informative Content exploitation), 3A3 (Archive exploitation).
The presented approach is directly related to use-cases 3A1 and 3A3, by providing a methodology
for the detection and labelling of regions of interest (e.g., faces, paintings, monuments) within TV
programme streams.

3.6.6. Relevant External Resources

• Wikidata Query Service
• Wikidata SPARQL tutorial

3.7. Learning and Reasoning for Cultural Metadata Quality

Contributing partners: 3IA-UCA

3.7.1. Method Overview

An important objective for 3IA-UCA in T5.1 is to combine knowledge representations with deep
representation to design new symbolic and non-symbolic information retrieval engines. In their
recent article [107], Anna Bobasheva, Fabien Gandon and Frédéric Precioso have shown how to
couple symbolic AI and machine learning over a semantic Web knowledge graph to support museum
curators in improving the quality of cultural metadata and information retrieval. The developed
methods create a data pipeline above the data and metadata of the cultural collection, which
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produces and reasons on its RDF [108] knowledge graph, trains a Convolutional Neural Network
image classification model, makes prediction for the entire collection and expands the metadata to
be the base for the SPARQL [109] search queries and curation techniques. They also developed
methods to discover the new contextual relationships between the concepts in the metadata, and
improved the model prediction scores based on the semantic relations. Their results show that
cross-fertilization between symbolic AI and machine learning can indeed provide the tools to address
the challenges of the museum curators describing the artwork pieces and searching for the relevant
images.

Our overall architecture is designed to combine knowledge representation and reasoning meth-
ods (semantic reasoning and querying on RDF knowledge graphs) and machine learning methods
(deep learning for images) in the management of a single visual art dataset documenting a large
cultural collection. This is the keystone of this work as it enables to combine, enrich or contrast re-
sults from reasoning on the symbolic metadata, with Resource Description Framework (RDF) and
Simple Knowledge Organization System (SKOS) [110] annotations of the collection, and learning
on the symbolic data, with images of the collection.

3.7.2. Learning and Reasoning for Cultural Metadata Quality

This work has been carried out on the art Joconde dataset [111]. The original Joconde dataset
metadata is stored in a type of database specific to RDF data called triplestore. Triplestores
provide a mechanism for the storage and retrieval of RDF graphs through semantic queries (in the
SPARQL language) and may support other types of intelligent processing including inferences and
validation. This work’s proposal is to extend this dataset with the results of image classification
and the results of semantic reasoning by relying on the triplestore as an integration point in one
unified knowledge graph. To do so, the data processing workflow shown in Fig. 5 was designed
and evaluated. There is a two-pass dataflow for training and for scoring. For the training pass,
the triplestore is queried using the SPARQL language to create the labeled image set for training,
validation, and testing, benefiting from the results of the inferences that augmented the knowledge
graph and, in particular, the available labels. The images and labels are selected based on criteria
specific to the curators’ needs. A CNN model is then fine-tuned on the training and validation
sets, and the model performance is assessed on the test set.

For the scoring pass, we query again but this time with different constraints to create a dataset
on which we run the fine-tuned classifier and obtain prediction scores for every class for every
image. We create new triples associating the image with prediction scores. These results are
represented in RDF and are stored back in the triplestore to be integrated and put in use with all
the other metadata.

As a result, we created an extended knowledge graph that allows the ontology-based image
search with quantified relevance of the search term. On top of this pipeline, we can then perform
analytics queries leveraging all the annotations and their semantics, and design SPARQL queries
to look for anomalies in the annotations.

By running the model on all the images of the Joconde dataset, we obtain the prediction scores
for every image. We link these scores with the artwork records by saving the scores in the same
RDF format as the initial metadata using a vocabulary we designed for this purpose. As a result,
the RDF knowledge graph contains all the initial data plus all the classification results. The
analysis of these results can therefore leverage semantic Web reasoning and querying capabilities
in the formulation of analytic queries.

In Fig. 6, we present results of querying the extended metadata to detect the noise in the
existing image annotations. In these examples, the query searches for the images that have the
concept cheval (horse) or related concept cavalier (horseman) but have low prediction scores (≤
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Figure 5. The data processing pipeline combining symbolic AI and machine learning to improve the quality of
cultural metadata and information retrieval.

0.20). On the first row there is no visible horse on the sculpture, on the second row the horseman
is barely visible on the background, and on the third row the horse is small and, although it cannot
be ignored, it should have a low significance. All these examples are cases where a curator may
want to revise and adjust the metadata.

The complete semantic annotation of an artwork in the collection provides a context that
can help identify suspiciously present or missing concepts. We consider that the probability of
appearance of a given concept in a context-similar pair should improve the probability score of the
second concept in the same image. For example, a high classification probability score for a bateau
(boat) should influence the score of the concept mer (sea). To achieve this, we used a logistic
regression approach to build a pairwise regression predictor of appearance of a concept based
on the presence of another concept in the same annotation of an art piece. More precisely, the
regression estimates the log-odds of observing a concept A when a concept B is present, compared
to situations when concept B is not present. An example of results is shown in Fig. 7.

To conclude, the pipeline eventually provides an environment to combine symbolic reasoning
and sub-symbolic learning over a knowledge graph that integrates the inputs and outputs of all
the methods to improve information retrieval and curation tools.

3.7.3. Contributions to WP8 Use cases

Relevant WP8 Use Cases: 1D1-2 (Audio/Video Search By Keyword (Content Based)). This
work is only partly related to use-case 1D (Audiovisual Item Search in Verification Archives)
because it has been carried out on an image database, not on video or audio data. However,
its goal is to leverage Machine Learning to improve and validate datasets described with their
semantics listed as keywords in a knowledge graph. In this sense, it is related to 1D1-2.
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Figure 6. Examples of noise detection in the images that do not have a visually relevant term cheval (horse) with
the prediction scores below 0.2.

Figure 7. Example of the artwork with the adjustment of prediction score of concept mer (sea) by the prediction
score of concept bateau (boat).
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3.7.4. Relevant Publications

• A. Bobasheva, F. Gandon and F. Precioso. Learning and Reasoning for Cultural Metadata
Quality. Submitted for publication in ACM Journal on Computing and Cultural Heritage,
2021.

3.7.5. Relevant External Resources

• Official portal for the Joconde database
• Wikipedia page for the Joconde database
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4. Learning from scarce data

This Section presents work conducted in the context of T5.3, relating to learning in the face of
data scarcity (insufficient data, different target domain etc.). There are different ways to approach
this problem (like few-shot learning, domain adaption or semi-supervised learning), therefore the
methods presented in this section differ considerably. JR and UPB worked on different aspects
of few-shot object detection (see subsections 4.1 and 4.4). While JR focused in the first period
on facilitating the training process by controlling it based on the available novel data and enable
incremental training (updating the dataset and learned model multiple times with novel user-
provided classes), UPB focused on positive sample augmentation during training and the use
of ensembles of few-shot object detectors. Both groups use the framework [112] as a basis, which
makes it easy to combine the results. Subsection 4.2 discusses the activities of CNR on unsupervised
domain adaptation for traffic density estimation and counting, which can be directly linked to WP3
research, while this is followed by CNR work on the VISIONE system, i.e., a novel video browsing
and search system relying on textual representations and a text retrieval engine. Subsection 4.5
continues with UNIFI research on a novel method for semi-supervised learning of Fine-Grained
Visual Categorization (FGVC) using adversarial training. The following subsection 4.6 presents
QMUL research concerning deep clustering with diversity-enforcing constraints, which is combined
with a clustering aggregation approach. Clusters can be exploited as a source of pseudolabels, in
case ground-truth annotations are not available. Subsection 4.7 presents a deep neural architecture
by UNITN which combines deep representation learning and dictionary learning into a unified
approach, by replacing the convolutional layers of a CNN with novel dictionary learning and
coding neural layers. Finally, subsection 4.8 concludes with a novel UNITN method on self-paced
curriculum learning for unsupervised domain adaptation in the object detection task, which relies
on Generative Adversarial Networks (GANs).

4.1. Few-shot object detection: facilitating training

Contributing partners: JR

4.1.1. Method Overview

The work of JR in this task focuses on few-shot object detection serving use cases in annotating
incoming material in media production or for archiving. We can observe three main aspects, where
the setup of benchmarking problems (and thus the methods described in literature, as well as
the existing implementations) deviate from the practical requirements of using few-shot object
detection in media use cases:

• The typical setup of the problem is posed as n-way k-shot, i.e. a problem with n classes and
k samples per shot. However, in practice the number of samples per class that are provided
may differ.

• There is not fixed predefined dataset, but the set for base classes will contain a mixture of
third party and maybe own data for some classes, while the novel classes are mined from
own or third party media content (e.g., web sites). Thus the concept of a dataset is fluid,
and the available data will evolve over time.

• Classes need to be added incrementally, which requires creating balanced training sets, but
approaches should aim to keep the training effort low. This again means that there is no
fixed notion of a dataset, but it needs to be updated on the fly.
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Taking these aspects into consideration, we decided to focus on metric or contrastive than meta-
learning type of approaches. In addition, we are interested to use a framework, which can be
applied to object detection as well as segmentation. Methods of interest are thus [113], which uses
FPN to create an object detection pipeline using metric learning. Classification is done different
for pretrained classes, while few-shot learning is done with FPN (in the DCN variant) instead.
[114] propose to train a generic object detector on ImageNet, sampling positive and negative
candidate regions. This approach is suitable for generic object detection, beyond the originally
trained classes. An approach based on meta-features and learning reweighting of those features is
proposed in [115]. A recent work applies fine-tuning only region proposal and classification layers
on a data set consisting of many base class and few new class samples while fixing the feature
extraction part of the network, using Faster R-CNN as a backbone [116]. It has been shown that
it can outperform meta-learning approaches [112].

We are interested in a framework that can potentially also be used with single-stage detectors
and extended to support segmentation. We are thus using [112] as the basis of our work. This
work proposes a two-stage fine-tuning (TFA) approach. A backbone model such as Faster R-CNN
is trained on the base classes using a standard training approach. Then the last layer of the model
is extended to include the novel classes, and the new weights are randomly initialized. Fine-tuning
of the model is performed by trained with a dataset formed from k samples from each of the base
classes, and the samples of the novel classes. Both the classification and bounding box regression
branch are trained using this balanced dataset, but the feature extraction part of the model is not
updated. In addition, the fine-tuning step uses a cosine similarity based classifier, which results
in improved accuracy for the novel classes and lower decrease for the base classes compared to an
FC-based classifier. As an alternative to randomly initializing the new weights, a separate training
step for the last layer can be performed with the new classes, and the results can be used to
initialize the weights of the novel classes in the combined model.

Facilitating training We aim to drive the few-shot training process by the available data in
the process, so that few-shot training can be deployed as a service to be integrated in a media
analysis toolchain. The expected input to such a service are a set of samples and corresponding
annotations, as well as a small configuration file, which describes the base model to be used, the
data locations and whether all or just some classes of the new data shall be used for training.
The samples and annotations may be entirely user supplied (i.e., manually annotated), or may
result from a semi-automatic process. Such a process may use weakly supervised object detection
and tracking, where the user only coarsely identifies the object in one frame and provides a class
label, but the bounding boxes (or masks) are determined automatically by segmenting the object
throughout a sequence.

We have extended the framework of [112] with a tool that dynamically generates datasets and
drives the training process. In particular, the tool covers the following steps:

• Determine the base and novel classes from the provided annotations. For both the base
and novel classes only a subset may be actually used in the training. This provides more
flexibility in the process, and is also required to support incremental training without splitting
the source annotation files.

• Determine how many instances are available, and set up the k-shot n-way problem accord-
ingly, with k = min(k1, . . . , kn).

• Prepare model structures for novel only training and fine-tuning of the combined base+novel
model by adjusting the layer sizes to match the number of classes in the different sets.
This includes scaling up the number of classes arbitrarily, which goes beyond the current
functionality of the framework, that assumes a split of fixed number of classes.
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• If the number of samples strongly varies, set up multiple training problems to make best use of
the data. This is implemented by specifying a factor q, which causes a split if half of the classes
have q times more samples than the one with the fewest samples, i.e., median(k1, . . . , kn) ≥
qmin(k1, . . . , kn).

The tool currently supports annotations in COCO format. However, this does not mean that
COCO is required as a base model, as long as the annotations are provided in this format. The
training tool has been tested with a pretrained based model containing 60 COCO classes, and
adding a subset of 20 novel classes selected from the LVIS dataset. This example training setup is
provided with the code.

Towards incremental training The proposed tool can also be used for incremental training of
new classes. The training tool provides as additional output the dataset annotation files that are
required to use the resulting model as a base model. Similar to the splitting of the training step
in case of unequal number of samples, also different incremental training steps can use different
values for k.

However, due to the two-stage fine-tuning (TFA) approach in the framework, the fine-tuning
step is run for all classes, including the base classes and of novel classes from previous iterations.
This step is typically computationally more expensive than the training process for novel classes,
in particular, if the number of classes in an incremental training step is small. Thus the runtime
saving in incremental training will be less than the fraction of the added classes to all novel classes.
A recent paper proposes to avoids running this fine-tuning step after incremental training [117],
but at the expense of training an instance feature embedding, and requiring access to these features
at inference stage.

4.1.2. Contributions to WP8 Use cases

Relevant WP8 Use Cases: 3C2-6 (Video object recognition), 3C2-7 (Video object localisation).
Few-shot object detection is useful in order to extend object detection capabilities in sourcing
(e.g., annotation of feeds of raw material) or archiving with specific object classes of interest for
a particular organization or production context. If the object class of interest is not covered by a
publicly available dataset (or license conditions do not permit the use of such a dataset), the labeling
of a large amount of training samples is typically not feasible. Few-shot object detection enables
training with an amount of samples that can be labeled by a single user with acceptable effort.
While the resulting classifier is likely to achieve lower performance than one trained on a thousands
of samples, it may still provide detection of otherwise uncovered classes. In addition, detection
results (possibly in combination with object tracking) can be used for retraining a classifier on a
larger set.

4.1.3. Relevant External Resources

The code of the extensions for training is available at
https://github.com/wbailer/few-shot-object-detection.

4.2. Domain Adaptation and Counting

Contributing partners: CNR

Initial report on Multimedia Summarisation and Analysis 39 of 103

https://github.com/wbailer/few-shot-object-detection


4.2.1. Method Overview

Convolutional Neural Networks have produced state-of-the-art results for a multitude of computer
vision tasks under supervised learning. However, the crux of these methods is the need for a
massive amount of labeled data to guarantee that they generalize well to diverse testing scenarios.
In many real-world applications, there is indeed a large domain shift between the distributions of
the train source and test target domains, leading to a significant drop in performance at inference
time. Unsupervised Domain Adaptation (UDA) is a class of techniques that aims to mitigate
this drawback without the need for labeled data in the target domain. This makes it particularly
useful for the tasks in which acquiring new labeled data is very expensive, such as for semantic and
instance segmentation. An end-to-end CNN-based UDA algorithm for traffic density estimation
and counting was developed, based on adversarial learning in the output space. The density
estimation is one of those tasks requiring per-pixel annotated labels and, therefore, needs a lot
of human effort. Experiments considering different types of domain shifts were executed, and
two new datasets for the vehicle counting task were made publicly available, also used for our
tests. One of them, the Grand Traffic Auto dataset, is a synthetic collection of images, obtained
using the graphical engine of the Grand Theft Auto video game, automatically annotated with
precise per-pixel labels, which represent a relevant solution to address applications with scarce
data. Experiments show a significant improvement using our UDA algorithm compared to the
model’s performance without domain adaptation.

This activity is also related to T3.3 (Transfer Learning), and T3.7 (Learning to Count). This
activity was developed in synergy with the AI4EU project and it has already been uploaded in the
AI on Demand Platform. In AI4Media the learning with scarce data issue, which was addressed
leveraging on solutions of domain adaptation, was particularly taken into consideration.

4.2.2. Overall approach

Our method relies on a CNN model trained end-to-end with adversarial learning in the output
space (i.e., the density maps), which contains rich information such as scene layout and context.
The peculiarity of our adversarial learning scheme is that it forces the predicted density maps in
the target domain to have local similarities with the ones in the source domain.

Figure 8 depicts the proposed framework consisting of two modules: 1) a CNN that predicts
traffic density maps, from which estimate the number of vehicles in the scene was estimated, and
2) a discriminator that identifies whether a density map (received by the density map estimator)
was generated from an image of the source domain or the target domain.

In the training phase, the density map predictor learns to map images to densities based on
annotated data from the source domain. At the same time, it learns to predict realistic density
maps for the target domain by trying to fool the discriminator with an adversarial loss. The
discriminator’s output is a pixel-wise classification of a low-resolution map, as illustrated in Figure
8, where each pixel corresponds to a small region in the density map. Consequently, the output
space is forced to be locally similar for both the source and target domains. In the inference phase,
the discriminator is discarded, and only the density map predictor is used for the target images.

Density Estimation Network: The counting task is formulated as a density map estimation
problem [118]. The density (intensity) of each pixel in the map depends on its proximity to a
vehicle centroid and the size of the vehicle in the image so that each vehicle contributes with
a total value of 1 to the map. Therefore, it provides statistical information about the vehicles’
location and allows the counting to be estimated by summing of all density values.

This task is performed by a CNN-based model, whose goal is to automatically determine the
vehicle density map associated with a given input image. Formally, the density map estimator,
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Figure 8. Algorithm overview. Given C ×H ×W images from source and target domains, they are processed by
the density map estimation network to obtain output predictions. A density loss is computed for source
predictions based on the ground truth. In order to improve target predictions, a discriminator is used to locally
classify whether a density map belongs to the source or target domain. Then, an adversarial loss is computed on
the target prediction and is back-propagated to the density map estimation and counting network.

Ψ : RC×H×W 7→ RH×W , transforms a W ×H input image I with C channels, into a density map,
D = Ψ(I) ∈ RH×W .

Discriminator Network: The discriminator network, denoted by Θ, also consists of a CNN
model. It takes as input the density map, D, estimated by the network Ψ. Its output is a lower
resolution probability map where each pixel represents the probability that the corresponding
region (from the input density map) comes either from the source or the target domain. The goal
of the discriminator is to learn to distinguish between density maps belonging to source or target
domains. Through an adversarial loss, this discriminator will, in turn, force the density estimator
to provide density maps with similar distributions in both domains. In other words, the target
domain density maps have to look realistic, even though the network Ψ was not trained with an
annotated training set from that domain.

4.2.3. Domain Adaptation Learning

The proposed framework is trained based on an alternate optimization of the density estimation
network, Ψ, and the discriminator network, Θ. Regarding the former, the training process relies
on two components: 1) density estimation using pairs of images and ground truth density maps,
which is assumed to be only available in the source domain; and 2) adversarial training, which
aims to make the discriminator fail to distinguish between the source and target domains. As for
the latter, images from both domains are used to train the discriminator on correctly classifying
each pixel of the probability map as either source or target.

To implement the above training procedure, two loss functions were used: one is employed in
the first step of the algorithm to train network Ψ, and the other is used in the second step to train
the discriminator Θ. These loss functions are detailed next.

Network Ψ Training: The loss function for Ψ is defined as the sum of two main components:
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L(IS , IT ) = Ldensity(IS) + λadvLadv(IT ), (7)

where Ldensity is the loss computed using ground truth annotations available in the source domain,
while Ladv is the adversarial loss that is responsible for making the distribution of the target and
the source domain closer to each other. In particular, the density loss Ldensity is defined as
the mean square error between the predicted and ground truth density maps, i.e. Ldensity =
MSE(DS , DS GT ).

To compute the adversarial loss Ladv, the images belonging to the target domain are first
forwarded through network Ψ, to generate the predicted density maps DT . Then, DT is forwarded
through network Θ, to generate the probability map P = Θ(Ψ(IT )) ∈ [0, 1]H

′×W ′
, where H ′ < H

and W ′ < W . The adversarial loss is given by

Ladv(IT ) = −
∑
h,w

log(Ph,w), (8)

where the subscript h,w denotes a pixel in P . This loss makes the distribution of DT closer to DS

by forcing Ψ to fool the discriminator, through the maximization of the probability of DT being
locally classified as belonging to the source domain.

Network Θ Training: Given an image I and the corresponding predicted density map D, D
is fed as input to the fully-convolutional discriminator Θ to obtain the probability map P . The
discriminator is trained by comparing P with the ground truth label map Y ∈ {0, 1}H′×W ′

using
a pixel-wise binary cross-entropy loss

Ldisc(I) = −
∑
h,w

(1− Yh,w) log(1− Ph,w)+

+Yh,wlog(Ph,w),

(9)

where Yh,w = 0 ∀ h,w if I is taken from the target domain and Yh,w = 1 otherwise.

4.2.4. Evaluation

The proposed UDA method for density estimation and counting of traffic scenes was validated under
different settings. First, the NDISPark dataset was used to test the Day2Night domain shift; then,
the WebCamT and the TRANCOS datasets was used to take into account the Camera2Camera
performance gap. Finally, the GTA dataset was used to consider the Synthetic2Real domain
difference. For all the experiments, the evaluation of the models was carried out on three metrics
widely used for the counting task: (i) Mean Absolute Error (MAE) that measures the absolute
count error of each image; (ii) Mean Squared Error (MSE) that instead quantifies the squared
count error for each image; (iii) Average Relative Error (ARE), which measures the absolute count
error divided by the true count. Note that, as a result of the squaring of each error, the MSE
effectively penalizes large errors more heavily than the small ones. Instead, the ARE is the only
metric that considers the relation of the error and the total number of vehicles present for each
image. Results are summarized in Table 4. Finally, some examples of the outputs obtained using
our models were reported, showing their visual quality. In particular, Figure 9 shows the ground
truth and the predicted density maps for some random samples of the considered scenarios.

4.2.5. Contributions to WP8 Use cases

Relevant WP8 Use Cases: 3A3 (Archive exploitation), 2B1 (Automatic metadata tagging),
3C2-6 (Video object recognition), 3C2-7 (Video object localisation), 4C2 (Moving Image (video)
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GT count: 56 GT count: 13 GT count: 35 GT count: 12

Pred count: 53 Pred count: 14 Pred count: 38 Pred count: 11

(a) (b) (c) (d)
Figure 9. Examples of the predicted density maps in the considered scenarios: (a) Day2Nigh Domain Shift using
the NDISPark dataset; (b) and (c) Camera2Camera Domain Shift employing the WebCamT and TRANCOS
datasets, respectively; (d) Synthetic2Real Domain Shift using the GTA dataset for the training phase and the
WebCamT dataset for testing on real images. In the first row, the input images are reported. In the second row,
the ground truth, while in the third, the predicted density maps obtained with our models.
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MAE MSE ARE

Day2Night Domain Shift - NDISPark Dataset

Baseline - CSRNet [119] 3.95 27.45 0.43

Our Approach 3.49 20.90 0.39

Camera2Camera Domain Shift - WebCamT Dataset [120]

Baseline - CSRNet [119] 3.24 16.83 0.21

Our Approach 2.86 13.03 0.19

Camera2Camera Domain Shift - TRANCOS Dataset [121]

Hydra-CNN [122] 10.99 68.70 0.71

FCN-MT [120] 5.31 - 0.85

LC-ResFCN [123] 3.32 - -

Baseline - CSRNet [119] 3.56 30.64 0.10

Our Approach 3.30 23.60 0.08

Synthetic2Real Domain Shift - GTA Dataset

Baseline - CSRNet [119] 4.10 25.83 0.28

Our Approach 3.88 23.80 0.27

Table 4. Experimental results obtained for the four considered domain shift. Three evaluation metrics were used:
the Mean Absolute Error (MAE), the Mean Squared Error (MSE) and the Average Relative Error (ARE).
Performance improvements was obtained in all the scenarios, considering all the three metrics.

analysis). Domain adaptation is applicable in any case where adapting an algorithm trained in
one context, to perform properly in different contexts, is required. This is the case, for instance,
of applications to automatic metadata generation and object recognition, where algorithms were
trained in different domains than the target media where the tools are used.

4.2.6. Relevant Publications

• Domain adaptation for traffic density estimation, Ciampi, L., Santiago, C., Costeira, J.P.,
Gennaro, C., Amato, G., VISIGRAPP 2021 - Proceedings of the 16th International Joint
Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications,
Volume 5, 2021, Pages 185-195, ISBN: 978-989758488-6, (Zenodo Record: https://zenodo.
org/record/5078270)

4.2.7. Relevant External Resources

• https://www.ai4europe.eu/research/ai-catalog/ai-visual-vehicles-counting

4.3. Video browsing and searching

Contributing partners: CNR

4.3.1. Method Overview

CNR has worked on the VISIONE system [124, 125], a video search system that allows users to
search for videos using textual keywords, the occurrence of objects and their spatial relationships,
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the occurrence of colors and their spatial relationships, and image similarity. These modalities
can be combined together to express complex queries and meet users’ needs. VISIONE pre-
process videos (and video shots) to automatically generate all metadata needed to retrieve them.
Annotations, features, cross-media information etc. is all automatically extracted, and no already
exiting metadata are needed. Metadata are generated at keyframe level, so video shot retrieval
granularity is possible. An additional peculiarity of this approach is that we encode all information
extracted from the keyframes, such as visual deep features, tags, color and object locations, using
a convenient textual encoding that is indexed in a single text retrieval engine. This offers great
flexibility when results corresponding to various parts of the query (visual, text and locations) need
to be merged. The specially designed textual encodings for indexing and searching video content
allows using the mature and scalable Apache Lucene full-text search engine [126], to index and
retrieve non textual data.

CNR started working on the VISIONE system in 2019, when it participated in the Video
Browsing Showdon (VBS) competition [127]. In the context of the AI4Media project, CNR has
analyzed the VISIONE results and logs gathered at VBS 2019, in order to identify directions to
improve the system. Therefore, it has investigated and integrated new features into the system,
which in turn paved the way for the participation of VISIONE also in the 2021 edition of VBS
(held in June 2021). The analysis of the VBS 2019 logs, briefly described here (Section 4.3.4), and
fully discussed in [128], allowed us to grasp a lot of information on the system and to improve it
without needing additional training data. The new functionalities integrated in the second release
of VISIONE [125], which participated at VBS 2021, are briefly described in Section 4.3.5.

The approach used in VISIONE, leveraging on transfer learning properties, allows us indexing
and searching a new unknown video dataset without prior training on the dataset itself. This
activity is also related to T3.3 (Transfer Learning).

4.3.2. Overall approach

VISIONE is a visual content-based retrieval system designed to support large scale video search.
It allows a user to search for a video describing the content of a scene by formulating textual or
visual queries (see Figure 10).

VISIONE, in fact, integrates several search functionalities and exploits deep learning technolo-
gies to mitigate the semantic gap between text and image. Specifically it supports:

• query by keywords: the user can specify keywords including scenes, places or concepts (e.g.,
outdoor, building, sport) to search for video scenes;

• query by object location: the user can draw on a canvas some simple diagrams to specify the
objects that appear in a target scene and their spatial locations;

• query by color location: the user can specify some colors present in a target scene and their
spatial locations (similarly to object location above);

• query by visual example: an image can be used as a query to retrieve video scenes that are
visually similar to it.

Moreover, the search results can be filtered by indicating whether the keyframes are in color or
in b/w, or by specifying its aspect ratio.

4.3.3. System Architecture Overview

The general architecture of our system is illustrated in Figure 11. Each component of the system
is described in detail in [128]; here we give an overview of how it works. To support the search
functionalities introduced above, our system exploits deep learning technologies to understand and
represent the visual content of the database videos. Specifically, it employs:
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Figure 10. A screenshot of the VISIONE User Interface composed of two parts: the search and the browsing.

• an image annotation engine, to extract scene tags;
• state-of-the-art object detectors, like YOLO [129], to identify and localize objects in the video

keyframes;
• spatial colors histograms, to identify dominant colors and their locations;
• the R-MAC [130] deep visual descriptors, to support the Similarity Search functionality.
The peculiarity of the approach used in VISIONE is to represent all the different types of

descriptors extracted from the keyframes (visual features, scene tags, colors/object locations) with
a textual encoding that is indexed in a single text search engine. This choice allows us to exploit
mature and scalable full-text search technologies and platforms for indexing and searching video
repository. In particular, VISIONE relies on the Apache Lucene full-text search engine [126].

Also the queries formulated by the user through the search interface (e.g., the keywords describ-
ing the target scene and/or the diagrams depicting objects and the colors locations) are transformed
into textual encoding, in order to process them. We designed a specific textual encoding for each
typology of data descriptor as well as for the user queries.

In the full-text search engine, the information extracted from every keyframe is composed of
four textual fields, as shown in Figure 11:

• Scene Tags, containing automatically associated tags;
• Object&Color BBoxes, containing text encoding of colors and objects locations;
• Object&Color Classes, containing global information on objects and colors in the keyframe;
• Visual Features, containing text encoding of extracted visual features.
These four fields are used to serve the four main search operations of our system:
• Annotation Search, search the Scene Tags field for keyframes associated with specified anno-
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Figure 11. System Architecture: a general overview of the components of the two main phases of the system,
the indexing and the browsing.

tations;
• BBox Search, search the Object&Color BBoxes field for keyframes having specific spatial

relationships among objects/colors;
• OCclass Search, search the Object&Color Classes field for keyframes containing specified

objects/colors;
• Similarity Search, search the Visual Features field for keyframes visually similar to a query

image
The user query is broken down into three sub-queries (the first three search operations above),

and a query rescorer (the Lucene QueryRescorer implementation in our case) is used to combine
the search results of all the sub-queries. Note that the Similarity Search is the only search operation
that is stand-alone in our system: it is a functionality used only on browsing phase. Since different
text scoring functions could be employed by the four search operations introduced above, in the
next section we report an analysis of the performance of VISIONE under different configurations
to identify the most suitable text scoring functions to be used within the analyzed system.

4.3.4. Evaluation results

Since VISIONE is an interactive retrieval system, its performance cannot be easily tested outside
of controlled contexts set up for this purpose, such as a user testing campaign or a competition
like VBS. In fact, the user query is dynamically formulated and refined during a search process
and the type of query employed (e.g. query by text, query by object location, etc.) depends on the
user’s personal preferences and attitudes in formulating a search intent and the interaction with
the system over time. For these reasons, CNR exploited the log of queries executed during the
VBS 2019 competition to analyze the search functionalities of the VISIONE system. During the
competition, both expert and novice users1 interacted with VISIONE to solve several search tasks.
Specifically, the VBS competition was divided in three content search tasks: visual Know-Item
Search (KIS), textual KIS and Ad-hoc Video Search (AVS). For each task, a series of runs is
executed. In each run, the users are requested to find one or more target videos. When the user
believes that he/she has found the target video, he/she submits the result to the organization team
that evaluates the submission.

We used the ground-truth segments and the log of the queries submitted to our system during
VBS 2019 to evaluate the performance of VISIONE under different settings. We restricted the
analysis only to the logs related to textual and visual KIS tasks since ground-truths for AVS tasks

1Expert users are the developers of the in race retrieval system or people that already know and use the sys-
tem before the competition. Novices are users who interact with the search system for the first time during the
competition.
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were not available. During the competition, a total of four users (two experts and two novices)
interacted with VISIONE to perform 8 textual KIS and 15 visual KIS tasks.

In our analysis, we considered four different rankers to sort the results obtained by the An-
notation Search, OCclass Search, and BBox Search operations. Specifically we tested the rankers
based on the following text scoring function:

• BM25 : Lucene’s implementation of the well-known similarity function BM25 introduced
in [131];

• TFIDF : Lucene’s implementation of the weighing scheme known as Term Frequency-Inverse
Document Frequency introduced in [132];

• TF : implementation of dot product similarity over the frequency terms vector;
• NormTF : implementation of cosine similarity (the normalized dot product of the two weight

vectors) over the frequency terms vectors.
Since we considered four possible rankers and three search operations, we have a total of 64 possible
configurations of our system. We denote each configuration with a triplet RBB-RAN -ROC where
RBB is the ranker used for the BBox Search, RAN is the ranker used for the Annotation Search,
and ROC is the ranker used for the OCclass Search. A total of 521 queries were used to evaluate
both the Mean Reciprocal Rank (MRR) and the MRR in the top k positions of the result list
(MRR@k).
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Figure 12. MRR of the 64 combinations of ranker: the one filled with diagonal lines is the combination used at
the VBS2019 competition. Each configuration is denoted with a triplet RBB-RAN -ROC where RBB is the ranker
used for the BBox Search, RAN is the ranker used for the Annotation Search, and ROC is the ranker used for the
OCclass Search. Statistically significant results with two-sided p value lower than 0.05 over the baseline
BM25-BM25-TF are marked with * in the graph.

Figure 12 reports the MRR values of all 64 combinations. We computed the Fisher’s ran-
domization test with 100,000 random permutations as non parametric significance test, which
accordingly to Smucker et al. [133] is particularly appropriate to evaluate whether two approaches
differ significantly. As the baseline we used the ranker combination employed during VBS2019 (i.e.,
BM25-BM25-TF) [128] and in the Figure 12 we marked with * all the approaches for which the
MRR is significantly different from the baseline with the two-sided p value lower than α = 0.05.
Note that the combination that we used at VBS2019 (indicated with diagonal lines in the graph),
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and that was chosen according to subjective feedback provided by the developers of the system,
has a good performance, but it is not the best. In fact, we noticed that there exist some patterns
in the combinations of the rankers used for the OCclass Search and the Annotation Search which
are particularly effective and some which, instead, provide us with very poor results. For example,
the combinations that use TF for the OCclass Search and BM25 for the Annotation Search gave
us the overall best results. While the combinations that use BM25 for the OCclass Search and
the NormTF for the Annotation Search have the worse performance. Specifically, we have a MRR
of 0.023 for the best (NormTF-BM25-TF) and 0.004 for the worst (BM25-NormTF-BM25), which
results in a relative improvement of the MRR of 475%. Moreover, the best combination has a rel-
ative improvement of 38% over the baseline used at the VBS2019. These results give us evidence
that an appropriate choice of rankers is crucial for system performance.

Furthermore, to complete the analysis on the performance of the rankers, we analyze the
MMR@k, where k is the parameter that controls how many results are shown to the user in
the results set. The results for some representative values of k are reported in Table 5. In order
to facilitate the reading of results, we focused the analysis only on eight combinations: the four
with the best MMR@k, the four with the worst MMR@k, and the configuration used at VBS2019.
The latter is also used as baselines to evaluate the statistical significance of the results according
to Fisher’s randomization test. Approaches for which the MRR@k is significantly different from
the MRR@k of the baseline are marked with * in Table 5. We observed that the configuration
NormTF-BM25-TF perform the best for all the tested k, however the improvement over the
VBS2019 baseline is statistically significant only for k ≥ 10, that is the case where the user
inspects more than 10 results.

In conclusion, we identified the combination NormTF-BM25-TF as the best one, providing a
relative improvement of 38% in MRR and 40% in MRR@100 with respect to the setting previously
used at the VBS competition.

Table 5. MRR@k for eight combinations of the rankers (the four best, the four worst and thesetting used at
VBS2019) varying k.Statistically significant results with two-sided p value lower than 0.05 over the baseline
BM25-BM25-TF are marked with *.

k = 1 k = 5 k = 10 k = 50 k = 100 k = 500 k = 1000

NormTF-BM25-TF 0.015 0.017 0.019 * 0.022 * 0.022 * 0.023 * 0.023 *

TFIDF-BM25-TF 0.013 0.016 0.018 * 0.021 * 0.022 * 0.022 * 0.022 *

TF-BM25-TF 0.013 0.016 0.017 0.018 * 0.019 * 0.019 * 0.019 *

TF-BM25-BM25 0.013 0.015 0.016 0.017 0.017 * 0.018 * 0.018 *

TF-BM25-NormTF 0.013 0.015 0.016 0.017 * 0.017 * 0.018 * 0.018 *

BM25-BM25-TF (VBS 2019) 0.013 0.014 0.015 0.016 0.016 0.016 0.017

NormTF-TF-NormTF 0.000 * 0.001 * 0.003 * 0.004 * 0.004 * 0.005 * 0.005 *

NormTF-NormTF-BM25 0.000 * 0.001 * 0.002 * 0.004 * 0.004 * 0.005 * 0.005 *

BM25-NormTF-BM25 0.002 * 0.002 * 0.002 * 0.003 * 0.003 * 0.004 * 0.004 *

TFIDF-NormTF-BM25 0.000 * 0.001 * 0.001 * 0.003 * 0.004 * 0.004 * 0.004 *

4.3.5. Second Release of VISIONE (VBS 2021)

Besides using a new configuration for the search operations (i.e., NormTF-BM25-TF), as the result
of the analysis reported in the previous section, the second release of VISIONE [125] integrated a
novel retrieval module and several improvements as described in the following. An overview of the
revised architecture of VISIONE is depicted in Figure 11.

One of the main limitations of the first version of VISIONE was the poor performance on
textual KIS tasks, i.e. the task where only a textual description is provided. In fact, during the
VBS 2019, the VISIONE team exactly solved only 2 out of 8 textual KIS tasks. To overcome
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Figure 13. System Architecture of the second release of VISIONE.

this limitation, CNR developed a retrieval module that allows searching for a target scene using
natural language queries, that is supporting query by scene description. Textual descriptions are
full natural language sentences, usually between 5 to 50 words in length, describing a visual scene.
For example, a valid textual description could be “A tightly packed living room with a tv screen
larger than the fireplace right beside it”. These textual descriptions can include objects details,
expressed using their physical or semantic attributes, and they can specify the spatial or abstract
relationships linking objects together.

The search using natural language descriptions as a query is achieved by using a deep neural
network architecture, called Transformer Encoder Reasoning Network (TERN), which was recently
developed by CNR [134]. The TERN network is able to match images and sentences in a highly-
semantic common space. The core of this architecture constitutes of deep relational modules called
transformer encoders [135], which can spot out hidden intra-object relationships. In particular, in
the visual pipeline, a stack of transformer encoders try to find links between image regions pre-
extracted using a state-of-the-art object detector (Faster-RCNN); in the textual pipeline, using a
pretrained BERT model plus another stack of transformer encoder layers, the model searches for
relationships between sentence words. An overview of the architecture is shown in Figure 14.

The extracted cross-modal features are normalized and in principle very similar to visual de-
scriptors like RMAC [130]. Hence, we indexed them using the same textual encoding that we
already exploited to index the RMAC descriptors (see [128]). The textual encoding extracted
from the cross-modal features are stored in a separate field of the index, named Relational-aware
features field (see Figure 11). A Textual Search operator, acting on this field of the index, allows
for searching keyframes associated to a given textual description. The TF text scoring function is
employed by this search operation.

Moreover, the VISIONE system was revised in order to support temporal searches, where the
user can describe two consecutive (or temporally close) keyframes of the same target video. To this
scope, a second canvas and associated input text boxes were added to the user interface, allowing
a user to simultaneously search for two keyframes that are temporally close in a video segment but
that are different in the represented content. The search is executed by performing two queries
to the index, each providing its own output results. The resulting keyframes, which belong to the
same video and whose temporal distance is less than a given threshold, are then combined as pairs
and shown in the browsing interface.
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Finally, several improvements were made to the user interface, including the possibility to search
by similarity also using external images uploaded from a URL or file system, and the possibility of
selecting multiple images to be submitted as a response to an AVS task.

During the VBS 2021 competition, the VISIONE team was able to exactly solve 17 out of a
total of 21 Visual KIS tasks, and 3 out of a total of 6 textual KIS tasks (for one task no team
was able to find the correct solution). Although the performance on textual KIS should be further
improved, we would like to note that the new search module (i.e.,query by scene description) was
crucial in solving many visual KIS tasks other than the textual ones.

4.3.6. Contributions to WP8 Use cases

Relevant WP8 Use Cases: 3A3 (Archive exploitation), 2B1 (Automatic metadata tagging),
3C2-6 (Video object recognition), 3C2-7 (Video object localisation), 4C2 (Moving Image (video)
analysis). VISIONE can be used for large scale video searching, to perform automatic medatata
generation and object recognition.

4.3.7. Relevant Publications

• “VISIONE at Video Browser Showdown 2021”, Amato, G., Bolettieri, P., Falchi, F., ...Vadicamo,
L., Vairo, C, 27th International Conference on MultiMedia Modeling, MMM 2021; Prague;
Czech Republic; 22 June 2021 through 24 June 2021; Code 254419, Volume 12573 LNCS,
2021, Pages 473-478, ISBN: 978-303067834-0, DOI:10.1007/978-3-030-67835-7 47, (Zenodo
Record: https://zenodo.org/record/5078245)

• “The VISIONE video search system: exploiting off-the-shelf text search engines for large-
scale video retrieval”, G. Amato, P. Bolettieri, F. Carrara, F. Debole, F. Falchi, C. Gennaro,
Journal of Imaging, 2021 7 (5), 76, https://doi.org/10.3390/jimaging705007, (Zenodo Record:
https://zenodo.org/record/5078216)

• “Transformer reasoning network for image-text matching and retrieval”, Messina, N., Falchi,
F., Esuli, A., Amato, G., 25th International Conference on Pattern Recognition (ICPR) (pp.
5222-5229), 2021, https://doi.org/10.1109/ICPR48806.2021.9413172

Initial report on Multimedia Summarisation and Analysis 51 of 103

https://zenodo.org/record/5078245
https://zenodo.org/record/5078216
https://doi.org/10.1109/ICPR48806.2021.9413172


4.3.8. Relevant External Resources

• http://visione.isti.cnr.it/

4.4. Few-shot object detection: positive sample augmentation and en-
sembling

Contributing partners: UPB

4.4.1. Method Overview

UPB worked on few-shot object detection (FSOD) algorithms applied on images with the aim of
either improving the existing performances or reducing the current implementations’ computational
requirements. After a thorough study of the literature, UPB decided to take inspiration and start
from the state-of-the-art implementation of a simple, yet effective few-shot object detector [112].
This method implies training a base model for object detection on a given dataset. Then, when
new classes are presented to the model it is sufficient to fine-tune only the last two layers while
freezing the rest of the model. This algorithm is successful and surprisingly simple to implement
and understand. Based on this method, UPB studied the approaches described below.

Model Variation UPB first studied different model setups, similar to the ones mentioned in the
original paper. Since the authors focused on a Faster R-CNN [116] model composed of ResNet-
101 [54] and FPN [136] as backbone, UPB explored other variations as well. The model permits the
adaptation of similar architectures such as ResNet-50, ResNet-151, ResNeXt variants [137] or VGG
variants [138] in the backbone section. Another interesting architecture that can substitute these
backbones is Mask R-CNN [139] where a small improvement is brought by the ROI pooling layer.
On the same note, another idea that UPB investigated was the reduction of computation complexity
by replacing the two-stage detectors with one stage detectors such as YOLO [140], SSD [141] and
RetinaNet [142]. These have the advantage of being faster and using less parameters, but they
usually suffer from a performance reduction. Since the fine-tuning approach acts only on the last
layers of the network, the single-stage detectors are also viable solutions.

Positive Sample Augmentation Another interesting approach from the literature involves
positive sample augmentation [143]. This algorithm is depicted in Figure 15 and it follows the
next logic. There are two branches to the entire pipeline: a main one, consisting of the Few-Shot
Object Detector and a reinforcement one, consisting of the positive sample augmentation (PSA), an
FSOD and a hard samples reweighting module. The two FSODs form a Siamese network, therefore
their weights are tied. The positive sample augmentation consists of several image enhancement
mechanism that are applied to scarce samples from the dataset.

The reinforcement branch is used only in the training phase of the algorithm. Our work focused
on adapting this setup to the previously mentioned fine-tuning approach. This means that after
training the base model on the classes that have enough samples we proceed to freezing the Siamese
nets except for their last two layers. These are then fine-tuned on the few-shot classes. This setup
is also versatile since the FSOD module can be represented by any object detector. Multi-scale
approaches are considered better for this algorithm since among the PSA methods there are also
multi-scale replications of the hard samples. In the training phase, a combined loss is used:

L = Lcls + Lconf + Lreg, (10)
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Figure 15. Positive Sample Augmentation framework. Reinforcement branch on yellow background.

Table 6. Few-shot detection evaluation on PASCAL VOC 2012. The numbers in the split boxes represent the
number of samples in the novel classes.

Method
Split 1 Split 2 Split 3

1 3 5 10 1 3 5 10 1 3 5 10

FRCN+ft full 34.0 34.5 37.4 37.5 30.1 32.5 32.6 32.2 36.5 36.5 38.1 37.3

YOLOv3+ft full 14.2 30.6 40.3 44.2 14.5 28.9 33.7 40.4 16.1 32.4 40.1 43.1

YOLOv4+ft full 15.5 32.8 45.4 51.3 15.6 30.6 36.3 44.8 17.5 35.9 45.8 49.6

TFA w/ fc 43.8 44.6 46.7 46.6 41.2 42.0 43.0 42.7 43.0 45.9 46.3 46.7

TFA w/ cos 44.0 45.0 47.2 47.3 41.1 42.2 43.1 43.3 42.3 45.7 46.3 47.0

FSSP 41.6 49.1 54.2 56.5 30.5 39.5 41.4 45.1 36.7 45.3 49.4 51.3

where Lcls is the classification loss, Lreg is the regression loss and Lconf is the confidence loss. Lreg
and Lconf are the standard losses uses in object detection. Lcls is computed as the sum between
a fine-tuning loss and a cosine similarity loss, meant to give positive samples high scores so that
they can be detected and suppress hard-negative samples.

UPB ran the few-shot detection evaluation on two standard datasets that are largely used for
this task, namely PASCAL VOC [144] and MS-COCO [68]. We present the best results that UPB
obtained so far in Tables 6 and 7. For PASCAL VOC the following setup was used: for training,
the VOC2007 train and VOC2012 train, and VOC2012 val sets were used and for validation the
VOC2007 test set was used. The 20 classes are randomly divided into 15 base training classes and
5 novel classes. This random split is performed 3 times and the results on each of these splits are
presented. For the COCO dataset the 2014 dataset was used and 5k images from the validation
set were extracted for evaluation. The rest of the dataset is used for training. The same 20 classes
that are used by PASCAL VOC are kept as novel classes and the rest are used as base classes
for training. The FRCN+ft full, YOLOv3+ft full, and YOLOv4+ft full models are obtained by
finetuning the trained base model on the novel classes until full convergence is achieved. TFA w/
fc represents the model obtained by replacing the last 2 classification layers with fully connected
layers, whereas TFA w/ cos is obtained by replacing the last 2 layers with a cosine similarity based
classifier. Lastly, FSSP is the model obtained by performing the positive sample augmentation on
the novel classes. The last 3 models use Faster RCNN with ResNet101 and FPN as backbone.
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Table 7. Few-shot detection evaluation on MS-COCO.

Method
10-shot 30-shot

AP AP50 AP75 AP AP50 AP75

FRCN+ft full 13.4 21.8 14.5 13.5 21.8 14.5

YOLOv3+ft full 9.1 18.2 8.2 12.5 24.8 11.3

YOLOv4+ft full 10.1 19.9 9.2 14.1 25.8 13.7

TFA w/ fc 26.3 41.8 28.6 28.4 44.4 31.2

TFA w/ cos 26.6 42.2 29.0 28.7 44.7 31.5

FSSP 9.9 20.4 9.6 14.2 25.0 13.9

Ensembling FSOD Considering that both the previous two mentioned methods can be cus-
tomised for a large number of detection networks, UPB are following the approach proposed by
Dvornik et al [145] regarding ensembling methods for FSOD. The authors propose 3 ensembling
strategies that are currently under progress:

1. independent ensembling: several models are trained independently and frozen. Then, their
last prediction layer is removed and, given a new class with few annotated samples, a mean
centroid classifier is built for each network. The obtained probabilities are then averaged
over networks, improving the accuracy.

2. diversity ensembling: this is done by introducing randomization in the model training through
data augmentation or various initializations. This technique works best for a large number
of networks.

3. cooperation ensembling: by encouraging conditional probabilities to be similar through sym-
metrized Kullback-Leibler divergence. This technique works best for a small number of
networks, which is in contradiction with the previously mentioned method.

A fourth strategy is proposed as a compromise between the previous two ensembling methods,
where the best trade-off between the high and low number of networks involved in the ensembling
strategy is employed. They do so by randomly dropping a part of the networks at each training
iteration, applying Dropout inside each network and applying different transformations on the
input images.

Since there are many object detection architectures that have been validated during the past
few years, UPB worked on creating several models with the PSA-fine-tuning hybrid approach and
finally combine them using the aforementioned ensembling strategies. Preliminary results show
that this method is worth investigating. This is currently an ongoing research. A conference paper
is expected to be submitted on this topic by February 2022.

4.4.2. Contributions to WP8 Use cases

Relevant WP8 Use Cases: 3C2-6 (Video object recognition), 3C2-7 (Video object localisation).
A few-shot object detector can contribute to use-cases 3C2-6 and 3C2-7, by recognizing and local-
izing (with a bounding box) objects in an image. A trivial extension to video sequences would be
to apply this algorithm on a per-frame basis.
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4.5. Adversarial Semi-supervised Learning for Fine Grained
Visual Classification

Contributing partners: UNIFI

Novel methods to increase the amount of training data, for improving learning accuracy in Fine-
Grained Visual Categorization (FGVC), were investigated. This problem has not been researched
in the past, in spite of prohibitive annotation costs that FGVC requires. We are currently investi-
gating a method to leverage unlabeled data with an adversarial optimization strategy in which the
internal features representation is obtained with a second-order pooling model (Subsection 4.5.2).
This combination allows to back-propagate the information of the parts, represented by second-
order pooling, onto unlabeled data in an adversarial training setting. Preliminary evaluation and
discussion on the basic mechanism of soft pseudo-labeling on which adversarial learning is based
is discussed in Subsection 4.5.1.

4.5.1. Soft Pseudo-labeling Semi-Supervised Learning Applied to Fine-Grained Vi-
sual Classification

Introduction

Fine-Grained Visual Categorization (FGVC) aims to distinguish between image classes such as
species of birds, dogs, flowers or even models of cars. This is much harder than general-purpose
classification as only few subtle key features matter. A further issue of FGVC is that data an-
notation is very expensive and it requires domain experts. The data annotation problem can be
partially alleviated using Semi-Supervised Learning (SSL) by leveraging large set of unlabeled data
and few labeled ones [146]. Except for a very recent paper [147], SSL has not been investigated
in FGVC. However, this topic is getting increasing support and attention to such an extent that a
dataset for this specific problem has been released [148]. SSL has shown to be a suitable learning
paradigm for leveraging unlabeled data to reduce the cost of large labeled datasets [149].

A common assumption in SSL is that the decision boundaries of the classifier should not pass
through high-density regions of the marginal data distribution [146]. One way to impose this
constraint is to force the output of the classifier to have low-entropy predictions on the unlabeled
data [150]. This strategy is known as entropy minimization and is particularly interesting be-
cause pseudo-label SSL [151], the simplest algorithms in SSL, does entropy minimization implicitly
by constructing hard labels from the most confident class predictions on unlabeled data. Class
predictions are subsequently used as training targets in a standard supervised learning paradigm
and optimized according to the cross-entropy loss. Entropy minimization can be considered a soft
version of the pseudo-labeling method.

This work investigated the theoretical relationship between the two methods and evaluated SSL
entropy minimization, on several FGVC datasets, including the recent Semi-Supervised iNaturalist-
Aves [148] and compare the results with [147] in which a pseudo-label based learning method is
used.

Experimental results show that although in some cases supervised learning may still have better
performance than the semi-supervised methods, Semi Supervised Learning shows effective results.
Specifically, we observed that entropy-minimization slightly outperforms a recent proposed method
based on pseudo-labeling.
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Related Work on Semi-Supervised FGVC

To the best of our knowledge, [147] is the only approach evaluating FGVC datasets in a SSL
learning context and it proposes a pseudo-label based technique to leverage unlabeled data. The
method, after each training, generates pseudo-labels on the unlabeled set to be addded to the
labeled training samples; it select the top-k most-confident label greater than a threshold value.

The Semi-Supervised iNaturalist-Aves dataset (FGVC7) has been recently released. It presents
some of the challenges encountered in a realistic setting, such as fine-grained similarity between
classes, significant class imbalance, and domain mismatch between the labeled and unlabeled data.
As reported by the panel of the competition all participating teams applied the pseudo-label method
[151] and the state-of-the-art method [152] provides similar performance but is computationally
more expensive. Other recent state-of-the-art methods [149, 153, 154] are also exploited but do
not improve the performance.

Problem Formulation

In this section we briefly review the formulation of SSL and the relationship between entropy
minimization and pseudo-labeling. In Semi-Supervised Learning [146] we are provided with a
dataset of K classes containing both labeled and unlabeled examples. The dataset D is divided

in two parts: a labeled subset Dl = {(xi, yi)}|Dl|
i=1 and an unlabeled subset Du = {(xj)}|Du|

j=1 , where

|Dl| and |Du| are respectively the number of examples of the labeled and unlabeled datasets. Semi-
Supervised Learning (SSL) aims to improve model performance by incorporating a large amount
of unlabeled data during training. Formally, the goal of SSL is to leverage the unlabeled data Du
to produce a prediction function fθ, with trainable parameters θ, that is more accurate than using
the labeled data Dl only.

Pseudo-label

Unlabeled samples are treated as labeled samples, and training proceeds with the standard super-
vised loss function:

ŷki =

{
1 if k = argmaxfθk (xj)

0 otherwise.

In this way pseudo-labels of unlabeled samples are considered as if they were true labels. The
Cross-Entropy loss calculated on pseudo-labeled samples is:

Lpl = − 1

|Du|

|Du|∑
j=1

K∑
i=1

ŷji log fθi (xj).

So the overall objective function is:

θ̂ = argmin
θ

(
− 1

|Dl|

|Dl|∑
j=1

K∑
i=1

yji log(fθi (xj))− λ
1

|Du|

|Du|∑
j=1

K∑
i=1

ŷji log fθi (xj)

)
, (11)

where the first term is the standard cross-entropy loss in which yji is is the label of the j-th sample
of the class i and λ weights the contribution of the second term.
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Entropy Minimization

One common assumption in many SSL methods is that decision function boundary should not
pass through high-density regions of the marginal data distribution. One way to enforce this, is
requiring the classifier to output low-entropy predictions on unlabeled data [150]. This encourages
the network to make confident (i.e., low-entropy) predictions on unlabeled data regardless of the
predicted class, discouraging the decision boundary from passing near data points where it would
otherwise be forced to produce low-confidence predictions. This effect can be achieved by adding
a simple loss term which minimizes the entropy of the prediction function fθ(x):

θ̂ = argmin
θ

(Lce + λH).

In which the entropy H calculated on unlabeled data is:

H = − 1

|Du|

|Du|∑
j=1

K∑
i=1

fθi (xj) log fθi (xj).

θ̂ = argmin
θ

(
− 1

|Dl|

|Dl|∑
j=1

K∑
i=1

yji log(fθi (xj))− λ
1

|Du|

|Du|∑
j=1

K∑
i=1

fθi (xj) log fθi (xj)

)
. (12)

As can be noticed Eq. 11 and Eq. 12, are equivalent: the hard pseudo-label ŷki is replaced by soft
one in term of the network output fθi (xj). According to this, pseudo-labeling is closely related
with entropy minimization.

4.5.2. Fine-Grained Adversarial Semi-supervised Learning

Introduction

Fine-Grained Visual Categorization (FGVC) lies in the continuum between categorization (i.e
object classification) and identification (i.e. instance recognition). FGVC is quite subtle and
therefore difficult to address with general-purpose object classification methods based on DNNs
[155]. FGVC is much more challenging than traditional classification tasks due to the inherently
subtle intra-class object variability amongst sub-categories. Distinguishing between a cat and a
giraffe is easy (i.e. large variability) while, in distinguishing fine-grained classes, typically only a
few key features matter as in species of birds [156], dogs [157], flowers [158] or manufacturers and
models of cars [159] and aircrafts [160].

The task becomes significantly more difficult in domains where data is not readily available (e.g.,
medical images) or domains for which training data is scarce [161]. It is likely that techniques used
for representation learning like semi/self-supervised or unsupervised learning that are currently
used for visual recognition are not sufficient to significantly improve FGVC. In addition to this,
obtaining training data for fine-grained images is prohibitively expensive, as expert knowledge is
typically required [162]. In view of these issues, we propose a learning method focusing on the
FGVC problem in which labeled data is limited and unlabeled is available.

Recent top performing supervised learning methods have substantially shown that the most
successful strategy to FGVC is obtained by identifying, either explicitly or implicitly, the object
parts [163, 164, 165, 166]. The central underlying assumption is that fine-grained information
resides within the parts. Many approaches particularly focus on explicitly localizing relevant regions
in an image. This is typically achieved by leveraging the extra annotations of bounding box and part
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Figure 16. Illustration of the effect of second-order pooling in Semi-Supervised Fine-Grained Visual Categorization
(SSL-FGVC). We show images from three different classes of Airbus aircraft models: A319 ( top), A320 ( middle)
and A321 ( bottom). They mainly differ by the number of doors and their position along the fuselage (circles).
We propose to take advantage of the long-range attention based part-to-part relationships exploited by second-order
pooling and back-propagate this information onto unlabeled data to perform unsupervised structure discovery.

annotations (some known datasets provide ground-truth part annotations [156, 167]) to localize
regions that provide the most discriminative information. However, in addition to class labeling,
the extra human annotations regions are not only difficult to obtain and prohibitively expensive,
but can often be error-prone resulting in performance degradation [168]. Methods for unsupervised
part detection and mining have been developed [169, 170, 171, 172], however, these methods pose
various challenges, such as missing parts due to occlusions and parts not providing discriminative
information. According to this, it remains controversial whether unsupervised detected parts are
fully beneficial.

While extra parts annotation has been well studied, we are aware of only one published work in
literature addressing FGVC in a Semi-Supervised Learning setting at the image label level [147].
Despite not being investigated, this topic is getting increasing attention and support. In confirma-
tion of this, the Semi-Supervised iNaturalist-Aves Dataset dataset has been recently released for
this specific problem ([148]), in the context of the challenge part of the FGVC7 workshop held in
conjunction with CVPR2020. The dataset is intended to set out some of the difficulties faced in
a practical environment. The competition panel reported that all teams applied the pseudo-label
SSL method [151] and that the state-of-the-art Deep-SSL methods [152, 149, 153, 154] provide
similar performance but are computationally more expensive.

According to this, we propose an approach that addresses the problem in a complementary
way in both the SSL setting and the part-based assumption of FGVC. We adopt an adversarial
optimization strategy that alternately maximizes the conditional entropy of unlabeled data with
respect to the classifier and minimizes it with respect to a second-order feature encoder. This
combination allows to back-propagate the information of the parts captured by the second-order
pooling model onto unlabeled data in an adversarial training setting as illustrated in Fig. 16. The
strategy extends the works in [9, 173], originally proposed for Domain Adaptation, to the specific
Semi-Supervised Learning setting. To the best of our knowledge, this is the first approach to
leverage adversarial optimization in the specific case of SSL, and we are not aware of previous works
that combined SSL with specific strategies exploiting the information of object parts. Although the
recent work [147] applies SSL to FGVC datasets, the information of the parts are not explicitly
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Figure 17. An overview of the proposed model architecture. The inputs to the network are labeled and unlabeled
examples. The model fθ (light green) consists of the second-order pooling (iSQRT-COV) [8] feature extractor F
(light red) and the classifier C having weight vectors wi (light blue). C is trained to maximize entropy on
unlabeled target whereas F is trained to minimize it. To achieve the adversarial learning, the sign of gradients for
entropy loss on unlabeled target examples is flipped by a gradient reversal layer (GRL) [9]. According to this,
labeled and unlabeled back-propagation follows two distinct paths.

taken into account during the semi-supervised learning process.
The main benefit of our adversarial optimization with respect to pseudo-label based methods

[151, 147], is that the model can correct its own errors without incurring in wrong classifications
that rapidly intensify resulting in confident but erroneous pseudo-labels on the unlabeled data.

We empirically demonstrate the superiority of our method over many baselines and show the
method is safe [174].

Problem Formulation

In Semi-Supervised Learning, in addition to unlabeled data, the learning algorithm is provided
with some supervision information, but not necessarily for all examples. In this case, the data
is divided in two parts: the set for which labels are available Dl =

{(
xli, y

l
i

)}nl

i=1
and the set for

which the labels are unknown Du = {(xui )}nu

i=1, where nl and nu are the number of examples of
the labeled and unlabeled datasets, respectively. It is typically assumed that X × Y is drawn
from an unknown joint probability distribution p(X, Y ) and that we observe it through the finite
training sample Dl. The main goal is to leverage the unlabeled data Du to learn a DNN model fθ,
with trainable parameters θ, that is more accurate than using the only Dl. The data Du provide
additional information about the structure of the data distribution p(X) to better learn the internal
feature representation of fθ. The dependency between p(X) and p(Y |X) is typically established
according to the cluster assumption, (i.e. data points in the same cluster of p(X) have the same
label Y ); and low-density separation, (i.e. class boundaries of p(Y |X) should lie in an area where
p(X) is small) [175]. Due to the low variability of classes in FGVC, these assumptions are quite
hard to meet in practice.

Method Overview

Our base model architecture fθ for FGVC consists of a special feature extractor F , based on second-
order pooling, and a classifier C in which weights W are normalized to exploit the approximated
cosine distance criterion between the classifier prototypes and the features. According to this,
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in order to classify examples correctly, the normalized direction of a weight vector has to be
representative of the features of the corresponding class in term of an angular distance. In this
respect, the weight vectors can be regarded as angular estimated prototypes for each class.

Angular classifier prototypes are learned taking into account unlabeled data by exploiting an
adversarial entropy optimization. Unlabeled data follow a specific data path for back-propagation
that allows to attract the prototypes towards them. As the feature representation takes in account
the long-range part-to-part relationships, the information of the parts can be indirectly better
back-propagated towards the unlabeled data. The architecture of our method is shown in Fig. 11
and will be detailed in the next Subsection.

Back-propagation of the Parts onto Unlabeled Data

The goal is to obtain representative classifier prototypes W = [w1,w2, . . . ,wK ] where K is the
number of classes for labeled and unlabeled data and to minimize the distance between the proto-
types and the unlabeled examples. We approach the problem in mainly three different fronts: (1)
reduce intra-class distance, (2) improve feature discriminativity exploiting part-to-part relation-
ships (3) handling unlabeled data distance between prototypes and features.

For labeled data, the general purpose-classification linear classifier already minimizes the dis-
tance between features and classifier prototypes. However, as in many other instance recognition
tasks (i.e. face recognition, re-identification), features in ideal FGVC are expected to have smaller
maximal intra-class distance than minimal inter-class distance under a suitably chosen metric space.
The vanilla linear classifier cannot effectively satisfy this criterion [176]. One simple method to
enable convolutional neural network to produce more discriminative features is imposing discrim-
inative constraints on a hypersphere manifold by normalizing the vectors of the classifier weights
[177]:

w′i =
wi

||wi||
i = 1, 2, . . .K, w′i ∈ Rm (13)

where, as detailed in the next subsection, m = d(d+1)
2 with d, is the channel dimension of the last

convolutional layer of the architecture (Fig. 18).

…
𝑑

𝑤 × ℎ
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2

Figure 18. The w × h feature channels of dimension d of the last convolutional layer of the CNN architecture are

used to compute the covariance matrix. The
d(d+1)

2
-dimensional values of the upper triangular matrix constitute

the internal feature representation vector that allows the model to determine the attention based long-range
part-to-part relationships. The forward and backward propagation of the covariance in the adversarial
optimization setting of Fig. 11 are computed according to the iSQRT-COV approximated method.

Handling Unlabeled Data with Adversarial Entropy Optimization

The obtained features and the relative prototypes provide improved discriminative power and
reduced low-intra class variation, respectively. Yet, the overall goal remains how to include a
strategy to minimize the distance between the prototypes and the unlabeled examples. As this
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cannot be directly achieved with a linear classifier alone, we exploited the adversarial strategy
originally proposed in [9, 173]. The adversarial part of our strategy clusters features computed
from unlabeled data around the classifier learned prototypes. Therefore, we train the feature
extractor F and the classifier C to classify labeled and utilize standard cross-entropy minimization
objective to extract discriminative features for the labeled data:

L = − 1

nl

nl∑
j=1

K∑
i=1

ŷj log p(yj = i|xj), (14)

where ŷj is the true class label for xj . The unlabeled data are used to maximize the entropy with
respect to the classifier C and to minimize the entropy with respect the feature extractor F . The
entropy is computed as follows:

H = − 1

nu

nu∑
j=1

K∑
i=1

p(yj = i|xj) log p(yj = i|xj). (15)

The intuition is that high entropy, namely the maximization of Eq. 15 between the classifier weight

𝐰1

𝐰2

𝐰1

𝐰2

Unlabeled class A

Labeled class A

Unlabeled class B

Labeled class B

Figure 19. Adversarial Learning intuition. (a): High entropy between the classifier weight vectors wi (i.e., the
prototypes) and the unlabeled data features forces the classifier weight vectors to “move” towards the unlabeled
data features. (b): This force is counter to the standard cross entropy which instead tends to cluster labeled and
unlabeled features around the estimated prototypes.

vectors (i.e., the prototypes) and the unlabeled data features, forces the classifier weight vectors
to “move” towards the unlabeled data features (Fig. 19(a)). This because high entropy tends to
achieve a uniform distribution of the softmax output probabilities that consequently encourages
each prototype wi to be similar to all the unlabeled features. This strategy can be considered as
an “adversarial move” of the classifier, whose intention is to “explore” the representation space
driven by the unlabeled data (Fig. 19(a)). This force is counter to the force of the standard
cross entropy (Eq.14) which instead tends to cluster unlabeled features around the estimated
prototypes by learning the feature representation (Fig. 19(b)). Alternating these two opposite
“forces” determines a sort of equilibrium in which discriminative features and a classifier may
have better explored the representation space as driven by unlabeled data in a way that possible
wrong pseudo labeling can be eventually recovered. This co-optimization can be formulated as an
adversarial learning between C and F by weighted summing the two losses of Eq. 14 and Eq. 15
as follows:

θ̂F = argmin
θF

L+ λH

θ̂C = argmin
θC

L − λH,
(16)

where λ> 0 is the weighting factor. F and C are co-optimized in two steps: in the first step,
both F and C are optimized by minimizing the cross-entropy loss on labeled data. In the second
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step, F and C are optimized in opposite ways on unlabeled data, minimizing the entropy loss
and maximizing the entropy, respectively (the signs of the entropy in the two equations of Eq. 16
are opposite). In the second step, input data follows the unlabeled path (Fig. 11), on which the
classifier and the feature extractor are connected via a Gradient Reversal Layer (GRL) [9]. During
forward propagation, GRL acts as an identity transform. During the back-propagation, GRL takes
the gradient from the subsequent level, multiplies it by −λ and passes it to the preceding layer
(Fig. 11). By adding the gradient reversal layer, the training process described above can be
achieved through normal model training.

Evaluation on the Semi-Supervised iNaturalist-Aves Dataset

We compare with Sup-Cov [178] and with the six different SSL methods evaluated in [179]: Pseudo-
Labeling [151], Curriculum Pseudo-Labeling, [180], FixMatch [154], Self-Training [179], MoCo
(Momentum Contrast) [181] and MoCo + Self-Training [182]. Specifically, the Self-training baseline
initially trains a teacher model with only labeled data, then transfers the knowledge to a student
model by distillation [183] using both labeled and unlabeled data. The MoCo + Self-Training
performs a self-supervised pre-training with MoCo then removes the final MLP layers and adds
a classification layer that is trained with labeled data. The results of the comparison are shown
in Tab. 8. Our method shows state-of-the-art performance with respect to the baselines with an
accuracy result of 69.85% and 65.4% with the ResNet101 and ResNet50 architecture, respectively.
The gain in classification accuracy from FixMatch (i.e. the best performing algorithm) using the
same CNN backbone is 8% (from 57.4% to 65.4%). As evidenced from the table the increase
in classification accuracy is mostly due to the second order pooling layer and secondly by the
adversarial strategy.

Table 8. Results on the Semi-Supervised iNaturalist-Aves Dataset (FGVC7 challenge). Our method achieves a
significant improvement by leveraging unsupervised data.

Method Accuracy #Params

Pseudo-Label [151] 54.4 ResNet50 (25M)

Curriculum Pseudo-Label [180] 53.4 ResNet50 (25M)

FixMatch [154] 57.4 ResNet50 (25M)

Self-Training [179] 55.5 ResNet50 (25M)

MoCo [181] 55.5 ResNet50 (25M)

MoCo + Self-Training [182] 52.7 ResNet50 (25M)

Sup [179] 52.7 ResNet50 (25M)

Sup-Cov [178] 64.7 ResNet50 (25M)

Ours w/o Cov 50.5 ResNet50 (25M)

Ours 65.4 ResNet50 (25M)

Ours 69.85 ResNet101 (44M)

4.5.3. Contributions to WP8 Use cases

Relevant WP8 Use Cases: 3A3-12 (Visual concepts classification), 2B1 (Automatic metadata
tagging). FGVC methods can directly be applied to 3A3-12 and 2B1.
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• Mugnai, D., Pernici, F., Turchini, F., & Del Bimbo, A. (2021). Soft Pseudo-labeling Semi-
Supervised Learning Applied to Fine-Grained Visual Classification. In Pattern Recognition.
ICPR International Workshops and Challenges: Virtual Event, January 10–15, 2021, Pro-
ceedings, Part IV (pp. 102-110). Springer International Publishing.

• Mugnai, D., Pernici, F., Turchini, F., & Del Bimbo, A. (2021). Fine-Grained Adversarial
Semi-supervised Learning, (submitted).

4.6. DivClust - Learning Multiple Clusterings With a Diversity-Controlling
Objective

Contributing partners: QMUL

4.6.1. Method Overview

Clustering has been a major research subject in the field of machine learning, one to which deep
learning has recently been applied with significant success. However, an aspect of clustering that
is not addressed by existing deep clustering methods is that there is, in fact, no single inherently
correct way to cluster a given set of data. QMUL has focused on this area, and developed a
clustering loss component that can be used to train models to produce multiple clusterings of
controlled diversity with each other, which explore different partitionings of a given dataset. The
proposed objective can be combined with existing deep clustering approaches to learn diverse
clusterings from scratch, or implemented on top of a trained clustering model to build from the
clustering it has already established, in order to explore alternative solutions. Experiments were
conducted with multiple datasets and clustering frameworks to demonstrate the effectiveness of
the proposed approach, and show that DivClust can control clustering diversity without reducing
the quality of the clusters. A clustering aggregation method was also proposed, that combines
the diverse clusterings learned by the model to produce a single, aggregate one. Experimental
results show that the resulting aggregate clusterings are consistently superior to the ones produced
by single-clustering frameworks, with regard to their overlap with the ground truth labels of the
corresponding datasets.

Figure 20. Illustration of the proposed framework assuming clusterings A and B with two clusters each. Given a
set of data, a backbone network f , and projection heads hk, each corresponding to a clustering k, DivClust
restricts their similarity, enforcing that some samples belong to different clusters in each clustering.
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4.6.2. DivClust

The architecture of QMUL’s method can be seen in Figure 20. It consists of a backbone network
f , followed by K projection heads h1, ..., hK , each corresponding to a clustering k. Assuming
a set X of N unlabelled samples, the backbone network maps those samples x ∈ X to vector
representations f(x), and each projection head hk maps the representations to Ck clusters. In this
work, it is assumed that all clusterings have the same number of clusters C, so that Ck = C ∀k.
Then, pk(x) = hk(f(x)) ∈ RC represents the probability assignment vector mapping the sample
x ∈ X to C clusters in clustering k. The column pk(i) ∈ RC , that is the probability assignment
vector for the i-th sample, shows to which clusters that sample has been assigned. The row vector
qk(j) ∈ RN , that is the cluster membership vector for a cluster j, shows which samples are assigned
to cluster j.

In order to assess the similarity between two clusterings A and B the inter-clustering similarity
matrix SAB ∈ RC×C is defined. Each entry SAB(i, j) represents the cosine similarity between the
cluster membership vector qA(i) of the cluster i in A and the cluster membership vector qB(j) of
the cluster j in B. That is,

SAB(i, j) =
qA(i) · qB(j)

‖qA(i)‖2‖qB(j)‖2
. (17)

This variable expresses the degree to which clusters i and j have been assigned the same samples,
and is, therefore, a measure of their similarity. The similarity between any two clusters of two
clusterings can then be controlled by applying constraints on the clustering similarity matrix SAB .
Toward that, two ways of controlling the inter-clustering similarity were proposed, with distinct
loss functions: a) Cluster-wise diversity, where similarity constraints are applied to each pair of
clusters, softly enforcing that no pair of clusters i ∈ CA and j ∈ CB have a cosine similarity
SAB(i, j) greater than a desired similarity upper bound d. That is achieved via the loss presented
in Eq. 18. b) Global diversity, where it is softly enforced that the two clusterings A and B do not
have an aggregate similarity greater than a desired similarity upper bound d. Aggregate similarity
is defined as the similarity of each cluster i ∈ CA with its most similar cluster j ∈ CB , averaged
over all clusters for each clustering. The loss is defined as in Eq. 19, where [x]+ = max(x, 0).

LCDiv(SAB) =
1

CA

CA∑
i=1

CB∑
j=1

[SAB(i, j)− d]+, (18)

LGDiv(SAB) =

∑CA

i=1maxj
(SAB(i, j))

CA
− d


+

(19)

The total loss in the proposed framework, presented in Eq. 20, is the mean of the clustering loss
Lmain at the individual heads, plus the mean of the diversity loss Ldiv for each head. The former
can be any of the losses proposed by deep clustering frameworks, for example that of PICA [2] or
IIC [184]. The latter is either one of the proposed LCDiv and LGDiv losses.

Ltotal =
1

K

K∑
k=1

Lmain(Pk) +
1

K(K − 1)

K∑
k=1

K∑
p 6=k)

Ldiv(Skp) (20)

4.6.3. Clustering aggregation

Complementary to DivClust, QMUL also proposed a clustering aggregation method, to utilise the
diverse clusterings DivClust can produce in consensus clustering tasks, where a single clustering
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solution is required from an ensemble of K non-identical clusterings. To solve this problem, the
probability assignment tensor P ∈ RK×N×C is assumed, for K clusterings, N samples and C
clusters. The probability assignment matrix PA ∈ RN×C of each clustering A is then projected to
WA as:

WA = PA · PTA ∈ RN×N (21)

Each element of that matrix WA(i, j) is the inner product of probability assignment vectors
pA(i), pA(j) ∈ RC , and reflects the confidence of the model that samples i and j are assigned
to the same cluster. In this space, the results of multiple clusterings can be averaged to define the
matrix Waggr (Eq. 22). Each element Waggr(i, j) of this matrix indicates how frequently and with
how much confidence two samples i and j were assigned to the same cluster, on average, over all
clusterings K. It represents, therefore, an aggregation of those clusterings.

Wagr =
1

K

K∑
k=1

Wk (22)

A mapping function is then required, that can combine the cluster assignment vectors Pk(X) of
each clustering k into a single assignment vector, that approximates Wagr. Given Pk ∈ RN×C , the
joint cluster assignment vector is defined:

Pjoint = [P1, P2, ..., PK ] ∈ RN×CK (23)

The mapping function g is trained to project Pjoint to the aggregate cluster assignment matrix

Paggr = g(Pjoint) ∈ RN×C , such that ˆWaggr = Paggr · PTaggr approximates Waggr. This is achieved
by minimising the MSE loss presented in Eq. 24. The training of g (a simple linear layer in
QMUL’s implementation) results in cluster assignments approximating the aggregate of the K
diverse clusterings learned by the model.

Lg = mean
(
(Paggr · PTaggr −Waggr)

2
)

(24)

4.6.4. Evaluation

DivClust is evaluated in several experimental settings to validate its effectiveness. The most
significant of the conducted experiments are presented in Tables 9 and 10.

Datasets: The datasets used are CIFAR10, CIFAR100-20 [185] and STL-10 [186], standard
datasets on which deep clustering frameworks are evaluated. CIFAR10 consists of 60,000 32X32
images separated among 10 classes. CIFAR100 consists of 60,000 images separated among 100
classes and 20 superclasses. Following previous deep clustering methods, the 20 superclasses are
used as ground truth labels. Accordingly, this dataset is referred to as CIFAR100-20. Finally,
STL-10 consists of 13,000 labelled images split between 10 classes, and 100,000 unlabelled images
of size 96X96. For STL-10, again following the literature, models are trained on all samples and
evaluated on the labelled part of the dataset.

Metrics: The objective of the proposed method is to generate diverse clusterings, without sac-
rificing quality, and which lead to an aggregate clustering with high overlap with the ground truth
labels. To measure clustering diversity, the Normalised Mutual Information (NMI) metric is used.
Specifically, the NMI between each pair of clusterings is calculated, and these values are averaged
over all clusterings to measure how similar they are. Higher NMI values indicate more similar
clusterings, therefore it is expected that the NMI should decrease as the similarity upper bound d
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Method Clusterings Div. Loss d Tr. CNF NMI Aggr. ACC Max. ACC

PICA - Baseline 1 - - - 0.96 - 55.27 55.27

PICA+DivClust 10 Global 0.9
SC 0.944 0.824 / 0.827 61.9 67.81

OT 0.9452 0.848 57.2 63.63

PICA+DivClust 10 Global 0.8
SC 0.942 0.711 / 0.75 62.62 62.27

OT 0.934 0.743 55.51 63.07

PICA+DivClust 10 Cluster-wise 0.95
SC 0.936 81.5 / 76.07 59.75 62.11

OT 0.944 0.734 56.64 60.6

PICA+DivClust 10 Cluster-wise 0.9
SC 0.942 0.708 / 0.667 61.07 61.34

OT 0.921 0.6757 63.08 64.9

IIC - Baseline 1 - - 99.7 - 44.43 44.43

IIC+DivClust 10 Global 0.9
SC 99.9 93.78 / 91.82 57.2 59.16

OT 99.8 89.3 46.53 49.31

IIC+DivClust 10 Global 0.8
SC 99.8 87.9 / 86.72 56.8 57.5

OT 99.8 82.06 54.42 57.86

IIC+DivClust 10 Cluster-wise 0.95
SC 99.8 90.3 / 89.6 54.9 56.2

OT 99.8 89.66 46.2 46.82

IIC+DivClust 10 Cluster-wise 0.9
SC 99.8 80.00 / 82.21 58.9 60.08

OT 99.8 89.78 47.78 48.27

Table 9. Results evaluating the effectiveness of DivClust in learning diverse clusterings on CIFAR10. When
models were trained from scratch (SC), PICA was trained for 250 epochs and IIC for 1000. When trained on-top
(OT), PICA and IIC models were trained for 200 and 1000 epochs, and additional clusterings were added
subsequently in regular 25 and 50 epoch intervals respectively.

decreases. The avg. confidence of cluster assignments (CNF) is used to quantify clustering qual-
ity, as higher confidence in cluster assignments by the model is an indication that the clusters are
well-defined. Finally, the accuracy metric (ACC) is used to measure the clusterings’ overlap with
the ground truth labels. The accuracy of the single aggregate clustering produced by DivClust and
the proposed clustering aggregation method (Aggr. ACC), as well as the accuracy of the best
performing clustering (Max. ACC), are provided. It should be noted, however, that there is no
way to identify that best performing clustering without having access to the ground truth, hence
the need for clustering aggregation.

Implementation: Regarding the training parameters of the models, they are trained as in the
original papers. In the experiments provided, DivClust is trained with both the global (Eq. 19)
and the cluster-wise (Eq. 18) diversity objectives, and it is combined with two deep clustering
frameworks, PICA [2] and IIC [184]. Two distinct training scenarios are explored: a) Training
from scratch (SC), where all clusterings are trained in parallel from the start. b) Training on-top
(OT), where, initially, the model is trained with a single clustering as in its original framework,
and additional clusterings are introduced incrementally in regular intervals.

In Table 9, DivClust is applied to CIFAR10. The objective is to evaluate whether it can, in
fact, control clustering diversity with both PICA and IIC, under the various examined training
configurations. The results demonstrate that: a) The proposed method is versatile, in that it can
be combined with various deep learning frameworks and both proposed losses. b) It is effective,
as it can achieve controlled diversity according to the similarity upper bound d without sacrificing
clustering quality. c) It can be beneficial in consensus clustering tasks, as the resulting aggregate
clustering is significantly and consistently better than the one achieved by the baseline, single
clustering models.

In Table 10, the proposed method is applied on-top of PICA, having trained it with overclus-
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Dataset Epochs Div. Loss d Baseline ACC. Aggr. ACC (Mean±STD) Max. ACC (Mean±STD)

CIFAR10 250 Global 0.8 68.16 72.61±3.67 69.74±0.44
CIFAR100-20 300 Cluster-wise 0.95 32.68 32.97±0.24 32.76±0.55

STL-10 400 Global 0.9 72.02 72.5±0.13 72.4±0.76

Table 10. Results when applying DivClust on top of a pre-trained clustering model. The baseline model was
trained with PICA and overclustering, using the training configuration proposed in [2]. DivClust was trained on
top for the number of epochs noted in the table, with a total of 10 clusterings being added incrementally.

tering (see [2] and [184] for details). Overclustering is dropped after additional clusterings are
added. In the case of STL-10 the feature encoder is frozen, as dropping overclustering meant that
the model was limited to the labelled section of the dataset, which would worsen the quality of
the features. The results in Table 10 show that on all three datasets the application of DivClust
and consensus clustering can improve clustering accuracy, compared to the initial baseline model
which is trained to learn a single clustering.

A relevant paper is under preparation, to be submitted until the end of 2021.

4.6.5. Contributions to WP8 Use cases

Relevant WP8 Use Cases: 3A3-11 (Visual indexing and search), 3A3-12 (Visual concepts
classification). DivClust is applicable to use-cases 3A3-11 and 3A3-12, since it can be used for
visual indexing, searching and concept classification.

4.7. Joint Deep Dictionary Learning and Coding Network

Contributing partners: UNITN

4.7.1. Method Overview

The key step of classifying images is obtaining feature representations encoding relevant label
information. In the last decade, the most popular representation learning methods were dictionary
learning (or sparse representation) and deep learning. Dictionary learning is learning a set of atoms
so that a given image can be well approximated by a sparse linear combination of these learned
atoms, while deep learning methods aim at extracting deep semantic feature representations via a
DNN. Scholars from various research fields have realized and promoted the progress of dictionary
learning with great efforts, e.g., [187, 188] from the statistics and machine learning community, [189]
and [190] from the signal processing community and [191, 192, 193] from the computer vision and
image processing communities. However, what is a sparse representation and how can we benefit
from it? These two questions represent the points we attempt to clarify among the fundamental
philosophies of sparse representation.

In our research, we aim to improve the deep representation ability of dictionary learning. To
this end, we propose a novel Deep Dictionary Learning and Coding Network (DDLCN), which
mainly consists of several layers, i.e., input, feature extraction, dictionary learning, feature coding,
pooling, fully connected and output layer, as shown in Fig. 21. The design motivation of the
proposed DDLCN is derived from both Convolutional Neural Networks (CNNs) and dictionary
learning approaches. However, the biggest difference is that the convolutional layers in CNNs are
replaced by our proposed dictionary learning and coding layers. By doing so, the proposed DDLCN
can learn edge, line and corner representations from the shallow dictionary layers. Then additional
sophisticated ‘hierarchical’ feature representations can be learned from deeper dictionary layers.
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Figure 21. The framework of the proposed Deep Dictionary Learning and Coding Network (DDLCN).

The proposed DDLCN has a better approximation capability of the input since the introduction of
the proposed dictionary learning and coding layer, which takes advantage of the manifold geometric
structure to locally embed points from the underlying data manifold into a lower-dimensional deep
structural space. Moreover, it also fully considers each fundamental basis vector adopted in the
shallow layer coding, and incorporates additional gradient affects of nonlinear functions on it into
the deeper local representation. Thus, the proposed DDLCN can transfer a very difficult nonlinear
learning problem into a simpler linear learning one. More importantly, the approximation power
is higher than its single-layer counterpart.

Further, we sequentially introduce each layer of the proposed DDLCN. Note that we only
illustrate details of two-layer DDLCN for simplicity. Extension of the proposed DDLCN to multiple
layers is straight forward.
Feature Extraction Layer. We first adopt a feature extractor F to extract a set ofm-dimensional
local descriptors Y = [y1, · · · ,yl]∈Rm×l from the input image I, where l is the total number of local
descriptors. To highlight the effectiveness of the proposed method, we only use a single feature
extractor in our experiment, i.e., Scale-Invariant Feature Transform (SIFT). The SIFT descriptor
has been widely used in dictionary learning. However, one can always use multiple feature extractor
to further improve performance. Specifically, for the input image I, we extract the SIFT feature
yi by using the feature extractor F , this process can be formulated as yi=F (I), i∈[1, ..., l].
First Dictionary Learning Layer. Let r denote the total number of classes in the dataset.
Then we randomly select p images in each class to train the dictionary of the corresponding class,
and the number of the first layer dictionary per category is denoted as q. Thus, the number of the
dictionary for the first layer can be calculated by D1=r∗q. Next, we adopt the following dictionary
learning algorithm,

min
Vi

[
1
2 ||yi − Viαi||

2
2

]
s.t. ||αi||1 <= λ (25)

where Vi= [v1,v2, · · · ,vq] is the dictionary for ith class in the first-layer dictionary, which contains
q atoms, i.e., vi. We then group all of them to form the first-layer dictionary V after separately
learning the dictionary of each class. Thus V = [V1,V2, · · · ,Vr] = [v1,v2, · · · ,vD1 ]∈Rm×D1 . αi is
a sparse coefficient introduced in [194]. By this way, the dictionary Vi and the coefficients αi can
be learned jointly.
First Feature Coding Layer. After learning V , each local feature is then encoded by V
through several nearest atoms for generating the first coding. By doing so, the first feature coding
layer transfers each local descriptor yi into a D1 dimensional code γ1=

[
γ1
1 ,γ

1
2 , · · · ,γ1

l

]
∈RD1×l.
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Specifically, each code can be obtained using the following optimization,

min
γ1
i

[
l∑
i=1

1
2

∥∥yi − V γ1
i

∥∥2
2

+ β
∥∥γ1

i � ζ1i
∥∥
1

]
s.t. 1Tγ1

i = 1,

(26)

where ζ1i ∈RD1 is a distance vector to measure the distance between yi and vi. � denotes the
element-wise multiplication. Typically, ζ1i can be obtained by reducing a reconstruction loss in the
corresponding layer. We note that [195] adopts a simple sparse coding model at the first layer,
which overlooks the importance of quantity distributions of each item in the code γ1

i , thus it is
prone to a rough approximation at the first layer. Therefore, the physical approximation of y in
the first layer can be expressed as,

y′ =
∑
v∈C1

γ1(y)v, (27)

where C1 is the set of anchor points to y. An illustrative example is shown in Fig. 22.
Second Dictionary Learning Layer. Most existing dictionary learning frameworks only use a
single layer, which significantly limits the discriminative ability of the feature coding. Meanwhile,
we observe that better representation will be obtained by using deeper layers in most computer
vision tasks. Thus, we borrow some idea from deep CNNs and present a new deeper dictionary
learning and coding layer. Then the second layer dictionary U= [u1,u2, · · · ,us2 ] can be learned
from the first layer dictionary V ,

min
U

[
1
2 ||vi −Uαi||

2
2

]
s.t. ||αi||1 <= λ (28)

where vi∈V is one of the basis vectors in the first activated dictionary. At the second layer, we
put more emphasis on the representation of each vi or each group of vi to further refine each basis
vi. Specifically, after coding at the first layer, we try to map a nonlinear function f to a simplified
local coordinate space with low intrinsic dimensionality. However, from the viewpoint of Lipschitz
smoothness [195], this solo layer mapping only incorporates limited information about f with its
derivative on y, such that it is incapable of guaranteeing better approximation quality. That is
why we would move deeper into the second layer to seek more information about f for further
improving the approximation. By doing so, the first layer can capture the fine low-level structures
from the input image, then the second coherently captures more complex structures from the first
layer.
Second Feature Coding Layer. We can obtain the code of the second layer by using the
following optimization,

min
γ2
i

[
D1∑
i=1

1
2

∥∥vi −Uγ2
i

∥∥2
2

+ β
∥∥γ2

i � ζ2i
∥∥
1

]
s.t. 1Tγ2

i = 1,

(29)

where γ2
i =
[
γ2
i (u1),γ2

i (u2), · · · ,γ2
i (uD2

)
]T∈RD2 is the second coding and D2 is the number dic-

tionary of the second layer. ζ2i ∈RD2 is used to measure the distance between vi and each atom in
U . vi∈V is one of the basis vectors adopted in the representation of yi at the first layer.

By doing so, the activated atoms vi in the first layer can be further decomposed to obtain the
second layer coding using U . Thus, the approximation of y in the second layer can be defined as,

y′′ =
∑
v∈C1

[
γ1(y)

∑
u∈C2,v

γ2,v(v)u

]
, (30)
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Figure 22. Multi layers coding strategy. The first layer is mainly used to partition the space, while the main
approximation power is achieved within the second layer, which embodies a ‘divide and conquer’ strategy.

where C2,v is the set of anchor points to v. We also provide an illustrative example in Fig. 22 for
better understanding. The core idea of the two-layer coordinate coding is that if both coordinate
codings, i.e., y′ and v′=

∑
u∈C2,v

γ2,v(v)u, are sufficiently localized, then a point y lies on a mani-

fold, which would be locally embedded into a lower-dimensional two-layer structure space. More
importantly, not only the data point y is locally linearly represented, but also the function f(y).
This significant observation lays the foundation for our approach.
The nth Dictionary Learning Layer. Similarly, we can learn the nth dictionary
Dn=

[
dn1 ,d

n
2 , · · · ,dnDn

]
from the previous layer dictionary Dn−1,

min
Dn

[
1
2 ||d

n−1
i −Dnαi||22

]
s.t. ||αi||1 <= λ, (31)

where dn−1i ∈Dn−1 is one of the activated basis vectors in the previous (n−1)th dictionary layer.
The nth Feature Coding Layer. Therefore, we can generalize the two-layer framework of
DDLCN to a deeper one,

min
γn
i

[
1
2

∥∥dn−1i −Dnγni
∥∥2
2

+ β‖γni � ζni ‖1
]

s.t. 1Tγni = 1,
(32)

where γni is the nth layer coding and ζni is employed to measure the distance between dn−1i and
each atom in Dn. dn−1i ∈Dn−1 is one of the basis vectors adopted in the feature representation
of yi at the (n−1)th coding layer. Through the proposed multi-layer learning and coding strategy,
the proposed DDLCN can output a robust feature representation to accurately represent the input
image. Moreover, DDLCN increases and boosts the separability of feature representations from
different semantic classes. Lastly, DDLCN preserves the locality information of the input local
features, avoiding very large values in the coding representation and reducing the error caused by
over-fitting.
Pooling Layer. After the last dictionary learning and feature coding layer, we use a pooling layer
for removing the fixed-size constraint of the input images [208]. Specifically, for each input image,
we adopt 1×1, 2×2 and 4×4 spatial pyramids with max-pooling.
Fully Connected Layer. The final feature representations of yi can be obtained by inte-
grating feature representation from each layer. Task two-layer framework for an example, each
item (such as the jth item) in the first layer’s codes γ1

i can be augmented into the form of[
γ1
i (vj),γ

1
i (vj)[γ

2
j (u1),γ2

j (u2), · · · ,γ2
j (us2)]

]T
. Then we concatenate the first layer coding and
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Table 11. Classification accuracy (%) on Caltech 256.

Num. of Train. Samp. 15 30 45 60

KC [196] - 27.17 ± 0.46 - -

LLC [197] 25.61 30.43 - -

K-SVD [190] 25.33 30.62 - -

D-KSVD [198] 27.79 32.67 - -

LC-KSVD1 [199] 28.10 32.95 - -

SRC [192] 27.86 33.33 - -

Griffin [200] 28.30 34.10 ± 0.20 - -

LC-KSVD2 [199] 28.90 34.32 - -

ScSPM [201] 27.73 ± 0.51 34.02 ± 0.35 37.46 ± 0.55 40.14 ± 0.91

NDL [202] 29.30 ± 0.29 36.80 ± 0.45 - -

SNDL [202] 31.10 ± 0.35 38.25 ± 0.43 - -

MLCW [203] 34.10 39.90 42.40 45.60

LP-β [204] - 45.8 - -

M-HMP [205] 42.7 50.7 54.8 58.0

Convolutional Networks [206] - - - 74.2 ± 0.3

VGG19 [207] - - - 84.10

DDLCN-2 (1-1) 26.30 ± 0.40 31.45 ± 0.21 34.69 ± 0.31 37.76 ± 0.25

DDLCN-2 (15-15) 35.06 ± 0.26 41.26 ± 0.22 44.17 ± 0.35 47.48 ± 0.26

DDLCN-2 (30-30) 45.25 ± 0.31 51.64 ± 0.51 55.11 ± 0.26 59.66 ± 0.45

DDLCN-3 (30-30) 47.65 ± 0.22 54.28 ± 0.42 57.89 ± 0.32 62.42 ± 0.34

the second layer coding to form the final coding representation, which is a D1×(1+D2) dimen-
sional vector.
Output Layer. We adopt the Support Vector Machine (SVM) as our classifier. Specifically, we
employ LIBSVM to implement our multi-class SVM.

The classification of the input image is ultimately carried out by assembling deep dictionaries
from different layers and assessing their contribution. Moreover, through jointly minimizing both
the classification errors and the reconstruction errors of all different layers, the proposed DDLCN
iteratively adapts the deep dictionaries to help to build better feature representations for image
recognition tasks.
Evaluation. We evaluated the effectiveness of the proposed DDLCN on five widely-used datasets,
i.e., Extended YaleB [209], AR Face [210], Caltech 101 [211], Caltech 256 [212] and MNIST [213],
which are all standard datasets for dictionary learning evaluation. Note that we follow the same
evaluation procedure with the previous works on each dataset for a fair comparison. For the sake
of space we present here only the results for Caltech 256 dataset.

We conduct extensive experiments using 15, 30, 45 and 60 training images per class and compare
with state-of-the-art methods. Table 11 shows the comparison results. We can see that the pro-
posed DDLCN outperforms existing leading dictionary-based methods such as K-SVD, D-KSVD,
LC-KSVD and LLC, which significantly validates the advantages of the proposed DDLCN.

Moreover, we observe that the proposed method achieves slightly worse results than both VG-
GNet [207] and convolutional network [206] when using 60 training samples. However, 1) [207]
uses a very deep convolutional network, i.e., VGG19 [138], which consists of 16 convolutional lay-
ers and 3 fully connected layers. 2) Both [207] and [206] have limited practical applicability than
our DDLCN since their reliance on careful hyper-parameter selection. 3) The proposed approach
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has fewer hyper-parameters that need to be tuned. 4) Compared with [207] and [206], the feature
learner and encoder of the proposed DDLCN are fixed after extracting features, and only the linear
SVM classifier on top is needed to be updated during training. Thus, the training of DDLCN is
offline and its testing is pretty fast. All these represent the big advantages of the proposed DDLCN.

4.7.2. Contributions to WP8 Use cases

Relevant WP8 Use Cases: 3A3-11 (Visual indexing and search), 3A3-12 (Visual concepts
classification). DDLCN is a generic tool that allows combining the classical dictionary learning
and deep learning and as such it can be directly used for visual indexing, searching and concept
classification.

4.7.3. Relevant Publications

• H. Tang, H. Liu, W. Xiao, and N. Sebe, When Dictionary Learning Meets Deep Learning:
Deep Dictionary Learning and Coding Network for Image Recognition with Limited Data,
IEEE Transactions on Neural Networks and Learning Systems, 32(5):2129-2141, May 2021.
Zenodo Record: https://zenodo.org/record/5018256.

4.7.4. Relevant software and/or external resources

• The code for our work ”When Dictionary Learning Meets Deep Learning: Deep Dictionary
Learning and Coding Network for Image Recognition with Limited Data” can be found in
https://github.com/Ha0Tang/DDLCN.

4.8. Curriculum Self-Paced Learning

Contributing partners: UNITN

4.8.1. Method Overview

Training (source) domain bias affects state-of-the-art object detectors, such as Faster R-CNN [116],
when applied to new (target) domains. To alleviate this problem, researchers proposed various
domain adaptation methods to improve object detection results in the cross-domain setting, e.g.
by translating images with ground-truth labels from the source domain to the target domain using
Cycle-GAN [10]. On top of combining Cycle-GAN transformations and self-paced learning in a
smart and efficient way, in our research, we propose a novel self-paced algorithm that learns from
easy to hard. Our method is simple and effective, without any overhead during inference. It
uses only pseudo-labels for samples taken from the target domain, i.e. the domain adaptation is
unsupervised.

We propose a novel curriculum self-paced learning approach in order to adapt the object de-
tector to the target domain. In self-paced learning, the model learns from its own predictions
(pseudo-labels) in order to gain additional accuracy. Since we use image samples from the target
domain during inference, the model has the opportunity to learn domain-specific features, thus
adapting itself to the target domain. However, the main problem in self-paced learning is that the
model can be negatively influenced by the noisy pseudo-labels, i.e. prediction errors. In order to
alleviate this problem, we propose an effective combination of two approaches. In order to reduce
the labeling noise level we apply a domain-adaptation approach that relies only on ground-truth
labels before the self-paced learning stage. The approach consists in training a Cycle-consistent
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Figure 23. Our curriculum self-paced learning approach for object detection. In the initial training stage (step
1.a), the object detector is trained on source images with ground-truth labels. In step 1.b, the object detector is
further trained on source images translated by Cycle-GAN [10] to resemble images from the target domain. In
steps 2, 3 and 4, the object detector is fine-tuned on real target images (different from those included in the test
set), using the bounding boxes and the labels predicted by the current detector. In step 5, the model makes its
predictions on the target test set for the final evaluation. Best viewed in color.

Generative Adversarial Network (Cycle-GAN) [10] in order to learn how to transform images from
the source domain to the target domain. The adaptation consists in fine-tuning the object detector
on source images that are translated by Cycle-GAN to look like target images (see Figure 23 for
some translated samples). In the experiments, we show that reducing the labeling noise before
self-paced learning is indeed helpful, but still not satisfactory.

We hypothesize that the labeling noise inherently induced by the prediction errors is propor-
tional to the difficulty of the images. Following this intuition, we perform self-paced learning
starting with the easier images and then gradually adding more difficult image samples, inspired
by the curriculum learning paradigm [214], as shown in Figure 23. Our hypothesis turns out to
be supported by the empirical results, confirming the utility of our curriculum self-paced learning
method. In order to estimate the difficulty of each image sample, we employ a score given by the
number of detected objects divided by the average area of their bounding boxes. This is inspired by
the previous work of Ionescu et al. [215], which found that image difficulty is directly proportional
to the number of objects and inversely proportional to the average bounding box area.

We evaluate our curriculum self-paced learning approach on three cross-domain benchmarks,
Sim10k→Cityscapes, KITTI→Cityscapes and PASCAL VOC 2007→Clipart1k, comparing it with
recent state-of-the-art methods [3, 4, 5, 6, 7], whenever possible. The empirical results indicate
that our approach provides the highest absolute gains (with respect to the baseline detector) and
superior performance compared to all these methods [3, 4, 5, 6, 7]. Furthermore, we consider that
our performance gains of +17.01% on Sim10k→Cityscapes, +12.34% on KITTI→Cityscapes and
+8.91% on PASCAL VOC 2007→Clipart1k are significant (see the results in Table 12).
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Model Train Data Sim10k→City KITTI→City

Baseline Faster R-CNN [3] Source 30.12 30.20

Baseline Faster R-CNN [4] Source 31.08 31.10

Baseline Faster R-CNN [5] Source 34.60 -

Baseline Faster R-CNN [6] Source 30.10 30.20

Baseline Faster R-CNN [7] Source 33.96 37.40

Baseline Faster R-CNN (ours) Source 30.67 29.75

Domain-adapted Faster R-CNN [3] S+T (no labels) 38.97 (+8.85) 38.50 (+8.30)

Domain-adapted Faster R-CNN [4] S+T (no labels) 42.56 (+11.48) 42.98 (+11.88)

Domain-adapted Faster R-CNN [5] S+T (no labels) 40.70 (+5.80) -

Domain-adapted Faster R-CNN [6] S+T (no labels) 39.60 (+9.50) 41.80 (+11.60)

Domain-adapted Faster R-CNN [7] S+T (no labels) 43.02 (+9.06) 42.50 (+5.10)

Domain-adapted Faster R-CNN (ours) S+T (no labels) 47.68 (+17.01) 42.93 (+13.18)

In-domain Faster R-CNN [4] Target 68.10 68.10

In-domain Faster R-CNN [5] Target 53.10 53.10

In-domain Faster R-CNN (ours) Target 62.73 62.73

Table 12. Average Precision (AP) scores (in %) of several Faster R-CNN models trained using different
state-of-the-art domain adaptation methods [3, 4, 5, 6, 7] versus a Faster R-CNN model trained using our domain
adaptation approach based on curriculum self-paced learning. All domain adaptation methods include images
without ground-truth labels from the target domain. Faster R-CNN baselines without adaptation (trained only on
source) are also included to point out the absolute gain of each domain adaptation technique, with respect to the
corresponding baseline. Faster R-CNN models trained on target domain images with ground-truth label are
included as indicators of possible upper bounds of the AP scores. Results are reported for Sim10k→Cityscapes and
KITTI→Cityscapes benchmarks. The best AP scores and the highest absolute gains are highlighted in bold. S+T
indicates Source + Target.

4.8.2. Contributions to WP8 Use cases

Relevant WP8 Use Cases: 3A3-11 (Visual indexing and search), 3A3-12 (Visual concepts
classification). Our approach is a generic tool that allows curriculum self-paced learning and as
such it can be directly used for visual indexing, searching and concept classification.

4.8.3. Relevant Publications

• P. Soviany, R. Ionescu, P. Rota, and N. Sebe, Curriculum self-paced learning for cross-domain
object detection, Computer Vision and Image Understanding, vol. 204, Article 103166, March
2021.
Zenodo Record: https://zenodo.org/record/5142259.
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5. Music Annotation and Audio Provenance Analysis

5.1. Overview

T5.6 is about developing advanced audio analysis components for two domains: (a) automatic
music annotation and music similarity analysis, and (b) audio partial matching/reuse detection
and audio phylogeny analysis.

Regarding (a), this Section presents improvements regarding music similarity (by FHG-IDMT)
and the generation of music mixes based on MIDI (by IRCAM). As for (b), a novel FHG-IDMT
approach for audio phylogeny analysis with improved computational efficiency is then described.

5.2. Disentanglement Representation Learning for Music Similarity

Contributing partners: FHG-IDMT

5.2.1. Method Overview

Choosing the best suitable musical track can be hard, time consuming, and requires deep expert
knowledge in the field. Traditionally, one could use metadata associated to the particular music
track to speed up the retrieval process. Such metadata could be manually provided by music
experts or extracted automatically. Another possibility is to use the similarity relations between
musical pieces or parts of those. The latter method is particularly useful for the music replacement
task, where an alternative song to a given query song shall be retrieved with the highest possible
similarity.

Music similarity is not well-defined in multiple ways. First, the specificity spectrum of music
similarity tasks is quite broad as shown in Fig. 24. In our current research, we focus on the medium

Figure 24. Specificity range of music similarity tasks.

specificity range that corresponds to the music replacement task. Second, music is inherently
multi-dimensional and the definition of music similarity often depends on the targeted application
scenario. Depending on each user’s preferences, particular musical dimensions can have a stronger
influence on the similarity perception between two songs than others. In the music replacement
task, often additional similarity requirements exist that require an emphasis for instance on musical
genre, mood, or instrumentation, among other high-level musical concepts. By adjusting those
dimensions, configurable similarity spaces can be created to target certain pre-defined similarity
tasks. As a consequence, a wide range of tasks of the specificity spectrum can be covered with a
single framework (see Fig. 25 & Fig. 26).

Our research aims at developing a flexible music similarity algorithm which can be configured
according to the six musical dimensions musical genre, mood, instrumentation, era, tempo, and
key.
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Figure 25. Music similarity dimensions [11].

Figure 26. Similarity spaces created by combination of musical dimensions.

The proposed solution is based on metric learning for music similarity using a Conditional
Similarity Network (CSN) [216, 11]. Here, the metric learning approach is combined with disen-
tanglement during the training procedure.

The learnt latent space is tailored to the notion of similarity: similar samples are close in the
latent space and dissimilar samples are far away from each other. Audio samples are mapped to
the latent space using a deep embedding function as shown in Fig. 27.

Figure 27. Deep metric learning [12].

In addition to metric learning, we aim to disentangle the aforementioned musical dimensions
in the learnt embedding space. We use triplet learning within a CSN to combine both metric
learning and disentanglement in one training procedure (see Fig. 28). Here, conditional triplets
that include an anchor, a positive, and a negative example are selected according to existing
annotations of musical genre, mood, instrumentation and era in the training data. Additionally,
tempo and key information for each track are extracted using the state-of-the-art music signal
processing algorithms contained within the Madmon python library [217]. At each training step,
the parts of the embedding vectors that do not correspond to the current dimension-of-interest are
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masked-out with zeros. In this way, non overlapping equal portions of the embedding space are
assigned to each musical concept taken into account.

Figure 28. Overview of the conditional similarity network and the embedding masking procedure [11].

The CSN is trained with the triplet loss function LT = max{0, D(f(xa), f(xp)−D(f(xa), f(xn))+
∆} with f(.) denoting the neural network mapping function applied to the input features xa, xp,
and xn of the anchor, positive, and negative, respectively, and ∆ denoting a fixed margin value.
The triplet sampling is done online in parallel for each musical dimension through a developed
conditional sampling strategy based on the semi-hard negative mining approach [218], in order to
speed-up convergence. During the training procedure we apply a track regularization to enforce
consistency across multi-dimensional embedding spaces and combine both the triplet loss LT and
the track regularization loss LTR as L = LT + λLTR. The weighting factor λ defines the trade-off
between low and high-specificity, i. e., between semantic similarity and the self-similarity within
the same musical track.

The backbone network f(x) is an Inception network variant [11, 219] consisting of
• 1 x convolution layer
• 6 x inception blocks (1 naive + 1 dimension reduction module)
• 1 x dense layer (256 neurons)
• 1 x layer normalization

This architecture allows an increase in number of neurons per stage without excessive computa-
tional cost. Fig. 29 and Fig. 30 illustrate the architecture of the naive and dimension reduction
modules.

Figure 29. Naive module architecture
Figure 30. Dimension reduction architecture
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For the experimental part we implement the CSN in Keras2 using a data generator approach
as shown in Fig. 31.

Figure 31. Implemented CSN-model architecture.

The training triplets for the genre, mood, instrument, and era dimensions are generated based
on the annotations in the Million Song Dataset [220]. During training, the developed conditional
semi-hard negative mining strategy selects negatives of the respective concept within a margin
to the positive examples. This ensures the sampling of triplets with increasing difficulty, which
favours a faster convergence.

We evaluate the trained representation using the DIM-SIM dataset [11]. This dataset includes
around 4000 conditional triplets of 3s samples from the MDS test set. These triplets include
similarity annotations by 5-12 people per triplet, leading to around 40K annotations (see [11] for
details on the DIM-SIM dataset). We disregard the annotations with lower annotator agreement,
and use around 450 high-agreement triplets with annotator agreement higher than 90%. We analyze
influence of multi-dimensionality on the representation space and evaluate learned embeddings for
the music similarity task.

As shown in Table 13, we compare our results against two baseline systems. The first system
[221] similarly uses a CSN and triplet learning with 4 input dimensions based on mel spectrogram
input. The second system is based on the openL3 embeddings [222]. The table shows that three
out of four configurations of the proposed models outperform the baseline systems. The highest
triplet score, i. e., the percentage of correctly assigned test set achors, of 0.838 was achieved for
the proposed multi-input model with 6 dimensions. The results of this research will be submitted
to the ICASSP 2022 conference.

5.2.2. Contributions to WP8 Use cases

Relevant WP8 Use Cases: 5B2 (Musical recording analysis). Learned representations can be
used in the Epic 5B2 of the use-case UC5 (AI for Games), in order to find the most suitable

2https://keras.io
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Table 13. Results of the similarity evaluation obtained for the implemented models without track regularization.

Model Number of Multi- Embedding Triplet

Dimensions Input Size Score

Baseline[221] 4 256 0.8192

OpenL3 [222] - 512 0.7958

4 x 256 0.8286

Proposed 6 258 0.7934

Model 6 384 0.8169

6 x 384 0.8380

audio track based on the musical example and user preferences regarding the definition of music
similarity.

5.3. Realistic Music Mixes Generation

Contributing partners: IRCAM

5.3.1. Method Overview

Among different topics related to music and sounds, IRCAM works on automatic audio analyses to
retrieve music information from audio signals. With Machine Learning approaches and especially
with DNNs, a central problem is the availability of properly annotated and sufficiently large training
datasets. There exist many problems for which the annotation of a large quantity of annotated data
is extremely difficult. Source separation for example requires the availability of the final music mixes
together with the corresponding separated tracks. This situation has lead to numerous approaches
to use state of the art signal processing algorithms to synthetically produce annotated datasets
for training DNNs. One of the most straight-forward approach is the use of MIDI synthesis
and disklaviers for the generation of large annotated datasets [223, 224]. Unfortunately, it was
soon noted that the training with MIDI synthesized audio is not sufficiently realistic to be of
practical use, and using only disklaviers strongly limits the diversity of the instruments that are
available for training. Another approach consists in applying high quality signal transformation
algorithms (e.g. pitch shifting and time stretching) to augment the diversity of relatively small
publicly available database [225, 226], or in creating annotated synthetic data by means of using
high quality analysis/resynthesis algorithms [227, 228]. Nevertheless, in terms of variety of different
songs, musical genres, and instrumentations, the diversity of the augmented dataset remains limited
to the diversity of the initial dataset. Another successful approach consists in using a network that
is trained on an annotated data to produce a predicted dataset from new data without annotation,
see e.g. [229]. To be effective, this method requires the availability of special pre-conditions which
are not possible for all training tasks.

To overcome the issue of annotating datasets, the present research aims to develop innovative
algorithms to generate realistic music mixes based on a symbolic musical representation, that is
the MIDI format. Initially developed in the context of Task 5.2, this approach makes possible
the synthesis of instrument mixes of music pieces, for creative applications for example, but in the
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Figure 32. Synthesizer Architecture. The blue boxes represent the trained modules for the control of the synthesis.
The synthesis modules from DDSP are represented by yellow boxes ( Additive, Filtered Noise, and Reverberation.
Finally, the Multi-Resolution Spectral Loss compares the input target signal (bottom left) and the output
synthesized sound (bottom right).

context of Task 5.6 it also makes possible the generation of wide musical datasets based on symbolic
musical representations. This music sound generator will be able to produce datasets of realistic
audio with the associated digital scores. Consequently, we have access to many information directly
contained in the MIDI score, for some tasks such as: recognition of key and mode, recognition of
chord progression, automatic transcription, tempo estimation, instrument recognition, down-beat
detection.

To achieve the objectives, this work exploits the trainable Differentiable Digital Signal Process-
ing Synthesizer (DDSP) [230] and the Generative Adversarial Networks (GANs) [231]. The DDSP
framework offers traditional sound synthesizers controllable by neural networks. The modularity
of a DDSP-based architecture enables the injection of acoustic modeling knowledge into a DNN
framework, which alleviates the need for a large quantity of training data. This is of particular
interest for generating larger datasets of music annotations from a modest amount of initial data.
The GAN architecture, in form of CycleGANs, made possible the domain translation of photos
without making use of parallel datasets [232], for example by translating summer landscapes to
winter landscapes. In this work, GAN type generators are used to create an audio augmentation
network that allows enriching synthetic music with the variability and details that characterize real
music. The research is inspired by [233] in that it aims to build artificial training data containing
the relevant details that are present in real world.

5.3.2. Piano synthesis for annotation of piano performances

To facilitate the start of this work, the first and current step deals with the sound synthesis of
piano notes only. The focus is on this instrument because some datasets exist with audio and
MIDI scores [223, 224]. The developed method is based on a DDSP synthesizer which is composed
of: an additive sinusoidal module for the production of harmonics or partials of the music tones, a
filtered noise module for the residual signal and a reverberation module [230].

The new derived architecture is illustrated in Figure 32. It enhances to reproduce particular
sound properties of the piano, such as partials inharmonicity, hammer and key noises and partials
beating. All these acoustic properties are essential to build realistic training datasets: MIR models
can be sensitive to some acoustic details, which non-realistic synthetic data fail to emulate. Piano
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Figure 33. Spectrograms of Piano notes: target tone and synthesised sound.

notes are characterized by their partials being non-integer multiples of their “fundamental” fre-
quencies. The global inharmonicity model from [234] is included and learned in our synthesizer.
Furthermore, the majority of piano strings are doubled or tripled for each note, which leads to a
recognizable double decay of the note amplitude, and partial beatings due to slight detunings from
one string to another, see [235]. A monophonic recurrent network is used for capturing the partial
amplitudes and decays, while a detuning factor is learned for re-creating the beating patterns. The
neural network also controls a filtered noise module that simulates residual sounds, such as key
strokes and pedal noises. The polyphony context is encoded with the pedal inputs and sent to the
monophonic model to modify the partial amplitudes and the noise filter for emulating sympathetic
resonances and raised damper noises.

An example of a piano note synthesised by the model is shown in Figure 33, compared with the
ground-truth audio. The model was trained on a set of isolated notes of a real piano from [223], with
various pitches and velocities. One can notice the frequency distribution and the amplitude decays
of the note partials (horizontal lines) are well reproduced by the model. The noise filtered module
complements the partials by adding residual noise during note onset and sustain, which resembles
the target noise. Informal listening tests indicate that the added noise effectively improves realism.
Note that this synthesised target tone has not been included in the training dataset.

In a next work, the method will be trained on full performances, instead of isolated notes, and
compared to other synthesis approaches: a text-to-speech method adapted for piano synthesis [236],
a WaveNet method [224], the open-source sample-based software fluidsynth 3 and a commercial
physical-based software Modartt’s Pianoteq4. A listening test will be conducted to evaluate the
subjective quality of the synthesized piano sounds, to get a Mean Opinion Score for all tested
methods.

This work is on-going and has not been published yet. A first submission in a conference is
planned to present the method and its subjective evaluation.

5.3.3. Contributions to WP8 Use cases

Relevant WP8 Use Cases: 5B2 (Musical recording analysis). The developed approach is directly
related to the Epic 5B2 of the use-case UC5 (AI for Games). The goal is to help Game Audio
Designers when choosing suitable music tracks for a game.

3https://www.fluidsynth.org/
4https://www.modartt.com/pianoteq
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Figure 34. Phylogeny analysis results for a set of near-duplicates, as visualized within the respective software tool:
Nodes represent audio files, connections represent parent-child relations between nodes.

5.4. Improving Audio Provenance Analysis with CNN

Contributing partners: FHG-IDMT

5.4.1. Audio Provenance: Method Overview

Retrieving information about the processing history and relationships among content items is
key for multimedia asset management and disinformation detection, and Audio phylogeny aims
at automatically detecting such relationships between audio objects. It provides a reconstructed
phylogeny tree where nodes represent objects and edges represent causal relationship between
them (e.g. operations/transformations that lead from one node to another), see Fig. 34. There are
several well-performing methods for audio phylogeny, but all of them are only capable of detecting
a very limited set of transformations [237, 238, 239], and extending this set, while being crucial for
forensics and archival purposes, increases the complexity significantly.

As introduced in [240], partial audio matching aims at detection and localization of arbitrary
partial matches, the existence and position of which is unknown (see Fig. 35). Partial audio
matching has many applications in the fields of multimedia asset management and media forensics
(see [241]). The combination of audio phylogeny and partial matching would allow us to create a
system for advanced, integrated provenance analysis that can: analyze phylogeny forests (multiple
phylogeny trees), introduce transformations as cut and paste (between trees/nodes) and execute
phylogeny analysis on a segment level. Such a system would represent a unique approach in
comparison to the state of the art, and provide a big improvement in the field of audio reuse
detection.

As a part of the task 5.6 activities related to Audio Provenance Analysis, our first goal is to
propose an audio phylogeny approach that is computationally efficient and can handle a large,
easily extendable set of audio transformations. Based on that, our second goal is to combine the
enhanced audio phylogeny and partial audio matching to achieve an improved, integrated audio
provenance analysis.
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Figure 35. Partial audio matching without query.

5.4.2. CNN-based Audio Phylogeny Analysis

Up to now the main focus of our project work has been the development of an improved audio
phylogeny approach that achieves high computational efficiency and can handle a large, easily
extendable set of audio transformations. Audio phylogeny analysis uses a set of near duplicates files
(same audio content with some audio transformations applied, e.g., encoding, fading or trimming)
as input. The goal is to estimate a dissimilarity value for each pair of files and store it in an overall
dissimilarity matrix. The calculation of the dissimilarity matrix is usually the most time-consuming
part of phylogeny analysis. The reason for this is that the state-of-the-art approaches apply all
possible transformations (or a pre-filtered set of them) to potential parent nodes in order to find
the most likely transformation (and dissimilarity value). This extensive search for the best fitting
audio transformation for every audio pair is what makes current approaches very inefficient. And
for the same reason, it is difficult for state-of-the-art approaches to extend the set of considered
audio transformations without further increasing the computational complexity.

In order to improve this, we propose using an intelligent transformation assessment between
every pair of nodes by facilitating convolutional neural networks (CNNs). The idea is to train a
CNN to use mel spectrograms (where frequencies are converted to the the mel scale, which is linear
in low frequencies and logarithmic in high frequencies) of a parent and a child object as input and
then estimate the most probable audio transformation between them. Therefore, this approach
would improve scalability, by avoiding the exhaustive search for the most likely transformation.
Moreover, extending the set of transformations would be done by re-training the network and
would not affect the computation time of the actual phylogeny tree reconstruction.

Towards achieving our goal, we have established a new CNN-based approach for transformation
detection in audio phylogeny that estimates the probability of applied transformations between two
nodes. The network is based on the ResNet architecture. In our preliminary test we used a set of
11 different audio transformations. Based on the network’s predictions, we were able to successfully
reconstruct the phylogeny trees using the Oriented Kruskal algorithm.

Figure 36 shows the process of phylogeny analysis for one pair of audio files: potential parent a
and potential child audio file b. The mel-spectrograms of these two audio files are given as input to
the network that then outputs the predicted transformation that should be applied to a in order to
get a version that is as close as possible to b. After applying the transformation on audio file a (in
this case mp3 encoding with 128 kbit/s),the dissimilarity value is calculated between transformed
mp3128(a) and b and saved in the dissimilarity matrix that holds values between every pair of files
in the analyzed set. The Oriented Kruskal algorithm is then used to reconstruct a phylogeny tree
from the given dissimilarity matrix.

Figure 37 shows the results of a brief evaluation that we conducted to assess how well the
current neural network detects transformations between two audio files. In our current phylogeny
analysis set-up (as described above), this information is critical for successful tree reconstruction
and influences all tree reconstruction metrics presented in Figure 37 (for detailed description of
phylogeny tree reconstruction metrics please see [238] ). In this evaluation we have reconstructed
40 phylogeny trees with 20 nodes each. From Figure 37 we can see that our CNN has correctly pre-
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Figure 36. Process of phylogeny analysis for one pair of audio files, using CNN for transformation prediction.

Figure 37. Score of different tree metrics for phylogeny tree reconstruction. Averaged over 40 different phylogeny
trees

dicted transformations from parent to child node for 74.5% of edges in the reconstructed phylogeny
trees (yellow bar). Hereby, we managed to deliver a proof of concept for our idea, successfully train
the network for transformation detection, and use its prediction for phylogeny tree reconstruction.

This is still on-going work and a submission of a relevant paper is planned for 2022.

5.4.3. Contributions to WP8 Use cases

Relevant WP8 Use Cases: 1A3 (Synthetic Audio Detection/Verification), 4C3 (Audio analysis).
Audio Provenance Analysis contributes to use-cases 1A3, by providing tools for verifying audio
content, and 4C3, by providing tools for the comparison and tracking of content in archives.

Initial report on Multimedia Summarisation and Analysis 84 of 103



6. Conclusions and Future Work

This document presented AI4Media research activities, concerning Tasks T5.1, T5.3, and T5.6,
for the period M1-M12 of the project. This research involves media analysis and summarisation,
machine learning in the face of data scarcity, as well as automated music analysis and annotation.
Almost all of the presented methods rely on DNNs, with several of them having already been
completed. Significantly, thanks to the clear focus of WP5, the majority of the discussed methods
are directly linked to the use-cases of WP8 of the project. Overall, the work discussed in this
deliverable is of very good quality and evidently aligned with WP5 objectives. Based upon research
which is reported in this document, up to M12 of the project, 5 papers have been submitted and
8 papers have been already accepted to well-known, relevant scientific journals or conferences. 1
related method has been integrated into the AI4EU “AI on Demand” platform, while software
implementations of 3 additional methods/systems that are presented here are available on-line.

Regarding the outcome of Task T5.1, this deliverable presents both newly developed AI-based
algorithms/methods and relevant literature surveys that have been conducted. Their scope ranges
from unsupervised video summarisation/key-frame extraction (CERTH, AUTH) to automatic me-
dia dataset creation, curation and management (RAI), and from information retrieval on cultural
media datasets using symbolic/computational AI hybridization (3IA-UCA) to joint low-level and
semantic video analysis, with a focus on simultaneous object instance segmentation and optical
flow estimation (JR). The common theme is modern AI for image/video analysis and summari-
sation, with obvious applications in automated search, management, enrichment and update of
media archives.

As far as Task T5.3 is concerned, this deliverable presented novel methodologies that have been
developed or are under active development and focus on training or adapting DNNs for scenarios
marked by a lack of large-scale, domain-specific datasets and/or annotations. The scope of the
discussed methods covers few-shot object detection (JR, UPB), unsupervised domain adaptation
for traffic density estimation/counting (CNR) or for visual object detection (UNITN), advanced
video browsing and search (CNR), semi-supervised learning for fine-grained visual categorization
(UNIFI), deep clustering for creating data pseudolabels (QMUL), as well as deep dictionary-based
representation learning (UNITN). The common running theme is handling data and/or annotation
scarcity when training or adapting DNNs, mostly for image/video analysis tasks, although certain
algorithms are rather generic machine learning methods in nature.

Regarding Task T5.6, the work presented in this deliverable consisted of novel methodologies
on advanced audio analysis for automatic music annotation and audio partial matching/reuse
detection. The development of all discussed algorithms is still on-going, while their scope extends to
automated music similarity analysis (FHG-IDM), music mixes generation based on MIDI (IRCAM),
as well as to efficient audio phylogeny analysis (FHG-IDM).

Even though the activities reported in this document are only the outcomes of the first project
period, future research plans have already been laid, with the intention to expand upon work that
has been presented here. Thus, in Task T5.1, CERTH and AUTH intend to build on existing
state-of-the-art unsupervised video summarisation methods, investigating neural architectural im-
provements and model selection criteria for choosing the optimally trained model. Furthermore,
exploitation of complementary deep neural architectures designed for tasks such as activity recog-
nition and/or image/video captioning will be attempted, in order to enhance unsupervised video
summarisation performance, while deep dictionary learning-inspired methods will be adopted to
extract more representative and/or more salient key-frames. JR will implement a first prototype
for joint optical flow and segmentation, based on the analysis of the state of the art which has
been performed. RAI will continue its current work by directly implementing end-to-end face ver-
ification and landmark detection pipelines based on archival content and metadata, able to adapt
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dynamically to various contexts and genres. These will serve as a basis for augmenting or building
reference data sets, in order to retrain/refine existing models in a fully automated way. Finally,
3IA-UCA will further investigate the combination of learning and reasoning to analyze media
data, particularly to further media understanding with learning and first-order logic, identifying
connected concepts and extracting relational properties from multimedia data.

In Task T5.3, CNR intends to adopt solutions for learning with scarce data in various application
domains and using various techniques (e.g., domain adaptation, anomaly detection, studies on
sample efficiency, applications to video browsing and searching), while UPB will focus on improving
multi-scale feature learning in the FSOD framework, introducing attention at each level in the
feature pyramid. Also, the possibility of ensembling two-stage and one-stage detectors will be
investigated, in order to benefit from both types of models. JR will continue improving incremental
training for few-shot detection and plans to investigate sampling training data from videos using
tracking and instance search. This will be done by integration with the existing object detection and
tracking framework [242]. The other aspect that will be addressed in future work is the extension
to few-shot object segmentation. QMUL will focus on self-supervised representation learning,
exploring the use of clustering as a source of pseudolabels and the development of computationally
efficient frameworks, while 3IA-UCA will investigate adversarial active learning, where adversarial
attacks help define and reach theoretical bounds on the minimum amount of data to train to a
certain error a DNN. Finally, UNITN will concentrate on the problem of low-budget label query,
which aims at maximizing the classification performance by selecting a convenient and small set of
samples (i.e., low budget) to be manually labeled from an arbitrary big set of unlabeled data. An
Unsupervised Domain Adaptation (UDA) method will be first considered, to better align source
and target domains using consistency constraints. Then, using the previously trained model as
reference, effective selection methods will be investigated for selecting the samples to be labeled.

Regarding Task T5.6, FHG-IDMT aims to use representation learning for music annotation,
semi-supervised learning and domain adaptation, while future work on audio phylogeny and partial
matching will involve experimentation with different network architectures, optimizing accuracy
of transformation detection, as well as the integration of phylogeny analysis and partial matching.
Finally, IRCAM plans to adapt its current architecture for realistic music mixes generation to be
able to learn with: a) plated chords (rather than isolated notes), and b) real piano performances
from the dataset of [224]. Thus, it will be possible to train automatic annotation tasks, such as
automatic transcription, using the newly augmented and synthesized dataset. This approach will
then be extended to other instruments.
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